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Ranpirnase, a cytotoxic ribonuclease from the frog Rana pipiens, is the archetype of a novel class of cancerAbstract
chemotherapeutic agents based on homologs and variants of bovine pancreatic ribonuclease (RNase A).
Ranpirnase in combination with doxorubicin is in clinical trials for the treatment of unresectable malignant
mesothelioma and other cancers. The putative mechanism for ranpirnase-mediated cytotoxicity involves binding
to anionic components of the extracellular membrane, cytosolic internalization, and degradation of transfer RNA
leading to apoptosis. The maintenance of ribonucleolytic activity in the presence of the cytosolic ribonuclease
inhibitor protein is a key aspect of the cytotoxic activity of ranpirnase. The basis for its specific toxicity for
cancer cells is not known. This review describes the development of ranpirnase as a cancer chemotherapeutic
agent.

RNA is the intermediate in the flow of biochemical information development,[6-8] though the safety of this approach is a con-
cern.[9,10]from genes to proteins (figure 1). Accordingly, intervention in the

Ribonucleases also have potential therapeutic utility.[11-15]
metabolism of RNA presents an opportunity for the development

These proteins are efficient catalysts of RNA cleavage, actingof chemotherapeutic agents.[1] Since the 1980s, antisense oligo-
in effect as RNA depolymerases.[16] Much interest has focusednucleotides and ribozymes have been pursued as the basis for
on homologs and variants of bovine pancreatic ribonuclease

treatments of viral infections, inflammatory disorders, hematolog-
(RNase A), which is renowned as a model system in protein

ical diseases, and cancer.[2-4] In 1998, the phosphorothioate an- biochemistry.[17] RNase A itself is not cytotoxic. In contrast,
tisense oligonucleotide fomivirsen was approved by the US FDA bovine seminal ribonuclease, which is a homodimer, is endowed
for the treatment of cytomegalovirus retinitis in immunocompro- with antitumoral, immunosuppressive, and antiviral activities.[18]

mised patients.[5] More recently, manipulation of the RNA inter- Ranpirnase (which is also known as P-30 protein) is an amphibian
ference machinery has garnered much interest as a basis for drug homolog that has marked toxicity for tumor cells,[19] and is the
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the P–O5′ bond on the 3′ side of a pyrimidine nucleobase in an
RNA strand.

The ribonucleolytic activity of ranpirnase is necessary for its
cytotoxicity. A decrease in ribonucleolytic activity leads to a
corresponding reduction in cytotoxicity.[24] Although ranpirnase
assumes the kidney-shaped tertiary structure that is typical of the
RNase A superfamily (figure 2)[30,33] and has the key catalytic
residues, its value of kcat/KM (which is the second-order rate
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Fig. 1. Flow of chemical information in biology. Ribonucleases can be
cytotoxic because their degradation of RNA renders genetic information
indecipherable. RNAi = RNA interference. constant and thus a measure of catalytic efficiency) is 104-fold less

than that of RNase A for cleavage of their best known substrates
only ribonuclease to have been studied in a human clinical under similar conditions.[34] A low affinity for its substrate contrib-
trial.[20,21] Here we review the structure and function of ranpirnase, utes to its low kcat/KM value. In addition, nuclear magnetic
which has become the archetype of a new class of cancer chemo- resonance spectroscopy and molecular dynamics simulations have
therapeutic agent.[22]

revealed that ranpirnase has an extremely rigid β-sheet,[35,36] which
could deter an ‘induced fit’[37] necessary for substrate binding and

1. History of Ranpirnase turnover.

The substrate specificity of ranpirnase can be considered on
In the early 1970s, Shogen and Yoan[23] discovered that extracts

two levels. On the nucleobase level, ranpirnase prefers to cleave
from embryos of the Northern Leopard frog (Rana pipiens) have

the phosphodiester bond on the 5′ side of a guanine. This prefer-
antitumoral activity. Nearly two decades later, Ardelt et al.[24]

ence is in marked contrast to that of RNase A, which has little
attributed that activity to a basic protein, ranpirnase (meaning,

preference for guanine versus adenine at this position. In the cell,
Rana pipiens ribonuclease), which belongs to the RNase A super-

transfer RNA (tRNA) has been reported to be the main target for
family.[25] In oocytes, ranpirnase localizes with yolk proteins.[26] It

ranpirnase.[39] The cleavage of tRNA occurs at the guanosine-
has been postulated that ranpirnase is synthesized in the liver of

guanosine bond in the variable loop or D-arm.[40] The revelation of
female frogs in a seasonal manner, and then secreted into the blood

the atomic structure of a ranpirnase-nucleic acid complex has
and deposited in oocytes as they mature.[27] There and in embryos,

provided insight into the structural basis for this substrate specific-
ranpirnase has been speculated to play a role in host defense.[26]

ity.[38]

Ranpirnase is both cytotoxic and cytostatic toward cultured
A notable feature of ranpirnase is its extraordinary conforma-tumor cells and inhibits the growth of xenograft tumors in mi-

tional stability. Ranpirnase has a Tm value of 87°C (which is thece.[28,29] Currently, ranpirnase in combination with doxorubicin is
temperature at the midpoint of the thermal transition betweenin a confirmatory phase IIIb clinical trial for the treatment of
folded and unfolded states and thus a measure of conformationalunresectable malignant mesothelioma, a cancer associated with

exposure to asbestos.[20,21] Moreover, ranpirnase has been granted
both orphan-drug and fast-track status by the FDA.

2. Biochemical Attributes of Ranpirnase

The amino acid sequence of ranpirnase was determined in
1991,[24] and its 3-dimensional structure was reported 3 years
later.[30] Ranpirnase is a relatively small enzyme, with a molecular
formula of C520H810N142O155S9 and a molecular mass of
11 820 Da. The active site of ranpirnase contains the catalytic triad
(His10, Lys31, and His97) that is characteristic of the RNase A
superfamily.[31] Ranpirnase possesses two additional active-site
residues: Lys9 and an N-terminal pyroglutamate residue, which is
formed by the co-translational cyclization of the encoded gluta-
mine residue in the endoplasmic reticulum.[32] Like other members
of the RNase A superfamily, ranpirnase catalyzes the cleavage of
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Fig. 2. Ribbon diagram of the 3-dimensional structure of a crystalline
ranpirnase-nucleic acid (dAdUdGdA) complex (PDB entry 2I5S).[38] The N-
and C-termini of the protein, and 3′- and 5′-termini of the nucleic acid, are
noted explicitly. The image was created with the programs MOLSCRIPT
(Avatar Software AB, Stockholm) and RASTER3D (D.J. Bacon and W.F.
Anderson, http://skuld.bmsc.washington.edu/raster3d/raster3d.html).[33]
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stability) and resists degradation by various proteases.[41] The
exceptional conformational stability of ranpirnase is largely be-
cause of its tethered C-terminus, created by a C-terminal half-
cystine residue.[42] This synapomorphic C-terminal disulfide bond
is conserved in amphibian ribonucleases but is absent from mam-
malian homologs.[31] The hydrogen-bond network at the N-termi-
nus[41] and the absence of a cis-proline residue[43] also contribute to
the conformational stability of the enzyme. This exceptional sta-
bility is critical for cytotoxicity. Variants of ranpirnase with re-
duced conformational stability have less cytotoxic activity.[41,42]

On the other hand, glycosylation of ranpirnase at its consensus N-
linked glycosylation site (Asn69-Val70-Thr71) increases both
conformational stability and cytotoxic activity.[44]

3. Mechanism of Ranpirnase-Mediated Cytotoxicity

Ranpirnase is an atypical biodrug in that it is administered
extracellularly but acts intracellularly. To exert its antitumoral

a

b

c

Fig. 3. Putative mechanism of ranpirnase-mediated cytotoxicity.[45] Cationic
and anionic biomolecules are depicted in blue and red, respectively. (a)
Ranpirnase (blue) forms an extracellular equilibrium complex with cell-
surface heparan sulfate (red); (b) ranpirnase is internalized by endocytosis,
translocates to the cytosol, evades the ribonuclease inhibitor protein (red
horseshoe), and degrades transfer RNA (tRNA; red line); and (c) tRNA
degradation leads to apoptosis.

effect, ranpirnase must reach the cytosol and there cleave RNA
substrates. The generally accepted mechanism of ranpirnase-medi- ranpirnase is a hyperstable, single-domain protein, which remains
ated cytotoxicity is divided into two major stages (as depicted in intact during its endocytosis. The mechanism of ranpirnase trans-
figure 3): (i) cytosolic internalization; and (ii) catalytic degrada-

location could be related to that used by cationic peptides, such as
tion of RNA.[45]

residues 47–57 of the HIV-1 TAT protein and nonaarginine.[50]

3.1 Cytosolic Internalization
3.2 Degradation of Cellular RNA and Induction

The first step for the cytosolic internalization of ranpirnase is its of Apoptosis
binding to the cell surface. The existence of low- and high-affinity
ranpirnase receptors on the cell surface has been reported,[46] but Once in the cytosol, ranpirnase degrades cellular RNA.
other findings contradict their existence.[47] The cell surface is

Ranpirnase is an unusual homolog of RNase A in that it seems to
highly anionic due to the abundance of sulfate, phosphate, and

evade completely the cytosolic ribonuclease inhibitor protein
carboxylate groups of its carbohydrates and lipids. It is probable

(RI).[51,52] RI is a 50-kD protein present in every surveyed mamma-
that ranpirnase, which is a highly cationic protein with a calculated

lian cell. RI is composed of 15 leucine-rich repeats, a motif that
isoelectric point of >9.5,[24] binds to the cell surface through

often participates in protein-protein interactions.[53] RI binds to
favorable Coulombic interactions.

certain members of the RNase A superfamily with femtomolar
After binding to the cell surface, ranpirnase is internalized

affinity, and renders them inactive. The complex formed by
through energy-dependent endocytosis. The role of the GTPase

human RI and human pancreatic ribonuclease is among the tight-
dynamin in this process is under investigation.[47,48] Internalized

est known in biology (Kd = 2.9 × 10–16 mol/L).[54] The ability of
ranpirnase is routed to endosomes. Drugs that disrupt retrograde

ranpirnase to evade RI is likely to be necessary for its cytotoxictransport from the trans-Golgi network to the endoplasmic reticu-
activity, as non-cytotoxic mammalian ribonucleases becomelum potentiate the cytotoxicity of ranpirnase.[47-49] These and other
cytotoxic by incorporating residues that enable RI evasion.[54,55]

results suggest that the trans-Golgi network is an inefficient site
Moreover, the cytotoxicity of variants correlates with their RI-for the translocation of ranpirnase, and that endosomes are a key
evading ability.[56]

compartment for cytotoxic delivery.
In the cell, the ribonucleolytic activity of ranpirnase is directedThe means by which ranpirnase, which is extremely hydrophil-

predominantly towards tRNA, leaving ribosomal RNA (rRNA)ic, ultimately crosses a lipid bilayer is not understood. To facilitate
and messenger RNA (mRNA) largely intact.[39] The basis for thissuccessful entry into the cell, the diphtheria toxin and ricin pro-
specificity is not understood, though bound proteins could protectteins utilize a distinct translocation domain, which dissociates

from a catalytic domain upon cytosolic entry. In contrast, rRNA and mRNA from ranpirnase cleavage. The susceptibility of
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non-coding RNA, such as microRNA or small-interfering RNA Ranpirnase has been administered as a single agent in two
(siRNA), to ranpirnase cleavage is unknown. phase I clinical studies to determine the optimal dose and schedule

in patients with various solid tumors.[20,75] These phase I studiesDegradation of tRNA by ranpirnase inhibits protein synthesis
indicated that ranpirnase is well tolerated. The maximum toleratedin the cell and leads to apoptosis.[57,58] The cytotoxic effect of
dose was 960 µg/m2, and the recommended dose for phase IIranpirnase becomes noticeable after a longer incubation (≈48 h,
studies was 480 µg/m2/week. Ranpirnase has been evaluated inin vitro) than required for drugs that block translation, such as
phase II clinical trials as a single agent in patients with non-small-cycloheximide (≈2 h). In addition, ranpirnase-induced apoptosis
cell lung cancer,[76] breast cancer,[77] renal cell cancer,[78] anddoes not require the high level of translation inhibition observed
malignant mesothelioma.[79] The largest phase II trial forwith cycloheximide, suggesting that the inhibition of protein syn-
ranpirnase was in patients with malignant mesothelioma. Amongthesis is not the sole cause of ranpirnase-induced apoptosis.[59] In
81 patients who were evaluated for tumor response, 41 patientsHeLa cells, ranpirnase-induced cytotoxicity is initiated with the
showed a decrease in tumor progression, which justified subse-activation of the stress-activated c-Jun N-terminal kinase (JNK),
quent phase III studies on this tumor type. In the initial phase IIIfollowed by the activation of caspase-9, which activates the execu-
studies, 154 patients were treated with either ranpirnase (84 pa-tioner caspase-3 and -7. Caspase-8 or the tumor-suppressor protein
tients) or doxorubicin (70 patients). In these studies, ranpirnasep53 are not required in this pathway.[60] Other studies with the
treatment provided markedly increased survival compared withHL-60 leukemic cell line implicate the activation of serine prote-
doxorubicin treatment.[20,21] Reversible renal toxicity was the ma-ases along with these caspases.[61] The induced apoptosis is en-
jor adverse effect. The current confirmatory phase IIIb study is anhanced by mild hyperthermia.[62]

open-label, multicenter, and international study, with the goal of
3.3 Basis for Therapeutic Index comparing the efficacy of ranpirnase plus doxorubicin versus

doxorubicin alone.[20,21]

Ranpirnase is more toxic to tumor cells than to normal cells
in vitro and in vivo. The mechanism for this selectivity is un- 5. Engineering Ranpirnase and Future Directions
known, but a promising hypothesis is that ranpirnase is selectively

There have been attempts to endow ranpirnase with increasedinternalized by tumor cells. In general, tumor cells are more
toxicity toward tumor cells. Nearly all non-Hodgkin lymphomanegatively charged than are homologous normal cells.[63,64] More-
cells display a specific cell-surface receptor, CD-22. A humanover, the level of sialic acid-rich gangliosides is greater and the
monoclonal antibody against CD-22 has been covalently linked tophospholipid content is altered in certain tumor cells.[65,66] The
ranpirnase.[80] This fusion protein was 104-fold more toxic to non-elevated anionic character of tumor cells could promote their
Hodgkin lymphoma cells than was wild-type ranpirnase becauseinteraction with the highly cationic ranpirnase. Other viable hypo-
of increased binding to the tumor cells. In addition, this proteintheses include a different and more efficient intracellular routing
showed enhanced potency and specificity along with decreasedof ranpirnase to the cytosol in tumor cells, and a greater suscepti-
systemic toxicity in mice.bility of rapidly growing tumor cells to RNA degradation.

The ribonucleolytic activity of ranpirnase is 104-fold lower
4. Therapeutic Applications than that of other mammalian homologs.[34] Accordingly, it could

be both possible and advantageous to engender ranpirnase with
In vitro, ranpirnase has been shown to be cytotoxic/cytostatic to greater ribonucleolytic activity without compromising other attrib-

a range of cell lines, including 9L rat glioma,[46] K-562 human utes required for its cytotoxicity, such as cationicity, RI evasion,
leukemia,[34,42] Colo 320 CM human colon adenocarcinoma,[28]

and conformational stability. Either enhancing substrate binding
HL-60 human leukemia,[67] LNCaP and JCA-1 human prostate or alleviating β-sheet rigidity could yield variants with increased
cancer,[67] HT-29 human colorectal cancer,[68] and U937 human ribonucleolytic activity and, hence, greater chemotherapeutic effi-
lymphoma cell lines.[69] Typical 50%-inhibitory concentrations cacy.
(IC50) for the proliferation of 9L rat glioma[28,46] and K-562 human
leukemia cells[34] are near 10–7 mol/L. Concomitant administration 6. Conclusions
of ranpirnase with tamoxifen,[70,71] cisplatin,[71] or vincristine[68]

results in increased toxicity. In combination with vincristine, Ranpirnase is a cytotoxic ribonuclease that affords a novel
ranpirnase has shown toxicity against multidrug-resistant tu- strategy for cancer chemotherapy. Ranpirnase is internalized by
mors.[68] In vivo, ranpirnase treatment has prolonged the survival tumor cells and degrades tRNA, which leads to the inhibition of
of mice transplanted with human[68,72] and murine tumors.[73,74] protein synthesis and apoptosis. The cationicity and maintenance
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