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I. INSIGHTS INTO THE DETERMINANTS OF COLLAGEN TRIPLE HELIX
STABILITY
I1. INHIBITION OF RNASE A BY ANALOGS OF 3'-URIDINEMONOPHOSPHATE
Cara Lee Jenkins
Under the supervision of Ronald T. Raines

At the University of Wisconsin—-Madison

Collagen, the most abundant protein in animals, is a triple helix composed of
Xaa—Yaa~-Gly triplet repeats. In natural collagen, the Xaa position is often occupied by
proline (Pro), and the Yaa position is often occupied by 4(R)-hydroxyproline (Hyp). The
three strands are held together by interstrand hydrogen bonds between glycine (Gly) and
the Xaa residue of a neighboring strand.

In natural collagen, 3(S)-Hydroxyproline (3-Hyp) is found in the rare triplet
sequence 3-Hyp—4-Hyp-Gly in natural collagen. Here we show that when it is placed in
the Xaa position, 3-Hyp is shown to slightly decrease the thermal stability of triple helical
collagen mimics by weakening the interstrand hydrogen bond. Likewise, removing a
main-chain—main-chain hydrogen bond from a triple helical collagen mimic drastically
reduces its thermal stability.

Replacing the hydroxyl group of Hyp in (Pro-Hyp-Gly) o with a more
electronegative fluoro group had been shown to significantly increase triple helix thermal
stability. Here, O-acylated Ac-Hyp-OMe residues are shown to have peptide bond cis—

trans ratios and backbone dihedral angles are favorable for triple helix formation;
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however, the addition of acetyl groups to the Hyp residues in triple helical (Pro-Hyp-
Gly)io slightly decreases triple helix stability, presumably by a steric interference with
neighboring strands.

Bicyclic proline analogs, substituted 2-azabicyclo[2.1.1]hexanes (3,5-
methanoprolines), can help sort out the effects of electronegativity from those of
pyrrolidine ring pucker. Little difference was found in the amide cis—trans ratios of H-,
OH-, and F-substituted 3,5-methanoprolines, in contrast to analogous proline residueé.
This finding indicates that the role of increasing electronegativity in the 4-position of
substituted proline residues is to rigidify the ring and preorganize the peptide backbone
into a favorable conformation for triple helix formation.

Ribonuclease A efficiently catalyzes the cleavage of phosphodiester Bonds in
RNA. 3’-Uridinemonophosphate (3'-UMP) can inhibit this activity. Here, non-natural
analogs of 3'-UMP were synthesized and evaluated as inhibitors of wild-type RNase A
and its Thr 45—Gly variant. 3'-Nucleotides with the arabino-sugar conformation are
more effective than those with ribose sugar moieties at inhibiting wild-type RNase A. In
contrast, 3'-nucleotides with ribo-sugars are more effective than those with arabino-

sugars at inhibiting T45G RNase A.
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Chapter 1

INSIGHTS ON THE CONFORMATIONAL STABILITY OF COLLAGEN

1.1 Introduction

Collagen is the most abundant protein in animals, being a predominant component
of connective tissues such as basement membranes, tendons, ligaments, cartilage, bone
and skin. Over 19 different types of collagen have been identified, with several new ones
being characterized currently. In addition, at least 15 other proteins have been shown to
contain collagenous domains (Myllyharju & Kivirikko, 2001).

One of the defining features of collagen is its unique tertiary structure, consisting
of three parallel left-handed polyproline II-type strands wound around a common axis to
form a triple helix with a shallow right-handed superhelical pitch (Fig. 1.1). The packing
of this coiled-coil structure requires that every third residue be glycine (Gly), resulting in
a repeating Gly-Xaa-Yaa sequence. The residue in the Xaa position of these triplets is
often L-proline (Pro), and the residue in the Yaa position is often 4(R)-hydroxy-L-proline
(Hyp). Individual triple helices of collagen are organized into fibrils of great tensile
strength and flexibility. These fibrils can be arranged and cross-linked so as to support

stress efficiently in one, two, or three dimensions in tissues such as tendon, skin, and

' Portions of this chapter have been previously published under the same title. Reference: Jenkins, C. L ;
Raines, R. T. Nat. Prod. Rep. 2002, 19, 49-59.
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cartilage, respectively. Abnormalities in collagen structure are associated with
connective tissue diseases, such as osteogenesis imperfecta, Ehlers—Danlos syndrome,
scurvy, and some types of osteoporosis and arthritis (Prockop & Kivirikko, 1995;
Prockop, 1998, 1999; Byers, 2000; Myllyharju & Kivirikko, 2001). A complete
understanding of the basis for collagen stability (and instability) could lead to new

biomaterials and effective therapies for these and other disorders.
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N1 N2 N3
Gly Pro =0 swummze HNHyp
ProC:O ------- NHyp Gly
HypNH --------- - Gly LD 0=CPTO
Gly Pro Hyp

c1 c2 c3

Figure 1.1 Segment of a (Pro-Hyp-Gly), triple helix. (a) Ball-and-stick representation
indicating 4-hydroxy-L-proline residues and XaaC=0--H-NGly hydrogen bonds. (b)
Register of the residues in the three strands of panel a. Atomic coordinates are from
(Bella et al., 1994)(PDB entry 1CAG).

1.2 Collagen mimics

The most abundant type of collagen is Type I, in which each strand consists of
approximately 300 Gly-Xaa-Yaa triplets. Discerning the chemical basis for the
conformational stability of such a large molecule is difficult. In 1973, Prockop and

coworkers first synthesized small mimics of the collagen triple helix. This seminal work
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4
revealed that Hyp greatly stabilizes a triple helix when its 4(R) diastereomer, but not its

4(S) diastereomer, is present in the Yaa position (Berg & Prockop, 1973; Inouye et al.,
1976). Subsequently, synthetic collagen mimics have been used to reveal the basis for
this and other determinants of triple-helix structure and stability (Fields, G.B. & Prockop,

1996).

1.2.1 Structural studies

To understand the stability of collagen, it is important to understand its structure.
X-Ray diffraction analyses of biological samples provided the first glimpse into the
unique structure of collagen (Rougvie & Bear, 1953; Ramachandran, 1967; Fraser et al.,
1979). In the 1950’s, a model for the collagen triple helix was proposed by Kartha and
Ramachandran (Ramachandran & Kartha, 1954, 1955; Ramakrishnan, 2001) and refined
by Rich and Crick (Rich & Crick, 1955, 1961; Riddihough, 1998) to one that is
essentially correct.

In 1994, Berman, Brodsky and coworkers used X-ray diffraction analysis to
determine the first high-resolution structure of a triple-helical collagen mimic (Bella et
al., 1994). The strands in this mimic had the sequence (Pro-Hyp-Gly)s-Pro-Hyp-Ala-

‘(Pro-Hyp-Gly)s, and the resulting triple helix is designated here as “Gly—Ala”. This
landmark structure revealed not only the positions of the atoms of the triple helix, but |
also a regular network of water molecules surrounding the triple helices in the crystal
lattice. The structure appeared to lend support to a hypothesis (Gustavson, 1957; Suzuki

et al., 1980) that Hyp stabilizes collagen by forming hydrogen bonds with water
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5
molecules surrounding the triple helix (Bella et al., 1994; Bella et al., 1995; Kramer, R.

Z. & Berman, 1998).

Subsequent high-resolution structures of other collagen mimics led to a variety of
conclusions about the factors that are most important in collagen stability. For example,
Berman, Brodsky, Zagari, Mazzarella, and coworkers obtained crystals of (Pro-Pro-
Gly)1o under two different conditions, from which they were able to refine short sections
of triple helix (21 residues each) to a resolution of 1.7 and 2.0 A (Kramer, R.Z. etal.,
1998). The two structures have similar molecular structure and hydration patterns, but
different crystal packing. In the two structures, as in the Gly—Ala structure, the
pyrrolidine ring in each Xaa position has a C*-endo (or “down” (Momany et al., 1975))
pucker, and Pro in each Yaa position has a C¥-exo (or “up”) pucker, with only one
exception. The main-chain torsion angles and the first hydration shell around the peptide

are similar to those in the Gly—Ala structure, despite the differences in crystal packing.

Because the structures of the two peptides (Gly—Ala and (Pro-Pro-Gly);¢) are so similar,
these workers concluded that Hyp does not affect the triple-helix structure directly and
that the contribution of Hyp to triple-helix stability arises only from Hyp—water
interactions.

Okuyama and coworkers came to a different conclusion. Independently, they obtained
a structure of crystalline (Pro-Pro-Gly)o, from which they were able to refine a triple
helix of 21 residues to a resolution of 1.9 A (Okuyama et al., 1999). They found that the
main-chain dihedral angles of their structure had no significant differences from those
determined by the Berman group. Using different refinement procedures, the Okuyama

group was able to locate only 15 water molecules, rather than the 40 solvent molecules in
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the (Pro-Pro-Gly)jg structure of the Berman group. In addition, the Okuyama group
found that only 5 of 7 Pro residues in the Xaa position have a C'-endo pucker, and only 4
of 7 Pro residues in the Yaa position have a C'-exo pucker. This randomness is in conflict
with the uniform pattern of Pro puckering observed by the Berman group.

Okuyama and coworkers also determined a structure for (Pro-Hyp-Gly)o to a
resolution of 1.9 A (Nagarajan et al., 1999). In this structure, the pattern of pyrrolidine
ring puckering is similar to that in Gly—Ala. Yet, only 17 water molecules are apparent,
and only 3 of 7 Hyp hydroxyl groups participate in hydrogen bonds with water. Okuyama
and coworkers concluded that the close similarity of their (Pro-Pro-Gly)io and (Pro-Hyp-
Gly)io structures indicates that Hyp does not affect directly the molecular structure, and
that the nearly equal number of well-defined water molecules in the two structures
indicates that the contribution of Hyp to stability is probably not due to an extensive
network of water bridges (Nagarajan et al., 1999; Okuyama et al., 1999). This conclusion
is consistent with an earlier study in which Engel, Prockop, and coworkers showed that
Hyp confers extra stability upon a triple ilelix even in anhydrous solution (Engel et al.,
1977).

A 1.3 A-resolution structure of crystalline (Pro-Pro-Gly)io by Zagari, Mazzarella, and
coworkers engendered an alternative hypothesis for the contribution of Hyp to collagen
thermostability (Berisio et al., 2000; Vitagliano et al., 2001b; Berisio et al., 2002). These
workers showed that Pro has a distinct ¢ torsion angle (C’;_j—N;—C*—C")) in the Xaa and
Yaa positions: ¢= (=75 £ 3)° and ¢ = (—60 * 2)°, respectively. They noted that the
different angles correlated with the C¥-endo pucker in the Xaa position and the C'-exo

pucker in the Yaa position. Because Hyp is more rigid than Pro and favors the C*-exo
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pucker, Hyp in the Yaa position reduces the number of conformations available to the
unfdlded state and gives it a higher propensity to fold into a triple helix. Hyp in the Xaa
position, however, cannot adopt the C*-endo pucker, and is thus a residue with an
unfavorable ¢ angle for triple-helix formation. Furthermore, 4(S)-Hyp adopts the C*-endo
pucker, making its ¢ angle inappropriate for the Yaa position. In the Xaa position, the
hydroxyl group of 4(S)-Hyp is likely to destabilize the triple helix by a steric clash with a
Pro residue in the Yaa position of another strand.

The structure of crystalline (Pro-Hyp-Gly) o refined to 1.4 A resolution by the same
researchers supports this alternative hypothesis for the contribution of Hyp to triple helix
stability (Berisio et al., 2001). In this structure, the Pro residues have an average ¢ angle
of (-69.847.9)° and the Hyp residues have an average ¢ angle of (-57.4£2.0)°. In
addition, the electron density for the pyrrolidine rings of the Hyp residues was well
defined, and all had an “up” pucker, whereas the electron density for the Pro residues was
not defined well enough to analyze the ring puckers—evidence that Hyp residues are
more rigid than Pro.

The structure of a crystalline triple helix containing a sequence from Type Il
collagen revealed that Pro and Hyp can alter the helical pitch. Each strand of this triple
helix has the sequence (Pro-Hyp-Gly);-Ile-Thr-Gly-Ala-Arg-Gly-Leu-Ala-Gly-(Pro-Hyp-
Gly)s. In the refinement process, no one model was found to fit the electron density map
of the entire triple helix (Kramer, R. Z. et al., 1999). Rather, the terminal (Pro/Hyp-rich)
regions fit to a model with 7-fold symmetry, as in (Pro-Hyp-Gly);o, but the central
(Pro/Hyp-poor) regions fit to a model with 10-fold symmetry, as in natural collagen (Rich

& Crick, 1961; Okuyama et al., 1999). This result indicates that the helical pitch is
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sequence-dependent, and that the main chain can accommodate small variations in
torsion angles and still maintain triple-helicity. This finding forewarns of a potential
complication in the interpretation of data from host—guest studies (vide infra), as the
guest could prefer a different helical pitch than the host.

In addition to X-ray diffraction analysis, nuclear magnetic resonance (NMR)
spectroscopy has been used to probe the structure of the collagen triple helix in solution
(Long et al., 1992; Li et al., 1993; Melacini & Goodman, 1998). as well as measure its
dynamics (Fan et al., 1993; Melacini et al., 2000) and folding kinetics (Liu et al., 1996;
Liu et al., 1998; Buevich et al., 2000; Bhate et al., 2002; Xu et al., 2002; Xu et al., 2003).
In general, the structural data obtained by NMR spectroscopy and X-ray diffraction
analysis are in gratifying agreement.

With the advent of powerful computing techniques a number of interesting
computational studies on collagen mimics have also been carried out. Improta and
coworkers have carried out computations on [(Pro-Pro-Gly);o]s that closely match the
high-resolution X-ray structure obtained by Berisio and coworkers (Improta et al., 2002).
Mooney and coworkers have calculated the conformational preferences of 4-substituted
prolines in collagen mimics of the general sequence [(Pro-Yaa-Gly)iols, where Yaa =
proline, 4(R)-fluoroproline (Flp), 4(R)-Hyp, and 4(R)-aminoproline (Amp)—both neutral
and protonated on the nitrogen at C-4. Their results indicated that the tendency for the
pyrrolidine ring in the Yaa position to adopt the Cy-exo conformation increased in the
order Amp < Pro < Hyp < Flp < AmpH" (Mooney et al., 2002). They also calculated the
energy perturbations upon addition of Gly—Ala substitutions in [(Pro-Hyp-Gly)o]s and

achieved AGgenaturation Values very close to that measured by Brodsky and coworkers for
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[(Pro-Hyp-Gly)4-Pro-Hyp-Ala-(Pro-Hyp-Gly)s]s (Bella et al., 1994; Mooney et al.,

2001). They found that the first Gly—Ala substitution gave approximately half of the free
energy perturbation, whereas the third Gly—Ala substitution yielded only about 10% of
the energy difference. This result indicates that in collagen mutants, the number of Gly |
mutations, as well as their identity, may be important in predicting the severity of

osteogenesis imperfecta cases (Mooney et al., 2001).

1.2.2 Host-guest studies

“Host—guest” peptides and proteins have been used to measure the propensity of
individual amino acid residues to form an a-helix (O'Neil & DeGrado, 1990; Blaber et
al., 1993; Groebke et al., 1996; Myers et al., 1997; Yang, J. X. et al., 1997) or B-sheet
(Kim & Berg, 1993; Minor & Kim, 1994; Otzen & Fersht, 1995; Street & Mayo, 1999).
In these studies, a parent sequence is chosen that is known to have the desired secondary
structure. A central amino acid residue is then\replaced systematically with other
residues, and the conformational stability of the resulting structure is measured. This
approach has been used to determine the contribution of individual as well as pairs of
residues to triple-helix stability (Persikov et al., 2000a). It should be noted here that the
term “host-guest” in this context is not intended to imply a non-covalent association;
rather, it is a way to refer to a collection of closely-related peptide or protein variants in a
concise manner.

The frequency with which a given triplet appears in natural collagen has been
discerned by examining 4040 triplets from human fibril- and non-fibril-forming

collagens (Ramshaw, J. A. M. et al., 1998). Approximately 49% of all possible triplets
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10
are never or rarely found in fibrillar collagens, 41% are never found in non-fibrillar

collagens, and 32% are never found in either type of collagen. The residues Trp and Cys
are never found in triple-helical regions of collagen, Tyr is rarely found in the Xaa
position, and Phe is never found in the Yaa position. A schematic of the combined triplet
distribution of several human collagens is shown in Fig. 1.2. It is interesting to note that
no triplet appears with high frequency except for Gly-Pro-Hyp, which is the most
stabilizing triplet found in natural collagen (Sakakibara et al., 1973; Engel et al., 1977;
Germann & Heidemann, 1988). This survey provides a context for the host—-guest studies
of collagen mimics, and reduces the number of triplets that need to be studied to obtain a

complete picture of the contribution of natural triplets to conformational stability.

Xaa/Yaal A | CI DT EJ F]JGIHIITKTL|IMIN[O]JQIRIS|]T]|]V]IW]Y
A 109 0.5 1.2 03 134]04]11]04 0.4
C

D |04 0.3 1.0 15105112103 0.3
E 1.2 04 04 [ 25 03 [03[28]08]27]03]06]04
F 25103

G 0.3 03

H 0.5

I 0.4 0.3 1.5

K 0.5 14

L o5 0.4 1.0 55107 )06 03

M 0.6

N 0.7

P |34 04 | 04 09 271050403 J105]25]126]14]08113
Q |03 0.6 1.1]037]03

R 03 0.5 1.1

S 04 04 23 0.5 0.3
T 0.8

v 0.5 1.1 | 03

W

Y 0.5

Figure 1.2 Distribution of triplets in human collagen types I, I1, 111, V, X1, IV, V1, VII,
VIII, IX, X, and XIII (Ramshaw, J. A. M. et al., 1998). Rows and columns refer to the Xaa
and Yaa positions of 4040 Gly-Xaa-Yaa triplets. Black boxes indicate triplets found fewer
than 3 times (<0.074%), hatched boxes indicate triplets found 3—10 times (0.074-0.25%),
and numbers in white boxes represent the occurrence of the most common triplets,
rounded to the nearest 0.1%. All Pro residues in the Yaa position are assumed to be
hydroxylated. All residues are indicated by their single letter codes, with O indicating

Hyp.
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A comprehensive host—guest study of individual residues in the Xaa and Yaa

positions was reported by Brodsky and coworkers (Persikov et al., 2000b). The guest
peptides had the sequence Ac-(Gly-Pro-Hyp);-Gly-Xaa-Hyp-(Gly-Pro-Hyp)4-Gly-Gly-
NH; and Ac-(Gly-Pro-Hyp);-Gly-Pro-Yaa-(Gly-Pro-Hyp)4-Gly-Gly-NH;, where Xaa and
Yaa were the 19 proteinogenic amino acids other than Pro and Hyp, respectively. They
found that the triple helix with Xaa = Pro and Yaa = Hyp was the most stable, with a Ty,
(which is the temperature at the midpoint of the thermal transition) of 47.3 °C.
Surprisingly, replacement of Hyp with Arg in the Yaa position resulted in a triple helix of
nearly equal stability (7}, = 47.2 °C), whereas all the other amino acid substitutions
resulted in triple helices with T, values that are at least 5 °C lower (Table 1.1). This study
revealed that there is a moderate correlation between the contribution of a given residue

| to triple-helix stability and its propensity to adopt a polyproline II-like conformation.
This correlation was shown to be better for the Xaa position than the Yaa position,
perhaps because of the greater solvent exposure of the residue in the Xaa position (Jones
& Miller, 1991; Simon-Lukasik et al., 2003). Trp, which is not found in natural collagen,
was the most destabilizing residue in both the Xaa and Yaa positions; other aromatic

amino acid residues (Phe and Tyr) were also destabilizing in both positions.
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Table 1.1 Conformational stability of host—guest triple helices and ranking of

Jfrequency of appearance in polyproline II helices (Persikov et al., 2000b).

Xaa® (°T8) Yad" (Zg) p?ﬁé'ﬁi‘éﬁ?;bn
Pro 47.3 Hyp 473 Pro
Glu 42.9 Arg 47.2 Gln
Ala 41.7 Met 42.6 Arg
Lys 41.5 Ile 41.5 Lys
Arg 40.6 Gln 41.3 Thr
Gln 40.4 Ala 40.9 Leu
Asp 40.1 Val 40.0 Asp
Leu 39.0 Glu 39.7 Met
Val 38.9 Thr 39.7 Ala
Met 38.6 Cys 37.7 Cys
Ile 384 Lys 36.8 Val
Asn 383 His 35.7 Glu
Ser 38.0 Ser 35.0 Asn
His 36.5 Asp 34.0 Phe
Thr 36.2 Gly 32.7 Ser
Cys 36.1 Leu 31.7 Ile
Tyr 34.3 Asn 30.3 Trp
Phe 33.5 Tyr 30.2 Tyr
Gly 33.2 Phe 28.3 His
Trp 31.9 Trp 26.1 Gly

? Peptide strands of host—guest triple helices have the
sequence Ac-(Gly-Pro-Hyp)s-Gly-Xaa-Hyp-(Gly-Pro-
Hyp)s-Gly-Gly-NH; and Ac-(Gly-Pro-Hyp)s-Gly-Pro-

Yaa-(Gly-Pro-Hyp)s-Gly-Gly-NHo.

® Frequency of occurrence of amino acids in polyproline
IT regions in globular proteins (Stapley & Creamer,

1999).

12

The unexpected stability conferred by the guest triplet Gly-Xaa-Arg, which accounts

for nearly 10% of the triplets in common human collagens (Fig. 1.2) (Ramshaw, J. A. M.
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et al., 1998), was examined further with the peptides listed in Table 1.2 (Yang, W. et

al., 1997). The stabilization is not due to cationic charge alone, as triple helices
containing Lys are considerably less stable than are those containing Arg (Table 1.1). A
triple helix containing the guest triplet Gly-Pro-homoArg, which was synthesized from
the guest triplet Gly-Pro-Lys by reaction with a guanidino group transfer reagent, had
stability between that of triple helices containing Gly-Pro-Arg and Gly-Pro-Lys. Thus,
some property of the guanidino group is important in stabilization, but the longer
homoArg side chain decreases stability somewhat. Data on triple helices containing the
guest triplets Gly-Ala-Hyp, Gly-Ala-Arg, and Gly-Ala-Lys show that Arg confers
stability even when the residue in the Xaa position is not Pro, possibly by forming either
an intra- or interchain hydrogen bond with a main-chain carbonyl group. If two Gly-Pro-
Arg triplets are adjacent, unfavorable Coulombic interactions destabilize the triple helix
somewhat, but separation by one or more intervening triplets abolishes this effect. Still,
triple helices with two Gly-Pro-Arg triplets separated by one or two Gly-Pro-Hyp triplets
have Tr, values slightly lower than does a triple helix containing one Gly-Pro-Arg triplet.
The peptide Ac-(Gly-Pro-Arg)s-Gly-Gly-NH, could not be folded into a triple helix until
its concentraﬁon was 3 mg/mL and the NaCl concentration of the solution was raised to 2
M. Apparently, unfavorable Coulombic interactions between the Arg residues are

considerable.
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Table 1.2 Effect of Arg on the conformational stability of host—guest triple helices
(Yang, W. et al., 1997).

. T
Peptide Sequence .
ptide Sequenc ©C)?
Ac~(Gly-Pro-Hyp)s-Gly-Gly-NH, 455
Ac-(Gly-Pro-Hyp);-Gly-Pro-Arg-(Gly-Pro-Hyp),-Gly-Gly-NH, 455
Ac-(Gly-Pro-Hyp);-Gly-Pro-homoArg-(Gly-Pro-Hyp),-Gly-Gly-NH, 42.8

Ac-(Gly-Pro-Hyp)z-Gly-Pro;Arg—(Gly-Pro-Hyp)z-Gly-Pro-Arg-(Gly-Pro-Hyp)z-Gly-Gly-NHz 428

Ac-(Gly-Pro-Hyp);-Gly-Pro-Arg-Gly-Pro-Hyp-Gly-Pro-Arg-(Gly-Pro-Hyp),-Gly-Gly-NH, 422
Ac-~(Gly-Pro-Hyp);-Gly-Arg-Hyp-(Gly-Pro-Hyp),-Gly-Gly-NH, 40.6
Ac-(Gly-Pro-Hyp)s-Gly-Pro-Arg-Gly-Pro-Arg-(Gly-Pro-Hyp),-Gly-Gly-NH, 40.4
Ac-(Gly-Pro-Hyp);-Gly-Ala-Hyp-(Gly-Pro-Hyp),;-Gly-Gly-NH; 39.9
Ac-(Gly-Pro-Hyp);-Gly-Ala-Arg-(Gly-Pro-Hyp),;-Gly-Gly-NH, 38.2
Ac-(Gly-Pro-Hyp);-Gly-Pro-Lys-(Gly-Pro-Hyp),-Gly-Gly-NH, 36.8
Ac-(Gly-Pro-Arg)s-Gly-Gly-NH, 32.6°
Ac-(Gly-Pro-Hyp);-Gly-Ala-Lys-(Gly-Pro-Hyp),-Gly-Gly-NH, 30.8

* Values of T, were measured in phosphate-buffered saline (pH 7.0, 150 mM NaCl).
® Value of T}, was measured in 10 mM sodium phosphate buffer (pH 7.0) containing
NaCl (2 M).

The contribution of pairs of common nonpolar residues to triple-helical stability has
been examined by comparing a set of host—guest peptides (Shah et al., 1996). The
residues Pro and Hyp, along with Ala, Phe, and Leu, which are the most common non-
polar residues found in collagen, were included in various combinations in peptides of the
form Ac-(Gly-Pro-Hyp);-Gly-Xaa-Yaa-(Gly-Pro-Hyp)4-Gly-Gly-NH,. The Gly-Xaa-Yaa
guest triplets and the Ty, values for their triple helices are listed in Table 1.3. Leu and Phe

are more destabilizing in the Yaa than in the Xaa position, and Phe is usually more

destabilizing than Leu. It is also apparent from the data that hydrophobic residues do not
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lend any special stability to collagen triple helices, in contrast to globular proteins,

which have hydrophobic cores (Kauzmann, 1959). In the Xaa position of collagen, non-
polar residues could participate in intermolecular interactions with other collagen strands
or with other proteins that bind to collagen (Shah et al., 1996), as the Xaa position is
somewhat more solvent-exposed than is the Yaa position (Jones & Miller, 1991; Simon-

Lukasik et al., 2003).

Table 1.3 Effect of non-polar residues on the conformational stability of host—guest triple
helices (Shah et al., 1996).

Gly-Xaa-Yaa

T T
CCy Gly-Xaa-Yaa CCy

Gly-Pro-Hyp 445 | Gly-Leu-Ala  29.5

Gly-Ala-Hyp 39.9 Gly-Ala-Ala 293
Gly-Leu-Hyp 39.0 Gly-Pro-Phe  28.3
Gly—Pro-Ala 38.3 Gly-Ala-Leu  27.8
Gly-Phe-Hyp 33.5 Gly-Phe-Ala 234
Gly-Pro-Leu 32.7 Gly-Ala-Phe  20.7

? Values of T, are for triple helices of Ac-
(Gly-Pro-Hyp);-Gly-Xaa-Yaa-(Gly-Pro-
Hyp)4+-Gly-Gly-NH, were measured at pH
7.4.

Several pairs of charged residues have been examined in a similar manner (Chan et
al., 1997). Glu, Asp, Arg, and Lys were placed individually and in oppositely-charged
pairs into peptides with the general sequence Ac-(Gly-Pro-Hyp):-Gly-Xaa-Yaa-(Gly-Pro-
Hyp)4-Gly-Gly-NH,. The Ty, values of the resulting triple helices are listed in Table 1.4.

Comparing the stabilities of triple helices containing pairs of charged residues to those of
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triple helices containing individual charged residues at neutral pH indicates that, except

for the triplets Gly-Lys-Asp and Gly-Arg-Asp, there is no stabilization from favorable
Coulombic interactions. Rather, differences in stability can be accounted for by the
effects of individual charged residues. Moreover, charged residues in the Xaa position
have little effect on the 73, values of triple helices, and these charged residues decrease
conformational stability only marginally compared to Pro and not at all compared to Ala.
The difference is much larger when the charged residues are in the Yaa position. An
explanation for this phenomenon is that side chains in the Yaa position are less solvent-
accessible and closer to side chains in other chains (Jones & Miller, 1991; Simon-Lukasik

et al., 2003), leading to unfavorable steric and Coulombic interactions.
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Table 1.4 Effect of charged residues on the conformational stability of host—guest
triple helices (Chan et al., 1997).
Gly-Xaa-Yaa pH T, (°C)® Gly-Xaa-Yaa pH Tm (°C)*
Gly-Ala-Hyp®* 7.4 39.9 Gly-Pro-Ala® 7.4 38.3
Gly-Pro-Hyp? 7.4 44.5 Gly-Ala-Ala® 7.4 293

Gly-Asp-Hyp 2.7 37.6 Gly-Pro-Asp 2.7 33.1
7.0 40.1 7.0 30.1
12.2 38.0 12.2 30.1
Gly-Glu-Hyp 2.7 39.7 Gly-Pro-Glu 2.7 41.9
7.0 429 7.0 39.7
12.2 40.9 12.2 38.5
Gly-Lys-Hyp 2.7 40.4 Gly-Pro-Lys 2.7 37.1
7.0 41.5 7.0 36.8
12.2 38.3 12.2 38.8
Gly-Arg-Hyp 2.7 394 Gly-Pro-Arg 2.7 45.5
7.0 40.6 7.0 44.5
12.2 38.0 12.2 43.1

Gly-Asp-Lys 2.7 26.5 Gly-Lys-Asp 2.7 30.5

7.0 309 7.0 358
12.2 29.9 12.2 30.2
Gly-Asp-Arg 2.7 33.4 Gly-Arg-Asp 2.7 28.8
7.0 371 7.0 35.0
12.2 344 12.2 319
Gly-Glu-Lys 2.7 29.5 Gly-Lys-Glu 2.7 36.5
7.0 35.0 7.0 353
12.2 33.1 12.2 31.6
Gly-Glu-Arg 2.7 373 Gly-Arg-Glu 2.7 35.0
7.0 40.4 7.0 33.8
12.2 39.1 12.2 32.2

? Values of Ty, are for triple helices of Ac-(Gly-Pro-Hyp);-Gly-Xaa-Y aa-
(Gly-Pro-Hyp)4-Gly-Gly-NH,. ° The triplets Gly-Pro-Hyp, Gly-Ala-Hyp,
Gly-Pro-Ala, and Gly-Ala-Ala are included for comparison (Shah et al.,
1996).
An extensive report of host-guest peptides containing pairs of amino acids excluding
Pro and Hyp (including data from the studies cited above) extends the host-guest data to

date to include approximately 78% of triplets found in fibrillar collagens (Persikov et al.,

2002). The host—guest studies outlined above help to clarify how a particular residue
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affects triple-helix stability in a relatively stable triple-helical environment. It is not

clear, however, whether this understanding can be applied to regions of collagen lacking
Pro and Hyp residues, which can have a different helical pitch (Kramer, R. Z. et al.,
1999). The frequency with which a given residue appears in natural collagen (Fig. 1.2)

~ does not necessarily correlate with the stability that that residue imparts to the triple helix
in host—guest studies (Table 1.1). Of course, some residues could be present in collagen
for other purposes, such as participating in interactions with other biomolecules.

Replacement of Gly with other amino acids has also been studied in host—guest

fashion. A review (Persikov et al., 2000a) of these studies leads to the conclusion that the
instability caused by these Gly substitutions varies, and that the degree of flexibility in
the éurrounding peptide can influence the severity of the destabilization. A recent
computational study supports these observations (Radmer & Klein, 2004). The identity
and location of the Gly substitution also seems to correlate somewhat with the severity of

osteogenesis imperfecta, which is caused by Gly substitutions in collagen.

1.2.3 Tethered triple-helical peptides

Several groups have used synthétic methods to tether three collagen-related peptides
so as to enhance their triple helicity. For example, Heidemann and coworkers used a di-
Lys-based construction with aminohexanoic acid linkers between the three Lys amino
groups (one o and two €) and their peptides (1.1) (Thakur et al., 1986; Germann &
Heidemann, 1988). Fields and coworkers used a similar tether with an orthogonal
protecting group strategy to produce triple helices of biological interest (Fields, C.G. et

al., 1993; Fields, C. G. et al., 1993).
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Tanaka and coworkers used a lysine dimer, similar to those of Heidemann and Fields,
but having a B-alanine linker. In addition, the Tanaka group took a different approach to
assembling a triple helix. Whereas Fields and Heidemann built their peptides onto the
tether one strand at a time, Tanaka and coworkers synthesized a peptide with a Cys
residue at its N-terminus. The sulfhydryl group was alkylated with the tether 1.2 (Tanaka,
T. etal., 1993).

The Tanaka group also devised a method to cross-link a collagen peptide at both the
N- and C-termini (Tanaka, Y. et al., 1998). The N-terminal tether is 1.2, and the C-
terminal linker is 1.3. The collagen mimic was synthesized to include a Lys residue at the
C-terminus of the peptide with a Ser residue attached to N®. NalO, oxidation of the
peptide generated an aldehyde from this Ser, which then formed an oxime linkage with
the aminooxy group on the linker. The N-linked peptides form more stable triple helices
than do the unlinked peptides, and the dually N,C-linked peptides 1.4 form even more

stable triple helices than do the N-linked ones.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



HO

fef
i‘
T

H H ” i
o 0 0 \@\
/"\ENHz y OH
\N' O/\n, N\/\rr NH
0 0
1.3
Gys—{_peplide ]————LysNH,
S HN
Es—cysLysmzN)—NEl
S HE]
Cys——{_peplide _}——————LysNH,
1.4

Figure 1.3 N- and C-linked collagen mimics.

Several groups have designed tethers based on motifs found in nature. Fields and
coworkers have attached lipids to the N-termini of collagen mimics and relied on self-
assembly processes to drive triple-helix folding and stabilization (Fields, G. B., 1999).
Engel, Bachinger, and coworkers used a homotrimeric globular protein in a similar

manner (Frank et al., 2001). They created a plasmid that directs E. coli to produce a
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chimeric protein in which (Gly-Pro-Pro)io is fused to the 27-residue C-terminal domain

of bacteriophage T4 fibritin protein (termed “foldon”). The chimerae formed trimers with
a high degree of conformational stability. They subsequently measured the folding
kinetics (Boudko et al., 2002) of (Gly-Pro-Pro)jo-foldon and its X-ray crystal structure
(Stetefeld et al., 2003). Moroder and coworkers used a simplified version of the disulfide
bridges found in the C-terminal domain of procollagen to stabilize collagen mimics (Ottl
et al., 1996; Ottl & Moroder, 1999a; Ottl et al., 1999) (Ottl & Moroder, 1999b; Ottl et al.,
2000) (Muller et al., 2000). They designed a “cystine knot” derived from two pairs of
differentially protected cysteine residues such that three strands are tethered in a selective
manner, as shown in Scheme 1.1. Many human collagens contain two or three different
strands (Myllyharju & Kivirikko, 2001), and the cystine knot provides a facile means to

stabilize heterotrimeric triple helices.
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Scheme 1.1 Synthesis of a collagen mimic with a cystine knot tether.(Ottl et al., 1996,
Ottl & Moroder, 1999a, b; Ottl et al., 1999; Muller et al., 2000; Ottl et al., 2000) NpysCl
is 3-nitropyridyl-2-sulfenyl chloride.
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Goodman and coworkers used a cyclic tether based on cis,cis-1,3,5-

trimethylcyclohexane-1,3,5-tricarboxylic acid, also known as the Kemp triacid (Kemp &
Petrakis, 1981), to create triple-helical collagen mimics (Goodman et al., 1998), They
chose this template because it is rigid and because its three carboxylic acid groups are
fixed on the same face of the cyclohexane ring. Condensation of each carbonyl group of
the triacid with a Gly residue provides enough flexibility for the collagen-like strands to
adopt the requisite register (Fig. 1.1) as well as the larger diameter of the triple helix. In
their first use of the Kemp triacid template (Goodman et al., 1996), Goodman and
coworkers showed that templated (Gly-Pro-Hyp), strands form much more stable triple
helices than do acylated strands of equivalent length, as listed in Table 1.5. Indeed, the
Kemp triacid template enabled incipient triple-helix formation from strands with only

three Gly-Pro-Hyp triplets, which is the shortest triple helix reported to date.

Table 1.5 Conformational stability of Kemp triacid (KTA)- and related acetyl-terminated
triple helices (Goodman et al., 1996).

T (°C)
Peptide
P H,0 ethylene
glycol/H,0 (2:1)

KTA-[Gly-(Gly-Pro-Hyp)-NH:]3 No transition No transition
KTA-[Gly-(Gly-Pro-Hyp)3-

30 50
NH]3
KTA-[Gly-(Gly-Pro-Hyp)s- 70 (Not determined)
NHy]s -
KTA-{Gly-(Gly-Pro-Hyp)s- 81 (Not determined)
NH-];
Ac-Gly-Pro-Hyp-NH; No transition No transition
Ac-(Gly-Pro-Hyp);-NH, No transition No transition
Ac~(Gly-Pro-Hyp)s-NH, 18 32
Ac-(Gly-Pro-Hyp)s-NH; 26 59
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A macrocyclic collagen template molecule has recently been reported to

stabilize triple helices as well as Goodman’s Kemp triacid template. This template is a
glycolate derivative of cyclotriveratrylene (compound 1.5), and it was shown that the (+)-
enantiomer of the template is better than the (-)-enantiomer at stabilizing triple helices

containing either a natural sequence or Pro-Hyp-Gly repeats (Rump et al., 2002).

0
BU4N"'O—/<_
O OMe

1.5

1.2.4 Peptoid residues

Having shown the stabilizing ability of the Kemp triacid as a template, Goodman and
coworkers incorporated N-substituted glycine (peptoid) residues into their collagen
mimics. Their initial work focused on a single peptoid residue, N-isobutylglycine (Nleu),
which they chose because of its bulky hydrophobic side chain (Goodman et al., 1998).
They found that the sequences (Gly-Pro-Nleu), and (Gly-Nleu-Pro), (n =29 and n > 6,
respectively) form stable triple helices, whereas Gly-Nleu-Nleu has to be included in a
host—guest fashion within sequences such as (Gly-Pro-Hyp), to adopt a triple-helical

conformation. In addition, (Gly-Nleu-Pro), forms more stable triple helices than does
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(Gly-Pro-Nleu),, as listed in Table 1.6. The workers reasoned, with the aid of

molecular modeling studies, that the isobutyl group of Nleu can form more hydrophobic
contacts with Pro in other chains in triple helices composed of (Gly-Nleu-Pro), than in
those composed of (Gly-Pro-Nleu)y.

Table 1.6 Effect of peptoid residues on the conformational stability of Kemp triacid
(KTA)- and acetyl-terminated triple helices (Goodman et al., 1998).

T CO)

Peptide " 1O ethylene

z glycol/H,O (2:1)
Ac-(Gly-Pro-Nleu)s-NH, No transition 35
Ac-(Gly-Pro-Nleu)s-NH, 39 58
(Gly-Pro-Nleu)s-NH, No transition No transition
(Gly-Pro-Nleu)s-NH, No transition 28
(Gly-Pro-Nleu);-NH, No transition 39
(Gly-Pro-Nleu)s-NH, 28 50
KTA-[Gly-(Gly-Pro-Nleu)-NH,], No transition No transition
KTA-[Gly-(Gly-Pro-Nleu);-NH;]3 No transition 12
KTA-[Gly-(Gly-Pro-Nleu)s-NH;]3 33 52
KTA-[Gly-(Gly-Pro-Nleu)o-NH;]3 47 69
Ac-(Gly-Nleu-Pro);-NH, No transition No transition
Ac~(Gly-Nleu-Pro)s-NH, 26 43
Ac~(Gly-Nleu-Pro)y-NH, # #
KTA-[Gly-(Gly-Nleu-Pro);-NH;]3 No transition 22
KTA-[Gly-(Gly-Nleu-Pro);-NH, 13 33 52
Ac-(Gly-Pro-Hyp),-(Gly-Nleu-Nleu),-(Gly-Pro-Hyp),-NH, No transition 25
KTA-[Gly-(Gly-Pro-Hyp),-(Gly-Nleu-Nleu),~(Gly-Pro-Hyp),-NH,]s 20 40

? Solution became cloudy at 35 °C.

Goodman and coworkers have recently shown that two additional tether molecules
are effective at stabilizing triple helices containing the Nleu peptoid residue. Tris(2-
aminoethyl)amine (TREN) was found to be more effective than the Kemp triacid at
stabilizing triple helices containing five or more (Gly-Nleu-Pro) repeats, but less effective
at stabilizing triple helices with three or less (Gly-Nleu-Pro) repeats (Kwak et al., 2002).
A dendritic tether molecule consisting of an aromatic tricarboxylic acid coupled with

tris(carboethoxymethyl)aminomethane (TRIS) was shown to stabilize triple helices
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containing (Gly-Nleu-Pro)s more effectively than those containing (Gly-Pro-Nleu)s

sequences (compound 1.6). It was proposed that the extra triple helix stabilization in the
context of the dendrimer arises from intramolecular clustering of the triple helices

(Kinberger et al., 2002).

MeO(Nleu-Pro- Gly)e

MeQO{(Nieu-Pro-Gl
( y)e 0\/\(Gly Pro-Nleu)sOMe

MeOQ(Nleu-Pro- GIy)5
c 9\ \/\(Gly Pro-Nleu)gOMe
N O (Gly-Pro-Nleu)sOMe

0

O

O“\\\\(Gly Pro-Nleu)sOMe

\\ (Gly-Pro-Nleu)gOMe
(Gly-Pro-Nleu)sOMe

1.6

The Goodman group synthesized a series of host-guest peptides with the sequence
Ac-(Gly-Nleu-Pro);-(Gly-Nx-Pro),;-(Gly-Nleu-Pro);-NH,, where Ny refers to a peptoid
residue (Kwak et al., 1999). The various Ny residues and the Ty, values of their triple
helices are listed in Table 1.7. It is interesting to note that when the side chain of the Ny
residue is 2-hydroxyethyl or 2-aminoethyl, triple helices are not formed; whereas when
the side chain is 2(R)-hydroxypropyl, the resulting triple helix is quite stable. One
explanation is that the functionalized linear alkyl chains lacks the steric bulk necessary to
stabilize the triple helix. Another explanation is that the solvation of the hydroxyl and
amino groups is especially disruptive to triple-helix formation. The workers conclude that

Gly-Nleu-Pro is an effective triple-helix promoter, that a variety of peptoid residues can
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be incorporated into collagen mimics, and that hydrophobic effects are important for

the inter- and intrachain interactions that lead to stable peptoid-containing triple helices in

aqueous solution.

Table 1.7 Effect of peptoid residues on the conformational stability of host—guest triple
helices (Kwak et al., 1999).
side chain of Ny, T, (°C)*  side chain of Ny Ty (°C)*

ch \H
8 42

NS 49
i 47

H OH
NP
OCH; ' .

41

OCH,

OCH,
\/@ 45 —CH, 37
] 24
\/©/ a4 O

CHy .
43 not triple
\/©/ ~ helical
? Values of Ty, are for triple helices of Ac-(Gly-Nleu-Pro);-

(Gly-Nx-Pro),-(Gly-Nleu-Pro);-NH; in H,O.
® Peptide became insoluble at 40 °C.

Other work (Kersteen & Raines, 2001) examined the contribution of a tertiary amide
other than Pro, Hyp, or a peptoid residue to the conformational stability of a triple helix.
In their study, Kersteen and Raines determined the conformational stability of triple

helices of host—guest peptides with the sequence (Pro-Hyp-Gly);-Xaa-Yaa-Gly-(Pro-
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Hyp-Gly)s. In order of decreasing stability, the central triplets are Pro-Hyp-Gly, Pro-

Pro-Gly, Ala-Hyp-Gly, Pro-Ala-Gly, Pro-meAla-Gly, and meAla-Pro-Gly, where meAla
refers to N-methyl-L-alanine. This residue is identical to Pro and Hyp except for the
absence of the -C'H,— and ~CYHOH- groups of the pyrrolidine ring, respectively. These
workers concluded that the mere presence of tertiary amides in collagen does not make a
major contribution to triple-helix stability. Rather, the conformational restrictions

imposed by the pyrrolidine rings of Pro and Hyp are critical.

1.3 4-Substituted proline residues

In common forms of human collagen, Gly-Xaa-Hyp triplets account for nearly 40%
of the amino acid sequence (Fig. 1.2) (Ramshaw, J. A. M. et al., 1998). Hyp residues are
not incorporated into collagen by ribosomes. Rather, this post-translation modification of
Pro residues is mediated by prolyl 4-hydroxylase (Guzman, 1998) after collagen
biosynthesis but before the chains form a triple helix. Hydroxylation is critical for the
folding of collagen, its secretion to the extracellular matrix, and its further processing and
incorporation into fibrils or other structures (Bulleid et al., 1996; Walmsley et al., 1999;
Snellman et al., 2000; Byers, 2001). The absence of prolyl 4-hydroxylase is lethal to the
nematode Caenorhabditis elegans (Friedman et al., 2000; Winter & Page, 2000). |

In the 1970’s, workers began to notice that the Hyp content of a collagen triple helix
correlates with its conformational stability (Burjanadze, 1979, 2000). In 1973, Prockop
and coworkers demonstrated that triple-helix stability decreases in the order: (Pro-4(R)-

Hyp-Gly)io >> (Pro-Pro-Gly)io >> (4(R)-Hyp-Pro-Gly)so, (Pro-4(S)-Hyp-Gly)so, or (4(S)-
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Hyp-Pro-Gly)1o (Berg & Prockop, 1973; Inouye et al., 1976; Inouye et al., 1982).

Understanding the chemical basis for this finding has motivated much work.

Raines and coworkers showed that attaching an electronegative atom to C has
substantial effects on the chemical properties of a proline residue. For example, the
nitrogen pK, of the conjugate acid of 4(R)-fluoro-L-proline (FlpOH; 9.23) is lower than
that of HypOH (9.68) and ProOH (10.8) (Eberhardt et al., 1996). The nitrogen of
AcFlpOMe is more pyramidal than that of AcHypOMe or AcProOMe (Panasik et al.,
1994). This result indicates that the nitrogen of AcFlpOMe has greater sp3 character and
hence higher electron density. The amide I vibrational mode, which results primarily
from the C=0 stretching vibration, decreases in the order: AcFlpOMe > AcHypOMe >
AcProOMe (Eberhardt et al., 1996). The value of AH* for amide bond isomerization is
smaller for AcFlpOMe than for AcProOMe (Eberhardt et al., 1996). Each of these results
is consistent with the traditional picture of amide resonance (Pauling, 1960) coupled with
an inductive effect that increases the bond order in the amide C=O bond and decreases
the bond order in the amide C-N bond. Raines and coworkers suggested that this
inductive effect is the basis for the contribution of Hyp residues to the conformational

stability of collagén.

1.3.1 Hydroxyproline residues

New insight on the contribution of Hyp residues to triple-helix stability was inspired
by an unusual collagen. Based on the amino acid sequence of cuticle collagen in the
hydrothermal vent worm Riftia pachyptila, Bann and Béachinger made a pair of peptides

with Hyp in the Xaa position: Ac~(Gly-Hyp-Thr);o-NH; and Ac-(Gly-Hyp-Thr(B-Gal))o-
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NH,, where Thr(p-Gal) refers to a threonine residue with a galactose moiety on its side

chain (Bann & Béchinger, 2000). They compared the ability of these peptides to form
triple helices with that of analogous peptides in which Pro replaces Hyp in the Xaa
position. The T, values for these triple helices are listed in Table 1.8. Hyp in the Xaa
position is more stabilizing than is Pro. Most dramaﬁcally, Ac-(Gly-Pro-Thr),o-NH, does
not form triple helices to any appreciable extent, whereas Ac-(Gly-Hyp-Thr),o-NH; has a
Ty value of 19 °C. Glycosylation of the Thr residues adds additional stability. A possible
explanation for the stabilization by Hyp in these peptides is that additional hydrogen
bonds are forming with water, that Hyp increases the content of trans peptide bonds via
an inductive effect (Eberhardt et al., 1996), or both. Why then does (Hyp-Pro-Gly)o not
form stable triple helices? (Inouye et al., 1982) Bann and Béchinger suggested that
having Hyp and Pro adjacent to each other forces the pyrrolidine rings to adopt
unfavorable puckers, which could change the  torsion angle (Ni~C*%—C’-Nj;1) to one
that is unfavorable for triple-helix formation. They explained the additional triple-helix
stabilization achieved upon glycosylation of the Thr residues by invoking a decrease in
the activity of water surrounding the peptides, which in turn decreases the ability of water
to form hydrogen bonds with main-chain amides and increases the favorability of amide—
amide hydrogen bonds. Indeed, 'H NMR studies of Ac-(Gly-Pro-Thr(B-Gal)),-NH, (n=1,
5, 10) showed that only the peptide where n=10 formed triple helices (7;,=38 °C), and
that the Thr-amide protons in the triple helix exchanged with deuterium an order of
magnitude more slowly than did the Gly-amide protons (Bann et al., 2003). The authors
observed that a triple helix of Ac-(Gly-Hyp-Thr)io-NH; has a much larger AH,° than

does a triple helix of (Pro-Hyp-Gly);o or (Pro-Pro-Gly);o. The strong enthalpic interaction
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between adjacent Hyp and Thr is presumably due to a hydrogen bond between

side-chain hydroxyl groups within a chain, between chains, or with water.

Table 1.8 Effect of 4(R)-hydroxy-L-proline (Hyp) in the Xaa position on the
conformational stability of triple helices (Bann & Bdchinger, 2000).

Peptide Tm (°C)*
Ac-(Gly-Pro-Thr)19-NH; No transition
Ac-(Gly-Hyp-Thr),o-NH, 19.2
Ac-(Gly-Pro-Thr(B-Gal));o-NH; 392
Ac-(Gly-Hyp-Thr(B-Gal))0-NH; 54.8

® Values of T,,, were measured in H,0.

Further studies of peptides with the general structure Ac-(Gly-Hyp-Yaa),-NH,,
(where Yaa = Thr, allo-Thr, Val, Ser, or Ala) showed that only the peptides containing
Thr and Val formed triple helices in water. The Thr- and Val-containing peptides also
formed the most stable triple helices in 1,2- and 1,3-propanediol. Molecular modeling
indicated that the methyl groups of these two peptides contributed to triple helix stability
by providing hydrophobic contacts with the core of the triple helix, and by limiting
access of water molecules to the Gly—NH--'OV=C-Hyp hydrogen bond (Mizuno et al.,
2003).

Two groups recently reported studies on non-covalent heterotrimers composed of
(Pro-Hyp-Gly)10 and (Pro-Pro-Gly)io. Slatter, Bailey, and coworkers concluded that the
non-linear increase in 7, and denaturation enthalpy observed upon replacement of one or
two chains of a [(Pro-Pro-Gly)o]s triple helix with (Pro-Hyp-Gly);o could be explained
by the introduction of axial asymmetry into the triple helix (this despite the essentially

identical triple helical parameters of crystalline [(Pro-Pro-Gly);o]s (Berisio et al., 2002)
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and [(Pro-Hyp-Gly)io]s (Berisio et al., 2001)), thus allowing for greater access of

water to the main-chain carbonyl groups (Slatter et al., 2003). Berisio, Zagari, and
coworkers reported Tp, values in agreement with those of Slatter and coworkers, but came
to a different conclusion for the increase in triple helix stability with increasing numbers
of (Pro-Hyp-Gly)1o chains in the triple helix: enthalpic effects play a minor role in the
stabilization of collagen by Hyp; instead, Hyp preorganizes the peptide chains to

minimize the entropy penalty of triple helix formation (Berisio et al., 2004).

1.3.2 Aminoproline residues

Babu and Ganesh reported on the synthesis and stability of collagen mimics
containing 4(R)-amino-L-proline (Amp) residues in place of Hyp (1.7-1.10) (Babu &
Ganesh, 2001). They found that triple helices containing Amp residues are more stable
than are those containing Hyp, and that the differential stability depends upon pH. In
some instances, the difference in Ty, values is remarkable—over 30 °C—as is listed in
Table 1.9. The effect of Amp residues is, however, a complex function of solution
conditions. For example, protonating the Amp amino groups produces both more
favorable inductive effects and unfavorable Coulombic interactions. Those unfavorable

Coulombic interactions will be more pronounced in a solution of low salt concentration.
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X
NHR
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1.7: X=NH,, R4=H, R,=0OH
1.8: X=OH, R,=H, R,=OH
1.9: X=NH2, R1=AC, R2=NH2
1.10: X=OH, R{=Ac, R,=NH,

Table 1.9 Effect of 4(R)-amino-L-proline (Amp) on the conformational stability® of triple
helices (Babu & Ganesh, 2001).

pH®
30 70 90 120
17 425 313 185 566
18 230 216 155 39.6
19 60 565 26 49

1.10 27 28 27 27

? Values are for T, (°C).

® Buffers: pH 3.0, 20 mM acetate;
pH 7.0, 20 mM phosphate; pH 9.0
and 12.0, 20 mM borate. All
buffers contained 0.1 M NaCl.

peptide

1.3.3 Fluoroproline residues

The 4(R) and 4(S) diastereomers of Flp were first synthesized by Witkop and
coworkers in 1965 for the purpose of studying whether Flp can be incorporated into
proteins by biosynthesis, and if so, whether the Flp incorporated into proqol_lagen is
defluorinated to yield Hyp (Gottlieb et al., 1965). In vivo studies were carried out by
others in 1966 (Bakerman et al., 1966). Apparently, the 4(S)-Flp diastereomer inhibits

protein synthesis to some extent, but is incorporated into proteins in place of Pro. The
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4(R)-Flp diastereomer is incorporated into proteins to a larger extent and is converted

subsequently to Hyp in collagen strands. Prockop and coworkers later showed that
collagen containing 4(S)-Flp cannot be exported from cells (Takeuchi & Prockop, 1969;
Takeuchi et al., 1969).

The first incorporation of 4(R)-Flp into a collagen mimic was reported By Raines and
coworkers (Holmgren et al., 1998; Holmgren et al., 1999). The T}, values of triple helices
of (Pro-Pro-Gly)10, (Pro-Hyp-Gly)i0, and (Pro-Flp-Gly)y are listed in Table 1.10. Flp
imparts remarkable stability to the collagen triple helix. Indeed, three strands of (Pro-Flp-
Gly); form the most stable collagen mimic of similar size known to date. Moreover,
because organic fluorine does not form hydrogen bonds (Howard, J.A K. et al., 1996;
Dunitz & Taylor, 1997), these data confirm that an electron-withdrawing substituent in
the 4(R) position of Pro can stabilize collagen by a means other than a network of water

bridges (Engel & Prockop, 1998).

Table 1.10 Effect of 4(R)-, 4(S)-fluoro-L-proline (Fip), 4(R)- and 4(S)-hydroxy-L-proline
(Hyp) on the conformational stability of triple helices.

Peptide Tm (°C)?
(Pro-Pro-Gly); 6-7 (Shaw & Schurr, 1975)
(Pro—4(R)-Hyp-Gly), 36 (Bretscher et al., 2001)
(Pro—4(R)-Flp—Gly), 45 (Bretscher et al., 2001)
(Pro—4(S)-Flp—-Gly), <2 (Bretscher et al., 2001)
(Pro-Pro-Gly)1o 41 (Holmgren et al., 1998)

(Pro—4(R)-Hyp—Gly)1o 69 (Holmgren et al., 1998)
(Pro—4(R)-FIp—Gly)g 91 (Holmgren et al., 1998)

(Pro—4(S)-Hyp—Gly)io <5 (Inouye et al., 1976)

? Values of T;, were measured in dilute solutions of
aqueous acetic acid.
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The remarkable stability imparted by Flp to (Pro-Flp-Gly); derives from the

interplay of several factors (Bretscher et al., 2001), all of which arise from the inductive
effect of the fluorine atom (Eberhardt et al., 1996). First, the gauche effect (O’Hagan et
al., 2000) dictates the pyrrolidine ring pucker (Bretscher et al., 2001). The gauche effect
arises when two vicinal carbons bear electronegative substituents. These electronegative
substituents prefer to reside gauche (60°) to each other so that there is maximum overlap
between the o orbitals of more electropositive substituents, such as hydrogen, and the o*
orbitals of the electronegative substituents, as shown in Fig. 1.4. As expected from the
manifestation of the gauche effect, the C'-exo ring pucker is predominant in Hyp residues
in the Yaa position of collagen-like peptides (Berisio et al., 2001; Vitagliano et al.,
2001b), as well as in small-molecule structures of AcHypOMe and AcFlpOMe (Panasik
etal.,, 1994). O’Hagan and colleagues showed that the fluorine—amide gauche effect is

especially strong (O’Hagan et al., 2000).

F
HNA H
07 “CH,3
Figure 1.4 The gauche effect in ACNHCH,CH,F (O ’Hagan et al., 2000). The lobes

opposite the C-N and C-F bonds represent c* antibonding orbitals, which overlap with
the ¢ bonding orbitals of the indicated C-H bonds.

The C'-exo ring pucker preorganizes the main-chain torsion angles of Flp residues.
The ¢ angle is a function of ring pucker, as described above (Vitagliano et al., 2001b).

Likewise, the y angle in crystalline AcFlpOMe is 141° (Panasik et al., 1994), which is
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close to the = (150 + 9)° found for residues in the Yaa position of collagen (Bella et

al., 1994). This value of y provides a favorable geometry for an interaction between a
non-bonding electron pair of an amide oxygen (O’;_;) and the 7 antibonding orbital of an
amide carbon (C%), as shown in Fig. 1.5. The O---C=0 angle in AcFlpOMe is 98°, which
is close to the ideal angle for such an n— 7* interaction (Biirgi, H. B. et al., 1973; Biirgi,
H.B. et al., 1974a; Biirgi, H.B. et al., 1974b). Moreover, the O---C=0 distance in
AcFIpOMe is only 2.76 A, which predicates a meaningful interaction. Indeed, the ester
carbonyl stretching vibration is lower by 6 cm™ in Ac-4(R)-Flp-OMe than in Ac-

4(S)-Flp-OMe, presumably because the n— 7* interaction decreases the C=0 bond order.

oL

n—m*

Figure 1.5 Main-chain @ ¢, and y torsion angles of a Flp residue. The gauche effect
(Fig. 1.4) fixes the pyrrolidine ring pucker (C'-exo). In that ring pucker, the @ ¢, and y
angles are preorganized at values close to those in the Yaa position of a collagen triple
helix (Bretscher et al., 2001). The indicated n—n* interaction contributes to that
preorganization.

The n— 7* interaction stabilizes not only the ideal y angle for triple-helix formation,
but also the requisite rans conformation (@ = 180°) of the Flp peptide bond. In the cis
conformation (@= 0°), C%_; rather than O’;_; would be proximal to C’;, and no n—7*

interaction can occur. Accordingly, as the electronegativity of the substituent in the 4(R)-
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position increases, the frans/cis ratio of the amide bond also increases (Eberhardt et al.,

1996). The reverse trend is true for electronegative 4(S) substituents, which impose a C'-
endo pucker (DeRider et al., 2002) and do not stabilize triple helices in the Yaa position
(Inouye et al., 1976; Bretscher et al., 2001). The association of @ angle with pyrrolidine
ring pucker provides an explanation for the observation that cis prolyl peptide bonds tend
to have endo ring puckers in crystalline proteins (Milner-White et al., 1992). In summary,
4(R)-Flp in the Yaa position stabilizes collagen by a stereoelectronic effect—the

gauche effect—which fixes the pyrrolidine ring pucker and thus preorganizes all three
main-chain torsion angles: ¢, ¥, and @ (Fig. 5). This same reasoning applies to Hyp and
Amp residues.

Ab initio calculations (DeRider et al., 2002) suggested that 4(S)-Flp has ¢and y
angles that should be favorable for triple helix formation when incorporated into the Xaa
position of a collagen mimic. Indeed, (4(S)-Flp-Pro-Gly), is significantly more stable
than (Pro-Pro-Gly), and (4(R)-Pro-Gly), (n = 7 (Hodges & Raines, 2003) or 10 (Doi et
al., 2003), see Table 1.11), lending further support to the hypothesis that fluoroproline

residues stabilize triple helices through stereoelectronic effects.
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Table 1.11 Melting temperatures of collagen mimics containing fluoroproline in the
Xaa position.
Peptide n Ty (°C)? reference

(4(S)Flp-Pro-Gly)s 7 _ 33 (Hodges & Raines, 2003)
10 58 (Dot et al., 2003)
(Pro-Pro-Gly), 7 6-7  (Shaw & Schurr, 1975)
10 34 (Kobayashi et al., 1970; Uchiyama et al., 1997)
(4(R)-Fip-Pro-Gly), 7 <4 (Hodges & Raines, 2003)

10 <4 (Doi et al., 2003)

* Values of T, were measured in dilute aqueous acetic acid.

An interesting counterpoint to the above studies was reported by Brodsky and
coworkers (Persikov et al., 2003). They incorporated the guest triplet (Pro-Flp-Gly) into
the central triplet of a (Pro-Hyp-Gly)s host and found that the T, decreased by 3.6 °C. In
comparison, the guest triplet (Hyp-Pro-Gly) gave a 7, 4.3 °C lower than the parent triple
helix, while the guest triplet (Hyp-Hyp-Gly) gave a T, equal to that of the parent triple
helix. Their rationalizations for these observations included invoking a different
hydration scheme around Flp than around Hyp residues and suggesting that there may be
a different mechanism of stabilization in a homogeneous tripeptide than in a host-guest
system.

Moroder and coworkers have used Flp in another context (Renner et al., 2001). They
incorporated 4(R)-Flp and 4(S’)-F1p residues in place of a Pro residue with a cis peptide
bond in barstar. They observed that 4(S)-Flp, which favors the cis conformation more

than does Pro, stabilizes the protein and 4(R)-Flp, which favors the trans conformation
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more than does Pro, destabilizes the protein. Thus, 4(R)- and 4(S)-Flp residues can be

useful tools for protein engineers.

1.4 Collagen as a biomaterial

Collagen is an important biomaterial (Werkmeister & Ramshaw, 1992; Ramshaw, J.
A. et al., 1996). For example, collagen is the principal component of biodegradable
sutures and artificial heart valves. Some of the advantages of using collagen as a
biomaterial are its low immunogenicity and high durability. One disadvantage is that it is
difficult to obtain collagen in high purity without degrading its structural integrity. In
addition, chemical methods used to cross-link purified collagen can cause cytotoxicity.
Furthermore, the collagen that is used most often as a biomaterial is bovine collagen,
which can engender allergic and immunological side effects in humans, as well as other
health risks. Several different constructs for producing recombinant human fibrillar
collagens have been reported. For example, human procollagen II has been isolated from
a stably transfected human tumor cell line (Fertala et al., 1994) and from yeast
(Myllyharju et al., 2000); human type III collagen has been expressed in baculovirus
(Lamberg et al., 1996) and yeast (Myllyharju et al., 2000) systems; and human type I
collagen has been produced in transgenic tobacco plants (Ruggiero et al., 2000), mouse
mammary glands (Bulleid et al., 2000), and two different yeast strains (Myllyharju et al.,
2000; Toman et al., 2000; Olsen et al., 2001).

Despite the numerous studies on collagen mimics, few have been tested as
biomaterials. One report by Goodman and coworkers has provided encouraging results

(Johnson, G. et al., 2000). In this report, collagen mimics containing Nleu were tested for
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the ability to inhibit fibroblast or epithelial cell attachment to polystyrene. The results

are listed in Table 1.12. Triple-helical (Gly-Pro-Nleu),, but neither (Gly-Nleu-Pro), nor
(Gly-Pro-Hyp)y, inhibited cell attachment. It is important to note that none of the peptides
tested showed any cytotoxicity. Hence, (Gly-Pro-Nleu)-containing sequences show

promise for development into biomaterials.

Table 1.12 Cytotoxicity and cell-binding of triple helices.(Johnson, G. et al., 2000)
Inhibition of Cell Attachment®

Peptide ! Cytotoxicity Epithelial cells Fibroblasts

(Gly-Pro-Nleu),-NH, 1 — ND —

2 — ND ND

3 - — —

5 PR - —

7 — ND ND
(Gly-Pro-Nleu),-Gly-Pro-NH,? 10 + +
(Gly-Pro-Nleu),-Gly-Pro-NH," 10 — : + ND
Ac-(Gly-Pro-Nleu),-NH, 1 — — —

9 — + +
(Gly-Nleu-Pro),-NH, 10 — — ND
Ac-(Gly-Nleu-Pro),-NH, 3 — ND —

6 — ND —

10 insoluble insoluble
(Gly-Pro-Hyp),-NH, 9 — — —
KTA-[Gly-(Gly-Pro-Nleu),- 0 B N .
NH;}s
KTA-[Gly-(Gly-Pro-Hyp),-NH:]; 5 — ND —
RGES ND — —
GRGDSPK ND + +

? Peptide was left in solution at 4 °C for a minimum of 7 days before use.
® peptide solution was used immediately after preparation.
° -+, inhibition of cell attachment; —, no inhibition; ND, not determined.
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Another report by Fields and coworkers (Malkar et al., 2002) showed that the

addition of a single 4-fluoroproline residue to a collagen-mimic peptide can have a
significant effect on its triple helical stability and thus on its ability to affect cellular
responses. They synthesized a series of triple-helical peptides incorporating a sequence
from type IV collagen known to promote cell adhesion, spreading, migration, and signal
transduction. The natural sequence was flanked with (Gly-Pro-Hyp)4 repeats at both the
N- and C-termini in the parent peptide. In the test peptides, the last Hyp in the (Gly-Pro-
Hyp) repeats was replaced by either 4(R)- or 4(S)-Flp. The peptide containing 4(R)-Flp
had a higher T3, than the parent peptide (47.0 vs. 42.0 °C), whereas the peptide containing
4(S)-Flp had a significantly lower Ty, of 35.5 °C. Cell adhesion and spreading assays
performed with these peptides showed a positive correlation with triple helix stability;
i.e., there was greater cell adhesion and spreading on a surface of the 4(R)-Flp-containing
peptide than on cither of the other two peptides. Fields and coworkers concluded that
judicious inclusion of fluoroproline residues could help modulate triple helix stability and

help create new collagen ligands, substrates, and biomaterials.

1.5 Envoi

The appearance of high-resolution structures of crystalline collagen triple helices has
led to a resurgence of interest in chemical aspects of this ubiquitous protein. With these
structures as a guidé, éhemists,. biocherﬁists, and‘bidphys.icis.ts héve made m.uéh progress
in delineating the forces responsible for the conformational stability of the triple helix.
Still, important questions remain without answers. For example, how much does the

ladder of XaaC=0---HNGly hydrogen bonds (Fig. 1.1) contribute to stability? In what
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contexts does Hyp or Amp in the Xaa position stabilize a triple helix? Do changes in

helical pitch affect the results of host—guest studies? Does the rare 3-hydroxy-L-proline
residue, which is subject to a gauche effect in its pyrrolidine ring, contribute to
conformational stability? Which template provides the most accurate collagen mimic?
Does greater triple-helix stability translate to greater fibril stability? And, most
importantly, how can we use our knowledge of the collagen triple helix to solve real

problems in biomedicine?
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Chapter 2"

EFFECT OF 3-HYDROXYPROLINE RESIDUES ON COLLAGEN STABILITY

2.1 Introduction

Collagen is the most abundant protein in animals, comprising approximately one-
third of the total protein by weight (Prockop & Kivirikko, 1995; Myllyharju & Kivirikko,
2001). Collagen has a unique tertiary structure, which consists of three parallel left-
handed polyproline II-type strands wound tightly around a common axis (Ramachandran
& Kartha, 1954, 1955; Rich & Crick, 1955, 1961). Maintenance of this triple helix is
essential for many biological functions (Fields, G.B., 1995).

Each strand of collagen consists of the repeating sequence: Xaa—Yaa—Gly, where Xaa
and Yaa are often proline (Pro) residues. The post-translational hydroxylation of some of
these proline residues generates 4(R)-hydroxy-L-proline (4-Hyp) residues and, to a lesser
extent, 3(S)-hydroxy-L-proline (3-Hyp) residues. 3-Hyp, which is found in the natural
triplet (3-Hyp—4-Hyp-Gly) (Gryder et al., 1975), arises from the action of the enzyme
prolyl-3-hydroxylase rather than by regiochemical ambiguity by the enzyme

’p'rolyl-4-hYdroxyiase (Trygg\?ason etal., 1976).

* This chapter has been previously published under the same title. Reference: Jenkins, C. L.; Bretscher, L.
E.; Guzei, I. A,; Raines, R. T. J Am. Chem. Soc. 2003, 125, 6422-6427.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44
In seminal work, Prockop and coworkers demonstrated that 4-Hyp residues

enhance greatly the conformational stability of the collagen triple helix (Berg & Prockop,
1973). This additional stability arises from stereoelectronic effects that preorganize a 4-
Hyp residue in a conformation that befits a triple helix (Engel & Prockop, 1998;
Holmgren et al., 1998; Bretscher et al., 2001; Jenkins & Raines, 2002). In contrast to
4-Hyp, no information is available on the effect of 3-Hyp residues on collagen stability.

Here, we synthesize collagen-like peptides that contain a 3-Hyp residue. We use these
peptides to assess the contribution of 3-Hyp to the conformational stability of the
collagen triple helix. We find that the presence of a 3-Hyp residue, in surprising contrast
to a 4-Hyp residue, destabilizes a collagen triple helix. Like the stability endowed by 4-
Hyp residues, the instablity imposed by 3-Hyp residues appears to arise largely from

inductive effects of its pendant hydroxyl group.

2.2 Results and Discussion

Synthetic collagen mimics have been effective in dissecting the basis for the
conformational stability of the collagen triple helix (Fields, G.B. & Prockop, 1996). In
particular, host—guest studies have revealed important insights on the contribution of
individual amino acid residues, both natural and nonnatural (Shah et al., 1996; Ramshaw,
J. A. M. etal., 1998; Kwak et al., 1999; Persikov et al., 2000a; Persikov et al., 2000b;
Kersteen & Raines, 2001). To reveal the effe‘ct of 3-Hyp residues on triple-helical
stability, we synthesized two host—guest peptides in which the central triplet of (Pro—4-
Hyp—Gly); was replaced with one containing 3-Hyp. These peptides were (Pro—4-Hyp—

Gly)s;—3-Hyp—4-Hyp—Gly—(Pro—4-Hyp-Gly); (2.1) and (Pro—4-Hyp—Gly);—Pro-3-Hyp-
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Gly—(Pro—4-Hyp-Gly); (2.2). Peptide 2.1 was designed to elucidate the role of the

3-Hyp-4-Hyp-Gly triplet as is found most often in natural collagen. Peptide 2.2 was
designed to reveal the effect of the regiochemistry (3-Hyp versus 4-Hyp) of the pendant
hydroxyl group. These peptides were synthesized by standard Fmoc/fBu coupling

strategies using compound 2.4 (Scheme 2.1) to introduce 3-Hyp residues.

<Y -

O
B TsOH-H,0 Q 1. NaOH (aq) =

o o
(NHO CHCl, [ﬁl—)—«o { 2Fmeed Q“’(
Hy-OTs

H OH  _78°CtoRT dioxane/H,0  Fmoc OF
72% Na,COs,
23 2.4

Scheme 2.1 Synthesis of Fmoc-3(S)-Hyp(OtBu) (2.4).

2.2.1 Conformational Stability.

The unfolding of triple helices of peptides 2.1 and 2.2 was monitored by CD
spectroscopy. The resulting 7, values, along with those of triple helices of (Pro—4-Hyp—
Gly); (2.5) and (Pro—4-Hyp—-Gly)s—Pro-Pro—Gly—(Pro—4-Hyp-Gly); (2.6), are listed in
Table 2.1. The values confirm that in its natural (i.e., Yaa) position, 4-Hyp provides more
conformational stability to a triple helix than does Pro. In contrast, 3-Hyp provides less
conformational stability than does Pro in either its natural (i.e., Xaa) or a nonnatural (i.e.,
Yaa) position. The additional stability endowed by 4-Hyp is known to arise from
stereoelectronic effects (Bretscher et al., 2001; Jenkins & Raines, 2002). What is the

origin of the detrimental effect of 3-Hyp on collagen stability?
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Table 2.1 Values of T,, for Synthetic (Pro—Hyp—Gly)s— (Xaa—Yaa—Gly)—(Pro—Hyp—-
Gly)s Triple Helices

peptide Xaa—Yaa-Gly Tm (°C)*
2.5 Pro4-Hyp-Gly  36+2°
2.1 3-Hyp-4-Hyp-Gly  32.7+0.9
2.6 Pro—Pro—Gly 30.5+22°
2.2 Pro—3-Hyp-Gly 21.0+£2.2

“ Values of T, were determined by CD
spectroscopy for peptides (0.2 mM) in 50
mM acetic acid, and are the average (+SE)
of at least 3 determinations.

b From (Kersteen & Raines, 2001).

2.2.2 Peptide Bond Isomerization

All of the peptide bonds in triple-helical collagen are in the trans (i.e., Z)
conformation. The 4-hydroxyl group of a 4-Hyp residue increases the trans/cis ratio of an
Xaa—4-Hyp peptide bond by approximately 50% compared to a Xaa—Pro bond (Eberhardt
et al., 1996). We used NMR spectroscopy to determine the effect of the 3-hydroxyl group
of a 3-Hyp residue on its frans/cis ratio. We found that the trans/cis ratio of amide 2.8
(synthesized according to Scheme 2.2) and Ac—Pro—OMe in D,0 were 4.9 and 4.6,
respectively. These similar values indicate that peptide bond isomerization makes a

negligible contribution to the instability of triple-helical 2.1 and 2.2.

\L 1% \L SOCl,

.-O H313CJLC| ;0 TFA _.~OH
H2-OTs Et;N A 79% A 3

67% O 13CH, O™ 13cH,
2.3 2.7 2.8

Scheme 2.2 Synthesis of 2.8.
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2.2.3 Structure of a 3-Hyp Residue.

We used X-ray diffraction analysis to determine the structure of crystalline amide 2.8
(Figure 2.1A). The pyrroiidine ring of crystalline amide 2.8 is puckered such that its N—
C®-CP-0"bond has a dihedral angle of —81.46 + 0.16°, as would be expected from the
manifestation of a gauche effect (O’Hagan et al., 2000; Bretscher et al., 2001). The ring
pucker in crystalline Ac-3-Hyp—OMe (2.8) differs significantly from the ring pucker in
crystalline Ac—4-Hyp-OMe (Figure 1B). The conformation of the pyrrolidine ring in
amide 2.8 is intermediate between a 'E envelope and lEz twisted conformation
(Giacovazzo et al., 2002). In the envelope conformation, the flap atom is CP. In the
twisted conformation, atoms N;, C,ﬁ, and C,-6 form the basal plane. Atom C,JS resides 0.456
+0.004 A above that plane, and atom C° resides 0.153 £ 0.005 A below that plane. The

phase angle ¢ = 9.6 + 0.3°, and the puckering amplitude is g> = 0.378 £ 0.002 A.
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Ac-3-Hyp—OMe Ac-4-Hyp—-OMe
Figure 2.1 (4) ORTEP diagram of crystalline N-(* Ca-acetyl)-3(S)-hydroxy-L-proline
methyl ester (2.8) drawn with 30% probability ellipsoids. (B) Pyrrolidine ring pucker in

crystalline amide 2.8 (left) and crystalline N-acetyl-4(R)-hydroxy-L-proline methyl ester
(right) (Panasik et al., 1994).

The structure of crystalline Ac—4-Hyp—OMe contains two symmetry-independent

molecules (Panasik et al., 1994). (Thus, there are two numbers herein for each

parameter.) In both molecules, the pyrrolidine ring is in the >T, (that is, C?TC., ) twisted

conformation with characteristic phase angle of ¢ = 129.8 + 0.7° (127.8 + 0.7°) and

puckering amplitude of g, = 0.354 £ 0.004 A (0.389 £ 0.006 A) (Giacovazzo et al.,
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2002). The basal plane is determined by atoms N,, C? and C Atom C resides 0.28

+0.01 A (0.22 £ 0.01 A) above that plane, and atom C;" resides 0.35 £ 0.01 A (0.36 +
0.01 A) below the plane.

The ring puckers of 3-Hyp and 4-Hyp (Figure 2.1B) serve to preorganize the ¢(C’i1—
N~-Ci—C’) and y (N—C—C’—N;;1) dihedral angles in a conformation that is appropriate
for the Yaa position of a collagen triple helix (Vitagliano et al., 2001b; Berisio et al.,
2002; DeRider et al., 2002). Likewise, a 3-Hyp residue would be stabilizing in the Xaa
position relative to Pro because its main-chain dihedral angles are favorable for that
position, whereas a 3-Hyp residue would be destabilizing in the Yaa position because its
dihedrai angles differ significantly from the optimal (Table 2.2). Although 3-Hyp is
destabilizing in both positions (Table 2.1), the preorganization that arises from the
gauche effect does favor a triple helix with 3-Hyp in the Xaa rather than the Yaa position.
Unlike 3-Hyp and 4-Hyp residues, a Pro residue is not constrained by a gauche effect to
adopt a particular pucker, and can therefore accommodate the different g and y angles of

the Xaa and Yaa positions in a triple helix (Table 2.1).

Table 2.2 Main-Chain Angles of Proline and Hydroxyproline residues in Crystalline
Amides and Triple Helices

amide triple helix
_ «  [PCHs]Ac-3-Hyp- Pro Pro Pro Hyp
angle  Ac—4-Hyp-OMe’ T OMe ‘ (Xaa)” (Yaa)” (Xaa)'  (Yaa)’
o -50.9 ~719.5 =75 -00 -69.8 -57.4
v 145.2 163.7 164 152 162 149.8

“ From (Panasik et al., 1994).
b From (Berisio et al., 2002).
° From (Berisio et al., 2001).
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To show that hydroxyproline residues have very similar conformations in small

molecule as well as peptide contexts we compared the dihedral angles of Ac-4-HypOMe
with those of 4-Hyp in the crystal structure 1CAG by pseudorotational analysis (Chacko
et al., 1983). We found that the two rings were essentially superimposable, indicating that
Hyp ring puckers are not dependent on context, and validating our assumption that 3-Hyp

would have the same pucker in a peptide context as we found it to have in amide 2.8.

2.2.4 Steric Effect on Collagen Stability.

Could steric effects contribute to the instability imparted by 3-Hyp? In a collagen triple
helix, residues in the Xaa position are more solvent-exposed than are those in the Yaa
position (Jones & Miller, 1991),' and are therefore less likely to introduce unfavorable
steric interactions. Indeed, residues with bulky side chains are found only rarely in the
Yaa position of natural collagen (Ramshaw, J. A. M. et al., 1998). A steric clash between
3-Hyp in the Yaa position with residues in neighboring strands (Figure 2.2, bottom) is
likely to diminish the stability of triple-helical 2.2. This steric clash is absent in triple-

helical 2.1 (Figure 2.2, top).
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/" Xaa-YaaGly = 3-Hyp—4-Hyp-Gly I/

/ Xaa-Yaa-Gly = Pro-3-Hyp-Gly W

Figure 2.2 Model of a segment of the triple helix formed by peptide 2.1 (top) and peptide
2.2 (bottom). Each 3-Hyp residue (green), the oxygen of its hydroxyl group (red;
labeled), and the steric clash in triple-helical peptide 2.2 (yellow) are indicated.

2.2.5 Effect of Hydrogen Bonds on Collagen Stability.

In a collagen triple helix, the C=0 of the residue in the Xaa position accepts a
hydrogen bond from the glycine N-H of another strand (Figure 3). The carboxyl pK, of
XaaOH is a measure of the abi}ity of the Xaa residue to accept such a hydrogen bond
(Holmgren et al., 1999). The pK, values of the carboxyl groups of 3—HypOH and 4—
HypOH were determined by monitoring the effect of pH on the 'H NMR chemical shift
of their o-protons. The carboxyl pK, of 4-HypOH was found to be 1.80, which is close to

the value of 1.82 reported previously (Fasman, 1989), and that of ProOH is 1.95
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(Fasman, 1989). In contrast, the pK, of 3-HypOH is 1.62, making the 3-Hyp residue a

weaker hydrogen bond acceptor than Pro. This attribute is likely to contribute to the

instability conferred by a 3-Hyp residue in the Xaa position.

Figure 2.3 Putative interstrand hydrogen bonds in triple-helical (3-Hyp—4-Hyp—Gly),.

2.3 Biological Implications.

3-Hyp only decreases the T, value of triple-helical 2.2 by 3 °C, compared to >5
°C for other residues in the Xaa position of (Pro~Hyp—Gly)-based host—guest triple
helices (Persikov et al., 2000a). Thus, the insertion of 3-Hyp could serve to modulate the
local stability of triple helices. This idea is supported by the 10-fold increaseof 3-Hyp
residues in basement-membrane collagens, as compared to fibrillar collagens (Kefalides,
1973). Additional support for this idea has come from Bachinger and coworkers, who
showed that a collagen model peptide with 3-Hyp at every Xaa position does not fold into
a triple helix (Mizuno et al., 2004). Apparently, the cumulative destabilizing effect of a
large number of 3-Hyp residues is quite large. Collagen triple helices in basement
membranes interact with each other, as well as with other biomolecules, in a more varied

and complex manner than do those in fibrils. This network of interactions could require
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regions of finely tuned conformational stability, and 3-Hyp residues could provide that

tuning.

2.4 Experimental Section

General. Reagents were obtained from Aldrich Chemical (Milwaukee, WI) or Fisher
Scientific (Hanover Park, IL) and used without further purification. Amino acids and
their derivatives were obtained from Fisher Scientific, Bachem Bioscience (King of
Prussia, PA), or Novabiochem (San Diego, CA). Dichloromethane was distilled over
CaHj(s) or drawn from a Baker Cycletainer. Thin-layer chromatography was performed
by using aluminum-backed plates coated with silica gel containing F,s4 phosphor and
visualized by UV illumination or staining with I, p-anisaldehyde stain, or
phosphomolybdic acid stain. NMR spectra were obtained with Bruker AC-300 and
Varian UNITY-500 spectrometers.

3(S)-tert-Butoxy-L-Proline tert-Butyl Ester Tosylate (2.3). N-(9H-Fluoren-9-
ylmethoxycarbonyl)-3-fert—butoxy-L—proline (2.3) was synthesized by the route in
Scheme 2.1. 2-Methyl-propene (approximately 10 mL) was condensed into a pear-shaped
flask at —78 °C then added to a suspension of 3-hydroxyproline (0.50 g, 3.8 mmol) and
p-toluenesulfonic acid hydrate (3.00 g, 15.8 mmol) in dichloromethane (25 mL) at —78
°C. The reaction was stirred for 3 d, allowing the mixture to come to room temperature.
The reaction nﬁixture was then cooled to 0 °C, vented carefully, and then poured into.;.a
separatory funnel and washed twice with a saturated aqueous solution of NaHCO;. The
combined aqueous layers were extracted once with dichloromethane, and the combined

organic layers were then washed once with water, dried over MgSQOu(s), filtered, and
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concentrated under reduced pressure to yield compound 2.3 as a yellow oil (1.142 g,

72%). '"H NMR (‘300 MHz, CDCl3) 6 (ppm) 7.78 (d, J = 8.1 Hz, 2H), 7.14 (d, /= 8.1 Hz,
2H), 4.29 (m, 1H), 3.99 (d, /= 2.9 Hz, 1H) 3.50-3.43 (m, 1H), 3.37-3.27 (m, 1H), 2.33
(s, 3H), 2.00-1.92 (m, 1H), 1.83-1.76 (m, 1H), 1.46 (s, 9H), 1.18 (s, SH).
N-(9H-Fluoren-9-ylmethoxycarbonyl)-3(S)-fert-Butoxy-L-Proline (2.4).
Compound 2.3 (412 mg, 0.99 mmol) was suspended in 1.0 M NaOH (10 mL, 10 mmol)
and stirred until the reaction mixture became homogeneous, that is, for about 4 h. The
reaction mixture was then cooled to 0 °C and acidified with concentrated HCI to pH 0.
Na,CO; (1.1 g) was added immediately, followed by dioxane (25 mL). Fmoc—Cl (292
mg, 1.13 mmol) was added in small portions, and the resulting mixture was stirred at
room temperature for 4 h. The reaction mixture was then poured into a separatory funnel
with 50 mL H,O and extracted with diethyl ether (3 x 25 mL). The aqueous layer was
then combined with 50 mL ethyl acetate in a beaker, cooled to 0 °C, and acidified with
concentrated aqueous HCl to pH 0. The layers were separated, and the aqueous layer was
extracted again with EtOAc (25 mL). The combined ethyl acetate layers were dried over
MgSO4(s) and filtered, and the solvent was removed under reduced pressure to yield
compound 2.4 as a white solid (0.148 g, 36.6% over two steps). 'H NMR (two rotamers,
500 MHz, CDCl3) 6 (ppm) 7.75 and 7.70 (d, J =7 and 7.5 Hz, 2H), 7.60 and 7.55 (dd, J =
8,8 Hz and 7.5, 10 Hz, 2H), 7.41-7.27 (m, 4H), 4.68-4.12 (m, SH), 3.76-3.61 (m, 2H),
2.12-2.01 (m, 1H), 1.89-1.80 (m, 1H), 1.22 (s, 9H). *C NMR (125 MHz, CDCls, two
rotamers): o (ppm) = 175.52, 174.12, 155.92, 154.62, 144.00, 143.84, 143.74, 141.26,

127.71,127.57,127.05, 126.96, 125.15, 125.06, 124.96, 119.95, 119.86, 75.26, 75.10,
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73.67, 67.94, 67.62, 67.34, 66.05, 65.93, 61.15, 61.13, 47.12, 45.46, 45.30, 33.09,

32.23, 28.08. ESI-MS: 408.1805 (observed), 408.1811 (calculated).

To determine whether epimerization of the a-carbon had occurred upon
saponification of the #-butyl ester 2.3, the hydroxyl group was deprotected by acidolysis
of its z-butyl protecting group and the resulting hydroxyl group was converted into its
Mosher ester. Briefly, Fmoc-3-HypOH (17 mg, 0.048 mmol) was dissolved in 1 mL
dioxane. K,COj3 (20 mg, 0.14 mmol) was added to this solution, followed by H,O (2
drops). A Mosher acid chloride, R-(-)-o-methoxy--
(trifluoromethyl)phenylacetylchloride (0.010 mL, 0.053 mmol), was added, and the
resulting mixture was stirred at room temperature for 15 min. EtOAc (1 mL) was then
added to the reaction mixture, followed by concentrated HCI1 (2 drops) and H>O (1 mL).
The layers were mixed thoroughly and then separated. The aqueous layer was extracted
twice more with EtOAc, and the combined organic extracts were dried over MgSQO4(s),
filtered, and concentrated to a colorless oil. The '°F NMR spectrum of the oil contained
only a single peak at —72 ppm, indicating that compound 2.4 had maintained its
stereochemical integrity.

N-83C;-Acetyl-3(S)-tert-Butoxy-L-Proline zert-Butyl Ester (2.7). [*CH3]Ac—
3-Hyp—OMe (2.8) was synthesized by the route shown in Scheme 2.2. The B3C in the
acetyl group facilitated the measurement of amide bond rans/cis ratios b¢caus¢ both the
acetyl and ester methyl groups overlap with other resonances in the 'H spectrum.,
Compound 2.3 (771 mg, 1.86 mmol) was dissolved in 25 mL dry dichloromethane and
cooled to 0 °C. *CH3COCI (200 pL, 2.78 mmol) was added, follwed by triethylamine

(800 uL, 5.74 mmol). The reaction was stirred at 0 °C for;1 h, then at room temperature
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overnight. The reaction mixture was transferred to a separatory funnel and washed

twice with water. The organic layer was dried over MgSQ4(s), filtered, and concentrated
under reduced pressure to a brown oil. The product was purified by silica gel
chromatography, eluting with CH,Cl, containing MeOH (5% v/v) to yield compound 2.7
as a clear, colorless oil (355 mg, 66.8%). 'H NMR (300 MHz, CDCl;) 6(ppm) = major
isomer: 4.28 (bs, 1H), 4.17 (m, 1H), 3.65 (m, 2H), 2.20-1.80 (m, 2H) 2.09 (d, 'Jeu =
132 Hz, 3H), 1.46 (s, 9H), 1.22 (s, 9H); minor isomer:  (ppm) 4.30 (m, 1H), 4.07 (s,
1H), 3.65 (m, 2H), 2.20-1.80 (m, 2H), 1.96 (d, 'Jcg = 132 Hz, 3H), 1.48 (s, 9H), 1.24 (s,
9H). 3C NMR (75 mHz, CDCls, 8 scans) & (ppm) = 22.10, 22.25 (3C-labeled carbon).

N-(13Cz-acetyl)-3(S)-Hydroxy—L-Proline Methyl Ester (2.8). Compound 2.7 (355
mg, 1.24 mmol) was dissolved in MeOH. Trifluoroacetic acid (0.10 mL) was added,
followed by dropwise addition of SOCI; (1.00 mL, 13.7 mmol). The reaction mixture was
heated at reflux for 1 h, and then cooled to room temperature and concentrated under
reduced pressure. The resulting oil was purified by chromatography on silica gel, eluting
with CH,Cl, containing MeOH (5% v/v) to yield amide 2.8 as a clear, colorless oil (183
mg, 79%). "H NMR (500 MHz, CDCls, two rotamers) & (ppm) = major isomer: 4.43 (s,
1H), 4.38 (d, 4 Hz, 1H), 3.71-3.61 (m, 2H), 3.68 (s, 3H), 2.05 (d, 'Jou = 128.5 Hz, 3H),
2.14-2.06 (m, 1H), 2.01-1.94 (m, 1H); minor isomer: 4.50 (d, 4 Hz, 1H), 4.33 (s, 1H),
3.73 (s, 3H), 3.71-3.61 (m, 2H), 1.94 (d, 'Jcu = 128.5 Hz, 3H); *C NMR (125 MHz,
CDCls, two rotamers): 0 (ppm) = 174.44, 174.03, 172.98, 75.08, 73.66, 69.46, 67.68,
54.12,53.83,46.72,45.15, 32.64, 30.93, 21.84, 21.60.

pK. Determinations. The pK, values of the carboxylic acid groups of 3-HypOH and

4-HypOH were determined by "H NMR spectroscopy performed in aqueous solutions of
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different pH. D,O stock solutions consisted of 210 mM 3-HypOH (27.6 mg in 1.0

mL), 209 mM 4-HypOH (27.4 mg in 1.0 mL), 104 mM sodium 2,2-dimethyl-2-
silapentane-5-sulfonate (DSS, 40.8 mg in 1.0 mL), 100 mM D3POy4 (68.5 pL of 85% w/v
D3P0y in 10.0 mL), 100 mM DCI (156 pL of 20% DCl in 10.0 mL), and 100 mM NaOD
(67.6 pL of fresh 46% w/v NaOD in 10.0 mL). Each sample contained 49 pL of the 3-
Hyp or 4-Hyp stock solution, 1 pL of the DSS stock solution, and 950 uL of buffer,
according to Tables S1 and S2 in the Supporting Information. The pH of each solution
was measured by using a standard pH electrode calibrated in non-deuterated buffers. 'H
NMR spectra were obtained (32 scans, 24 °C), and the chemical shift of the a-proton was
determined for each sample. The resulting pH and chemical shift data were fitted to eq
2.1 to yield the pK, values.

S + Oy 100PH7PES)

_ Llow _high
T ) 2.1)

The acidity of an aqueous solution of a molecule having a titratable group with
fraction factor near unity can be measured in D,O by using a standard pH meter
equilibrated against H,O buffers and adding a correction factor of 0.4 units to the reading
(Glasoe & Long, 1960). The difference in pK, of amino acids in H,O and D,0O is
approximately 0.5 units (Hyman et .al., 1960). Thus, a correction of about 0.1 units can be
applied to a pK, measurement obtained by measuring apparent pH values with a standard
glass electrode. To determine a more precise correction factor we measured the pK, of 3-

HypOH and 4-HypOH in D,0 in the same manner, and found that the 4-HypOH value
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was within 0.02 units of the value reported previously (Fasman, 1989). Thus, we did

not apply any correction factor herein to the 3-Hyp pK, value.

Crystallization of N-(C,-Acetyl)-3(S)-Hydroxy-L-Proline Methyl Ester (2.8).
Equal portions of a solution of amide 2.8 (67 mg) in 3.0 mL dichloromethane were
placed in six half-dram vials. Approximately 15 drops (Pasteur pipette) of a different
cosolvent (hexanes, ethyl acetate, diethyl ether, tetrahydrofuran, £-butyl methyl ether) or
no cosolvent was added to each vial. The vials were then capped loosely and allowed to
sit at room temperature undisturbed for several days. The vial with ethyl acetate as a
cosolvent contained the crystals most suitable for X-ray diffraction analysis.

X-Ray Diffraction Analysis. A colorless crystal with approximate dimensions 0.50 x
0.50 x 0.41 mm® was selected under oil under ambient conditions and attached to the tip
of a glass capillary. The crystal was mounted in a stream of Nj(g) at (173 +2) K and
centered in the X-ray beam by using a video camera. Crystal evaluation and data
collection were performed on a Bruker CCD-1000 diffractometer with Mo K (4=
0.71073 A) radiation and a diffractometer to crystal distance of 4.9 cm.

Initial cell constants were obtained from three series of @ scans at different starting
angles. Each series consisted of 20 frames collected at intervals of 0.3° in a 6° range
about @wwith an exposure time of 10 s per frame. A total of 102 reflections were
obtained. The reflections were indexed successfully by an automated indexing routine
built into the SMART program. The final cell constants were calculated from a set of
1508 strong reflections from the actual data collection.

Data were collected by using the hemisphere data collection routine. The reciprocal

space was surveyed to the extent of a full sphere to a resolution of 0.80 A. A total of 2911
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data sets were harvested by collecting one set of frames with 0.3° scans in @ with an

exposure time of 10 s per frame. This redundant data set was corrected for Lorentz and
polarization effects. The absorption correction was based on fitting a function to the
empirical transmission surface as sampled by multiple equivalent measurements
(Blessing, 1995). All software and sources of the scattering factors were contained in the
SHELXTL (version 5.1) program library (G. Sheldrick, Bruker Analytical X-Ray
Systems, Madison, WI).

Synthesis of Peptides 2.1 and 2.2. Peptide synthesis was performed on an Applied
Biosystems Synergy synthesizer using standard Fmoc/tBu methodology and HBTU as the
coupling reagent. 3-Hyp residues were incorporated by using compound 2.4. Mass
spectra of the synthetic peptides were obtained with a Perkin—Elmer Voyager MALDI-
TOF or Micromass LCT ESI instrument.

Peptide 2.1, which was (Pro—4-Hyp—Gly);-3-Hyp—4-Hyp-Gly-(Pro—4-Hyp-Gly)s,
was purified by HPLC, eluting with 5-60% v/v solvent B over 35 min (where solvent A
was H,O containing TFA (0.1% v/v), and solvent B was CH3CN containing TFA (0.1%
v/v)). ESI MS: 1905 calculated, 1906 (M + H) observed. Peptide 2.2, which was (Pro—4-
Hyp-Gly);—Pro-3-Hyp—- Gly—(Pro—4-Hyp—Gly)s, was purified by HPLC, eluting with 5—
60% solvent B over 35 min (where solvent A was H,O containing TFA (0.1% v/v), and
solvent B was CH3CN containing TFA (0.1% v/v)). ESI MS: 1889 calculated, 1890 (M +
H) obsérved. | | | | |

Thermal Denaturation Experiments. Values for T,, for each triple helix were
determined in triplicate by thermal denaturation experiments monitored by CD

spectroscopy on an Aviv 202 SF instrument equipped with an automated temperature
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controller. A 0.2 mM solution of peptide 2.1 or 2.2 in 50 mM HOACc was incubated at

4 °C for >24 h. Aliquots of 300 pL were placed in 0.1-cm pathlength quartz cuvettes that
had been equilibrated at 5 °C. Wavelength scans were performed from 200-260 nm at 5
and 50 °C, with a slit width of 1 nm and an averaging time of 3 s. Thermal denaturation
experiments were performed by raising the temperature from 5 to 50 °C in 3-°C steps,
equilibrating for 5 min at each temperature, and monitoring at 225 nm with a 20-s
averaging time. Values of Ty, which is the temperature at the midpoint of the thermal
transition, were determined by fitting the data to a two-state model using the software
package NLREG v. 4.0 (Philip Sherrod).

Molecular Modeling. Molecular models of triple-helical 2.1 and 2.2 were created by
modifying the structure of crystalline collagen (PDB entry 1CAG(Bella et al., 1994)).
The atomic coordinates were imported into the program SYBYL (Tripos, St. Louis, MO).
The side-chain methyl group of the three alanine residues were replaced with a hydrogen
atom, and a section of the (Pro-Hyp-Gly) triple helix was excised from the C-terminus.
This section was subjected to energy minimization with the Tripos force field. A
hydroxyl group was added to CP of the proline residue in the Xaa position of the central
triplet in each strand (to mimic peptide 2.1), or moved from C to CP in the Yaa position
of the central triplet in each strand (to mimic peptide 2.2). The dihedral angles of the 3-

Hyp residues were then altered to match those of the structure of crystalline amide 2.8.

The resulting structures were not subjected to further minimization.
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Chapter 3*
SUBSTITUTED 2-AZABICYCLOJ[2.1.1JHEXANES AS CONSTRAINED PROLINE
ANALOGS: IMPLICATIONS FOR COLLAGEN STABILITY
3.1 Introduction

Proline has two prominent attributes that are unique among the proteinogenic amino
acids: only proline is a secondary amine, and only proline has a saturated ring (Fisher,
1906). These attributes make proline residues a key determinant of protein structure
(MacArthur & Thornton, 1991; Reiersen & Rees, 2001). Accordingly, a deeper
understanding of the conformational properties of proline would illuminate challenging
problems in protein folding, stability, and design.

As a secondary amine, proline has a much greater propensity than other natural amino
acids to form cis (that is, E) peptide bonds (Stewart et al., 1990; Weiss et al., 1998; Jabs
etal., 1999). A variety of methods have been developed to control the trans/cis ratio,
including buttressing the 2- (Delaney & Madison, 1982), 3- (Delaney & Madison, 1982;
Beausoleil et al., 1998), and 5-positions (Magaard et al., 1993; An et al., 1999; Halab et
al., 2000; Arnold et al., 2003) with functional groups and including the amide in a ring
system that is fused to the pyrrolidine ring (Halab et al., 2000). These approaches endow

torsional control of the amide bond but introduce steric bulk that could be undesirable.

! This chapter has been submitted as a portion of a publication with the same title. Reference: Jenkins, C.
L.; Lin, G.; Duo, J.; Rapolu, D.; Guzei, I. A.; Raines, R. T.; Krow, G. R. J. Org. Chem. 2004, in press.
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The pyrrolidine ring of proline exists in a variety of puckers, with C¥ being its most

aplanar constituent (DeTar & Luthra, 1977; Vitagliano et al., 2001b). A variety of
bicyclic proline mimics have been developed to conﬁol the conformation of the
pyrrolidine ring (3.1-3.4) (Bell et al., 1980; Jung et al., 1981; Gaitanopoulos &
Weinstock, 1985; Montelione et al., 1986; Avenoza et al., 1995; Bunuel et al., 2001). All
of thesé proline mimics are rigidvenough to fix pyrrolidine ring pucker, but some include
elements that make them suboptimal as proline mimics. Of those proline mimics, 3.3a
(Han et al., 1999; Avenoza et al., 2002) and 3.4 (Juvvadi et al., 1992) have been
employed in the design of peptide-based enzyme inhibitors to reinforce a bioactive

peptide conformation, to varying degrees of success.

CO-H LHOQH
/
NHH NH H

3.1 3.2
H
N%
e
AN\R HNA
HOLC HOLC
3.3a, R=H 3.4
3.3b, R = COOH
3.3¢, R=n-Pr
3.3d, R = Ph

2*Azabiéyblo [2.1.1]hexane (as in 3.5) is a proline analog that displays both
predominant puckers of the pyrrolidine ring (Krow & Cannon, 2004). This end is
achieved by the addition of a single carbon atom to proline, a minimal perturbation.

Substitution of a hydrogen at the C** or C¥* position of the bicyclic system with a
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hydroxyl or fluoro group yields mimics of 4-hydroxyproline (as in 3.6) and

4-fluoroproline (as in 3.7). (2S,4R)-4-Hydroxyproline (Hyp) fesidues are prevalent in
collagen, which is the most abundant protein in animals. Replacing the Hyp residues with
(25,4R)-4-fluoroproline (Flp) residues endows synthetic mimics of collagen with
extraordinary stability (Holmgren et al., 1998; Holmgren et al., 1999; Jenkins & Raines,

2002).

£y AL AL
N N N

0~ "OMe O~ "OMe 0~ OMe
3.5 3.6 3.7

Substitutions on C-4 (that is, C") of proline residues are known to have a large effect
on the trans/cis ratio (Eberhardt et al., 1996; Bretscher et al., 2000; Bretscher et al., 2001;
Renner et al., 2001). For example, electronegative substituents in the 4R-position of Pro
increase the stability of the frans isomer, whereas electronegative substituents in the 45-

: position decrease that stability (Table 3.1). NMR analyses indicate that Ac—(2S,4R)-
4-fluoroproline—~OMe (Ac-Flp—-OMe) resides predominantly (86%) in the C'-exo pucker
in solution, whereas Ac—(25,4S5)-4-fluoroproline~OMe (Ac—flp—OMe) is found almost
exclusively (95%) in the C¥-endo pucker (Fig. 3.1) (DeRider et al., 2002). This
dichotomy can be attributed to the gauche effect, which causes the pyrrolidine ring to

adopt a pucker that places the nitrogen and fluorine in a gauche orientation about the c2-

C"bond (for nomenclature, see Fig. 3.2 and (Nomenclature, 1970)) (O’Hagan et al.,
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2000), and has important ramifications for the stability of collagen (Eberhardt et al.,

1996; Bretscher et al., 2001; Improta et al., 2001; DeRider et al., 2002; Jenkins & Raines,
2002; Doi et al., 2003; Hodges & Raines, 2003). The relationship between the gauche
effect and amide trans/cis isomerization in proline derivatives is thought to arise from
both steric and electronic interactions. The stabilization of the trans conformer of Ac—
Flp—OMe arises from an n— z* interaction between the oxygen of the amide (the electron
donor) and the carbon of the methyl ester (the electron acceptor) (Bretscher et al., 2001;
DeRider et al.., 2002; Hinderaker & Raines, 2003). The relative destabilization of the
trans rotamer of Ac—flp-OMe arises from unfavorable steric interactions between the
non-bonded electrons on the fluoro and ester groups, which disfavors the n— 7*

interaction (DeRider et al., 2002).

o=( i v Meogi:(w
MeO,C M —_ Hﬂ/x
H Y
Clendo Cl-exo

Figure 3.1 Ring puckers in 4-substituted Ac-Pro—-OMe. C*-endo pucker is favored when
X =H, OH, or F, and Y = H. C"-exo pucker is favored when X = H and Y = OH or F.
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Table 3.1 Values of Kuyansicis for 4-substituted AcXaaOMe.*"

xX . x X
0 transicis 6]
" OMe N OMe

o)\ /go
Xaa X Y  Kiansicis
Fp H F 67
Hyp H OH 6.1
Pro H H 4.6

hyp OH H 24
fip F H 25

* Data are from

(Bretscher et al., 2001)

® Values were

measured in D,0 at

25 °C by integration

of '"H NMR spectra

We reasoned that constraining the pucker of proline with a one-carbon (that is,

methano) bridge would allow us to dissect the relationship among ring pucker, inductive
effects, and peptide backbone conformation in proline derivatives. Accordingly, we
synthesized compounds 3.5-3.7 to isolate the influence of ring pucker (which is not
variable) and inductive effects (which is variable) on the cis—trans isomerization of

proline residues. The results provide insight on the origin of the preference for cis or trans

prolyl peptide bonds and have important implications for the conformational stability of

collagen.
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3.2 Results and Discussion

Compounds 3.5-3.7 were synthesized and provided by G. R. Krow and coworkers,
Temple University, Philadelphia, PA. The synthetic route to these compounds will be
reported in due course. An attractive feature of the methanoproline derivatives is that
both pyrrolidine ring puckers are incorporated into a single framework, which allows
dissection of the relative contributions of ring pucker and inductive effects on the
conformation of substituted prolines. The hydroxyl- and fluoro-substituted
methanoprolines are analogs of (25,4S5)-4-hydroxyproline (hyp) and (25,45)-4-
fluoroproline (flp), respectively, and the substituent is in an orientation analogous to the
disfavored C'-exo pucker (O’Hagan et al., 2000; DeRider et al., 2002). In other words,
the bicyclic structure fixes the hydroxyl and fluoro groups of compounds 3.6 and 3.7 to
be in an antithetical conformation—anti rather than gauche to the pyrrolidine nitrogen
about the C*~C"! bond.

We measured the amide trans/cis ratios of 3.5 and 3.6 by using NMR spectroscopy.
We used °C NMR spectroscopy because the 'H resonances of both methyl groups
overlapped with those of other protons from the bicyclic ring system. *C NMR spectra
were obtained with 'H-decoupling enabled only during the acquisition phase of the pulse
sequence, allowing for no NOE buildup and thus enabling quantitative integration of the
relevant peaks. The trans/cis ratios were measured in CDCl3, dioxane-dg, and D,0, and
are listed in Table 3.2. The traﬁé/cis ratioé 6f 37 wére rﬁeésuréd by '°’F NMR
spectroscopy, as the two "°F resonances were well-resolved. We found little variation
among the three derivatives in a particular solvent. The trans/cis ratios in deuterated

dioxane and CDCl; were all similar, and the ratios in D,O were somewhat greater than
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those in organic solvent (Eberhardt et al., 1996). These data demonstrate that

rigidifying the pyrrolidine ring of proline derivatives by adding a methano bridge
abolishes any inductive effect exerted by a fluoro- or a hydroxyl group on the trans/cis
ratio of its peptide bond. Apparently, an electronegative substituent on the flexible

pyrrolidine ring of proline affects the trans/cis ratio by altering the pucker of the ring.

Table 3.2 Effect of solvent on Kyanseis of AcXaaOMe.”

Kiransreis
Xaa CDCl; Dioxane-dg D,0O
methano-Pro (3.5) 2.4 22 3.5
methano-hyp (3.6) 2.4 21 3.6
methano-flp (3.7) 2.7 2.8 3.5

? Values of Kirans/cis were measured in the
indicated solvents at 25 °C by integration of
B¢ or F NMR spectra.

Next, we determined the crystalline structure of Ac-methano-hyp—OMe (3.6) by
X-ray diffraction analysis. There are two crystallographically independent molecules in
the unit cell, as shown in Fig. 3.2. The ring structures of the two molecules are
superimposable, while the ester and amide conformations vary slightly relative to one
another. The ¢ angles (C.;—N—C,”-C;) differ by 3.1(3)°, the v angles (here, N~C,"~C~
O;+1) differ by 18.0(4)°, and the @angles (C,*~C—N;+1—Ci+1") differ by 2.6(2)°. A
superposition of the structures of Ac—methano-hyp—OMe and Ac-Hyp—OMe (Panasik et

al., 1994) is shown in Fig. 3.3 and clearly depicts the antipodal configuration of the

hydroxyl groups on C.
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Figure 3.2 ORTEP diagrams showing the two Figure 3.3 Superposition of crystalline
crystallographically independent molecules in  structures of Ac—methano-hyp—OMe
the unit cell of crystalline Ac—-methano-hyp— (3.6, cyan) and Ac-Hyp—OMe (orange)
OMe (3.6), drawn with 30% probability (Panasik et al., 1994).

ellipsoids.

All relevant structural parameters support the presence of a stronger n— z*
interaction (Bretscher et al., 2001) in molecule B than in molecule A of crystalline Ac—
methano-hyp—OMe, as shown in Fig. 3.4 (DeRider et al., 2002). For example, the O¢--C,
distance is 2.949(4) A in molecule B, but 3.092(3) A in molecule A. In addition, the
C;=0; bond length is 1.207(3) A in molecule B, but 1.198(3) A in molecule A, and the
"N;=Cy~Oy~ amidic resonance structure appears to be more prevalent in molecule B,
which has a shorter N;—C, bond and a longer Cy—Oy bond than.does molecule A. Finally,
the Oy *C1=0, angle is closer to the Biirgi—-Dunitz optimum of 109° (Biirgi, H. B. et al.,

1973; Biirgi, H.B. et al., 1974a; Biirgi, H.B. et al., 1974b; Biirgi, H.B. & Dunitz, 1983;

Eliel & Wilen, 1994) in molecule B [93.2(2)°] than in molecule A [83.6(2)°]. All of these
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structural parameters are consistent with greater donation of electron density from the

non-bonding electrons of Oy to the antibonding orbital of the C;=0O; bond in molecule B,
as expected from a stronger n— 7* interaction (DeRider et al., 2002). Moreover, the
congruence of these five structural parameters (three bond lengths, an atom:--atom
distance, and an atom'--atom—atom angle) provides additional support for the existence of
a meaningful n— 7z* interaction in Ac—methano-hyp—OMe (3.6) as well as a benchmark

for detecting n— 7* interactions in other derivatives of proline.

&
1:3349) gt

|1-933(4) ‘.'/3'09 A, 40;-‘c=o 83.5°
et aaret

1.244(3)

molecule A(error)
1.250(3)

molecule Bierror)

Figure 3.4 Ball-and-stick diagram showing bond lengths that differ statistically in the
two molecules of the X-ray structure of crystalline Ac—methano-hyp—OMe (3.6). The
Oy +-C1=0; bond lengths and angles are also shown.

The trans/cis ratios for compounds 3.5-3.7 in D,O are intermediate between those
of Ac—Pro—OMe and Ac-hyp—OMe or Ac—flp—OMe (Table 3.1), indicating that the
n— 7* interactions in methanoproline derivatives are probably weaker than those found
in Pro and 4R-substituted prolines, but stronger than those in the 4S-substituted prolines.

Likewise, the ¢ and y angles of Ac—methano-hyp—OMe are intermediate between those
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of the endo- and exo-puckers of proline derivatives (Table 3.3), which is consistent

with its intermediate trans/cis ratio.

Table 3.3 Values of ¢ and y dihedral angles for the trans amide isomers of Ac—Xaa—

OMe.*

Xaa ring pucker e(® wv(® reference

Pro C-exo -58.6 1430 (DeRider et al., 2002)

Pro C'-endo -70.0 152.1 (DeRideretal., 2002)

Hyp (1) C-exo —-62.0 1564  (Panasik et al., 1994)

Hyp (2) Ch-exo -50.9 1452 (Panasik et al., 1994)

Flp Clexo -59.2 140.8  (DeRider et al., 2002)

flp C'-endo ~764 169.0 (DeRider et al., 2002)
methano-hyp (1) — -65.0 169.0 this work
methano-hyp (2) — —-61.9 1535 this work

? Dihedral angles of Xaa = Pro, Flp, and flp are from

density functional theory calculations; dihedral angles of

Xaa = Hyp and methano-hyp are from X-ray diffraction

analysis of crystalline molecules.
3.3 Conclusions

Electronegative substituents in the 4-position of proline residues had been shown to

have a substantial effect on the trans/cis ratio of their peptide bonds (Table 3.1)
(Eberhardt et al., 1996; Bretscher et al., 2000; Bretscher et al., 2001; Renner et al., 2001).
Here, constraining the pucker of the pyrrolidine ring of 4-substituted proline residues
with a one-carbon bridge, as in compounds 3.5-3.7, was shown to abolish the effect of
the electronegative substituents on the trans/cis ratio (Table 3.2). Thus, changes in
trans/cis ratio arise from changes in ring pucker. This finding suggests that pyrrolidine

ring pucker is a key determinant of the stability (or instability) endowed by 4-substituted

proline residues on collagen.
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3.4 Experimental Section

Measurement of Ki,,s/cis values of 3.5-3.7. Each compound (10-20 mg) was
dissolved in CDCl; (approximately 1 mL), and the >*C NMR (3.5 and 3.6) or ’F NMR
(3.7) spectrum recorded. The relaxation delay for the measurement of the spectra of 3.5
and 3.6 was 10-18 s to allow for full relaxation of the >C nuclei. The spectral baselines
were corrected and peaks corresponding to the labeled carbon or the fluorine were
integrated. The samples were then concentrated under reduced pressure and placed under
high vacuum overnight to ensure removal of all residual CDCls. The resulting samples
were dissolved in dioxane-dg (800 pL), and the spectra were recorded again. The samples
were concentrated under reduced pressure and placed under high vacuum overnight. D,O
(800 pL) was then added to each sample followed by enough CD;OD to effect full
dissolution of the sample. The amount of added CD3;0D was less than 20% of the total
volume in each case. The samples were filtered, their spectra were recorded, and the
trans/cis ratios were determined by integration of the respective resonances.

Crystallization of Ac—methano-hyp—OMe (3.6). Racemic Ac—methano-hyp—OMe
(3.6, 20-30 mg) was dissolved in dichloromethane, and the resulting solution was
aliquotted into 5 vials. A cosolvent (10-20 drops) was added to each vial with a Pasteur
pipette: vial 1—hexanes; vial 2—diethyl ether; vial 3—dioxane; vial 4—no cosolvent;
vial 5—ethyl acetate. The vials were capped loosely and allowed to sit at room
temperature for approximately 2 days. Vial 5 contained the crystals most suitable for X-

ray crystallography, and these crystals were used for X-ray diffraction analysis.
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X-Ray Diffraction Data Collection. An air-stable crystal of Ac—methano-hyp—

OMe (3.6) with approximate dimensions 0.50 x 0.40 x 0.40 mm® was selected under oil
at ambient conditions and attached to the tip of a glass capillary. The crystal was mounted
in a stream of cold nitrogen at 173(2) K and centered in the X-ray beam by using a
microscope.

Crystal evaluation and data collection were performed on a Bruker P4/CCD-1000
diffractometer with Mo Ko (A =0.71073 A) radiation with a diffractometer-to-crystal
distance of 4.999 cm.

Initial cell constants were obtéined from three series of wscans at different starting
angles. Each series consisted of 20 frames collected at intervals of 0.3° in a 6° range
about wwith an exposure time of 10 s per frame. A total of 69 reflections were obtained.
The reflections were indexed successfully by an automated indexing routine built in the
SMART program. The final cell constants were calculated from a set of 4952 strong
reflections from the actual data collection.

Data were collected by using the multi-run data collection routine. The reciprocal

space was surveyed to the extent of a full sphere to a resolution of 0.80 A. A total of
12437 data were harvested by collecting one set of 1250 frames with 0.3° scans in ¢ and
four sets of 100 frames with 0.3° scans in @ with an exposure time 30 s per frame. This

highly redundant dataset was corrected for Lorentz and polarization effects. The
absorption correction was based on fitting a function to the empirical transmission
surface as sampled by multiple equivalent measurements (Blessing, 1995).

Structure Solution and Refinement. The systematic absences in the diffraction data

were consistent for the space groups P1 and P1 (Stowell et al., 1995). The E-statistics
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strongly suggested the centrosymmetric space group P1 that yielded chemically

reasonable and computationally stable results of refinement.

A successful solution by the direct methods provided most non-hydrogen atoms from
the E-map. The remaining non-hydrogen atoms were located in an alternating series of
least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined
with anisotropic displacement coefficients. All hydrogen atoms were included in the
structure factor calculation at idealized positions and were allowed to ride on the
neighboring atoms with relative isotropic displacement coefficients. There were two
chemically equivalent but crystallographically independent molecules of compound 3.6
in the asymmetric unit. Because compound 3.6 crystallized in a centrosymmetric space
group, the crystal structure was a racemic mixture of stereoisomers. Several likely
intermolecular hydrogen-bonding interactions were observed in the lattice, and formed a
series of one-dimensional chains in the ab plane.

The final least-squares refinement of 259 parameters against 3638 data resulted in
residuals R (based on F for I > 20) and wR (based §n F? for all data) of 0.0735 and

0.2199, respectively. The final difference Fourier map was featureless.
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Chapter 4°
O-ACYLATION OF HYDROXYPROLINE RESIDUES: EFFECT ON PEPTIDE
BOND ISOMERIZATION AND COLLAGEN STABILITY

4.1 Introduction

Collagen is the most prevalent component of the extracellular matrix in animals
(Ramachandran & Reddi, 1976; Nimni, 1988). Collagen has a characteristic tertiary
structure consisting of three left-handed polyproline II-type helices wound around a
common axis to form a triple helix with a shallow right-handed superhelical pitch. The
close packing of the polypeptide chains in the triple helix requires that every third residue
be glycine. Each polypeptide chain in fibrillar collagen contains about 300 repeats of the
sequence XaaYaaGly, in which Xaa is often (25)-proline (Pro) and Yaa is often
(25,4R)-4-hydroxyproline (Hyp). The Hyp residues arise from a post-translational
modification of Pro residues by the enzyme prolyl 4-hydroxylase. The thermal stability of
collagen has a positive correlation with its Hyp content (Burjanadze, 1979, 2000).

The effects of Hyp stereochemistry and sequence on collagen stability have been
explored with peptide mimics (Fields, G.B. & Prockop, 1996; Jenkins & Raines, 2002).
In seminal work, Prockdb énd coworlﬁélrs showed that [(ProHypGly)10]3 is more stable
than [(ProProGly)o]3, whereas (HypProGly),o does not exhibit triple helix formation

(Berg & Prockop, 1973; Inouye et al., 1982). The diastereomer (25,45)-4-hydroxyproline

¥ The data in this chapter were collected in collaboration with Eric S. Eberhardt and Alexander .
McCloskey, Vassar College, Poughkeepsie, N.Y.
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(hyp) in the Xaa or Yaa position precludes triple helix formation (Inouye et al., 1976).

More recent studies have shown that Hyp can enhance triple helical stability in the Xaa
position, but not if the Yaa residue is Pro (Bann & Béichinger, 2000; Mizuno et al., 2003).
Previous reports from our laboratory have shown that replacing Hyp in (ProHypGly),
(n =17 or 10) with (2S,4R)-4-fluoroproline (Flp) (but not its diastereomer (25,45)-4-
fluoroproline (flp)) greatly enhances the stability of its triple helices (Table 4.1)
(Holmgren et al., 1998; Holmgren et al., 1999; Bretscher et al., 2001). The increase in
stability derives from the enhanced electron-withdrawing ability of the fluoro group. That
inductive effect fixes the pucker of the pyrrolidine ring, and thereby preorganizes the
peptide backbone dihedral angles of the individual strands into conformations that are

favorable for triple helix formation (Improta et al., 2001; DeRider et al., 2002).

Table 4.1 Effect of Hyp and Flp on the conformational stability of collagen triple helices.

Strand Tm (°C) Ref
(ProProGly); 67 (Shaw & Schurr, 1975)
(ProHypGly); 36 (Bretscher et al., 2001)
(ProFlpGly), 45 (Bretscher et al., 2001)

(ProProGly)io 41 (Holmgren et al., 1998; Holmgren et al., 1999)
(ProHypGly);p 69  (Holmgren et al., 1998; Holmgren et al., 1999)
(ProFlpGly)io 91 (Holmgren et al., 1998; Holmgren et al., 1999)

What is the best means to put into practice our knowledge about the basis for collagen
stability? The chemical synthesis of biopolymers on a large scale is tedious and
expensive. In contrast, the chemical modification of natural biopolymers is facile and
inexpensive. Can increased inductive effects be used to enhance the conformational

stability of natural (as opposed to synthetic) collagen? No known reagent can be used to
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replace the hydroxyl group of Hyp residues with a fluoro group in aqueous solution

(Ibrahim & Togni, 2004). The electron-withdrawing ability of a hydroxyl group can,
however, be increased by its chemical modification. Here, we synthesize and characterize
O-acyl derivatives of AcHypOMe and AchypOMe. We then determine the effects of
O-acetylation on the conformational stability of a [(ProHypGly);o]s triple helix. The
results illuminate intrinsic electronic and steric effects on the stability of the collagen

triple helix.

4.2 Results and Discussion

Hydroxyl, acetoxyl, and trifluoroacetoxyl groups confer a wide range of electron-
withdrawing ability. These functional groups have conjugate acid pK, values of 15.6,
4.76, and 0.23, respectively (Dippy et al., 1959), and F values (which report on inductive
effects) of 0.33, 0.42, and 0.58, respectively (Hansch et al., 1991). Moreover, acetoxyl
and trifluoroacetoxyl groups could be installed into natural collagen .by the O-acetylation
or O-trifluoroacetylation of Hyp residues. To reveal the consequences of O-acylation of
Hyp residues, compounds 4.1-4.6 were synthesized by the routes in Scheme 4.1. In 4.1-
4.6, hydroxyl, acetoxyl, and trifluoroacetoxyl groups are installed in each configuration at

C" of AcProOMe.
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Scheme 4.1 Synthesis of compounds 4.1-4.6.

The structures of crystalline 4.2 and 4.5 were determined by X-ray diffraction
analysis. These structures are shown in Figure 4.1, along with those of crystalline 4.1 and
AcProOMe (Panasik et al., 1994). Compounds 4.1 and 4.2 crystallized with their
pyrrolidine rings in the C'-exo conformation and a trans amide bond, whereas compound
4.5 and AcProOMe crystallized in the C"-endo conformation and a cis amide bond. The ¢
and y angles of 4.2 and 4.5 are similar to those for proline residues with C’-exo and C'-
endo puckers, respectively (Table 4.2) (Vitagliano et al., 2001a). The backbone dihedral
angles for 4.2 are intermediate between those of 4.1 and AcFlpOMe (4.7), and are

favorable for triple helix formation (Berisio et al., 2001, 2002).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

4.2 41
4.5 AcProOMe

Figure 4.1 (4) ORTEP diagrams of crystalline 4.2 (50% probability ellipsoids) and
4.5 (40% probability ellipsoids). (B) Comparison of pyrrolidine ring conformations of
crystalline 4.2 and 4.1 (top), (Panasik et al., 1994) and 4.5 and AcProOMe (bottom)
(Panasik et al., 1994).

Table 4.2 Backbone dihedral angles of crystalline AcProOMe, 4.1, 4.2, 4.5, and 4.7
derived from X-ray diffraction analysis “

Compound Ring pucker ¢ 74 w

AcProOMe®  (Cendo -78.9 1767 3.1
4.5 Cendo -739 -1709 34
4.1° Cl-exo  —62.0 1564 -180.0
4.2 Clexo  —-582 142.0 -179.4
4.7° C'exo  -554 1406 -177.0
® g, Ci1-N~C*-C; w, N—-C*~C~Oys1; @, Oy
I”Ci—l"NF‘Cia

® Data are from (Panasik et al., 1994).
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3C NMR chemical shifts can report on electron withdrawal by pendant function

groups (Friebolin, 1998). The relative electron-withdrawing ability of the hydroxyl,
acetoxyl, and trifluoroacetoxyl groups in 4.1-4.6 were assessed by comparing the '*C
NMR chemical shifts of their C' atoms with those of AcProOMe, AcFlpOMe (4.7), and
AcflpOMe (4.8). These °C NMR chemical shifts (Table 4.3) indicate that electron
withdrawal increases in the order: hydroxyl < acetoxyl < trifluoroacetoxyl, in accord with

the conjugate acid pK, and F values of these groups.

Table 4.3 *C" chemical shift (6) of AcProOMe and compounds 4.1-4.8 °

Compound ¢ |[Compound ¢
AcProOMe 219
4.1 70.4 4.4 70.7
4.2 73.7 4.5 73.7
4.3 78.5 4.6 78.6
4.7 93.3 4.8 93.5

* Values were obtained at 25°C
in 1,4-dioxane-ds.

The cis-to-trans equilibrium constant for prolyl peptide bonds (Kz;) is close to unity.
Yet, all of the peptide bonds in a collagen triple helix are in the trans conformation.
Accordingly, substitutions that favor the trans isomer can enhance collagen stability
(Eberhardt et al., 1996; Holmgren et al., 1998; Holmgren et al., 1999).

. The value of Kz for 4.1-4.6 was assessed by NMR spectroscopy (Forsén &
Hoffman, 1963; Grathwohl & Wiithrich, 1981; Led & Gesmar, 1982; Eberhardt et al.,
1993; Eberhardt et al., 1996). At 37 °C, the Kz values within a series (4(R) versus 4(5))

are within error of each other (Table 4.4). The similarity of these values within each
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series suggests that any enhancement of preorganization due to increased electron

withdrawal at the 4-position is counteracted by other factors. The value of Kz is greater
for the 4R series than the 4§ series, which is consistent with previous work (Bretscher et

al., 2000; Bretscher et al., 2001; Renner et al., 2001; DeRider et al., 2002).

Table 4.4 Thermodynamic parameters for amide bond isomerization in compounds 4. 1—-

4.6°
Compound AH® (kcal/mol) AS® [cal/(mol-deg)] Kze(37°C)
4.1 -1.65+0.12 -2.59+£0.38 40+04
4.2 -2.24 +£0.02 —4.68+ 0.07 3.3£03
4.3 -1.75+0.04 -3.15+0.13 3.5+04
4.4 -3.82 £ 0.08 -11.19+0.25 1.8+£0.2
4.5 —-2.78 £0.12 -8.01 £0.39 1.6x04
4.6 —4.08 £0.18 -12.18 £0.56 1.6+ 0.6

? Values (+ S.E.) are derived from the data in Figure 2.

The effect of temperature on the values of Kz for 4.1-4.6 was also assessed by NMR
spectroscopy. The resulting van’t Hoff plots are shown in Figure 4.2. Values for AH® and

AS° (= S.E.) were calculated from linear least-squares fits of these data to eq 4.1:

InK, . =(-AH°/R)(1/T)+ AS°/R 4.1
These values are listed in Table 4.4. This analysis assumes that the enthalpic and entropic
differences between the cis and trans isomers are independent of temperature, that is, that

AC,° =0 for the isomerization reaction. The linearity of the data in Figure 4.2 indicate

that this assumption is likely to be valid.
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Figure 4.2 van 't Hoff plot for the cis-to-trans amide bond isomerization of compounds
4.1-4.6 in 1,4-dioxane-d;.

In all conditions studied herein, Kz > 1: the trans isomer of 4.1-4.6 is always more
stable than the cis isomer (Figure 4.1, Table 4.4). The values of both AH® and AS° for
compounds 4.4-4.6 are more negative than those for 4.1-4.3, indicating that
isomerization is more enthalpically favorable but entropically unfavorable in the 4S5 series
than the 4R series (Table 4.4).

Electron withdrawal at C" in 4.1-4.6 should increase the bond order in the amide C-O
bond and decrease the bond order in the amide C-N bond. Indeed, this effect of electron
withdrawal was manifested in a faster rate of amide bond isomerization in AcFlpOMe
than in AcProOMe (Eberhardt et al., 1996). An analogous difference was not apparent,
however, in the rate of cis—trans isomerization of 4.1-4.3 and 4.4-4.6 (data not shown).
Apparently, the differential electron withdrawal by hydroxyl, acetoxyl, and

trifluoroacetoxyl groups is too small to yield a measurable difference in the rate of cis—
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trans isomerization of 4.1-4.3 and 4.4-4.6.

The physicochemical properties of 4.2 suggest that O-acetylation of (ProHypGly)1o
would not preclude its forming a triple helix and could enhance the stability of that helix.
This hypothesis was tested by reacting the hydroxyl groups of (ProHypGly),o with acetyl
chloride in 6 M HCI, as shown in Scheme 4.2. The reaction was done under acidic
conditions to preclude acetylation at the N-terminus of the peptide (Wilchek &
Patchornik, 1964). Mass spectrometry indicated that the acetylation proceeded to
completion and without the production of byproducts, producing peptide 4.9 (Figure 4.3).
Attempts to acylate (ProHypGly),o with trifluoroacetyl groups were unsuccessful because
the harsher conditions required for selective O-trifluoroacetylation led to decomposition
of the peptide. Moreover, trifluoroacetoxyl groups are much more labile than acetoxyl
groups in water, which would make obtaining 7}, data of a homogeneous O-

trifluoroacetylated peptide problematic.

O

Q
(%, H (N%/H 7
HOA N OH
M\< 6M H%I G \<o o 0

Scheme 4.2 Acetylation of (Pro-Hyp-Gly) ;1 to produce peptide 4.9.
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Figure 4.3 MALDI-TOF mass spectrum of peptide 4.9.

After incubation of the peptide 4.9 in 50 mM acetic acid at 4°C for 24 h, CD spectra
at 25°C indicated that triple helix formation had occurred (Figure 4.4A). In this solution,
the value of T, of the triple helix (which is the temperature at the midpoint of the thermal
transition from native to denatured states) was 57.5°C (Figure 4.4B), compared to 69°C
for [(ProHypGly)10]s (Holmgren et al., 1998; Holmgren et al., 1999). What is the origin
of this decrease in conformational stability? Examination of the structure of the collagen
triple helix reveals that addition of an acetyl group to the pseudo-axial hydroxyl group of
Hyp could cause significant steric clashes between that acetyl group and a proline residue

in a neighboring strand (Figure 4.5).
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Figure 4.4 (4) Circular dichroism spectra of peptide 9 at 25°C (squares) and 85°C
(circles). (B) Thermal denaturation curve for triple helical peptide 9 in 50 mM acetic
acid. The squares represent the data points, and the line represents the curve-fit of the
data to give T,, = 57.5°C.

A B

Figure 4.5 Segment of a (ProHypGly), triple helix. (4) Ball-and-stick model with a Hyp
residue highlighted. (B) Space-filling model with an interstrand Hyp)(Pro interaction
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highlighted. The N-terminus of the triple helical segment is at the top of the figure. %
Carbon is gray, nitrogen is blue, and oxygen is red. Atomic coordinates are from PDB
entry 1CAG (Bella et al., 1994).

In an earlier report, O-acetylation was found to decrease greatly the stability of a
(ProHypGly)i triple helix (AT, =-33°C) (Weber & Nitschﬁmn, 1978). In this report,
the integrity of the peptide after acetylation and the extent of its acetylation were not
apparent. Regardless, the authors used their data to argue that the large decrease in
stability was due to the lesser ability of acetoxyl groups (compared to hydroxyl groups) to
form water-mediated hydrogen bonds between strands. Instead, we find a small decrease
in the stability of [(ProHyp(C(O)CH3)Gly)iols compared to [(ProHypGly)io]s (AT =~
11°C), which we believe arises from the steric demands of its 30 acetyl groups
(Figure 4.5) as well as the slight decrease in the value of Kzx upon O-acetylation (Table
III). Despite the loss of its hydroxyl groups, (ProHyp(C(O)CH3)Gly),o forms a more
stable triple helix than does (ProProGly);o (AT, = 17°C). Other evidence also argues

against the importance of bridging water molecules in mediating collagen stability

(Holmgren et al., 1998; Jenkins & Raines, 2002).

4.3 Conclusions

Electron withdrawal by the hydroxyl group is known to have dramatic effects on the
physicochemical properties of Hyp and hyp residues, and thereby on the conformational
stability of triple helical collagen. We synthesized derivatives of AcHypOMe and
AchypOMe containing O-acetoxyl and O-trifluoroacetoxyl groups, which are more
electron-withdrawing than hydroxyl groups. These changes had little impact on the three-

dimensional structure of these residues or the thermodynamics of their cis-trans amide
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bond isomerization. Chemical modification of the collagen mimic (ProHypGly)io by

O-acetylation leads to a modest decrease in the stability of its triple helix. Apparently, O-
acylation of Hyp residues (in contrast to replacing Hyp with Flp residues) creates a steric
conflict in the triple helix. We conclude that O-acylation is not a viable means to increase

the stability of natural collagen.

4.4 Experimental Section

General. Reagents were obtained from Aldrich Chemical (Milwaukee, WI) or Fisher
Scientific (Hanover Park, IL) and used without further purification. Amino acids and
their derivatives were obtained from Fisher Scientific, Bachem Bioscience (King of
Prussia, PA), or Novabiochem (San Diego, CA). Dichloromethane was drawn from a
Baker Cycletainer. Thin-layer chromatography was performed by using aluminum-
backed plates coated with silica gel containing F;s4 phosphor and visualized by UV
illumination or staining with I, p-anisaldehyde stain, or phosphomolybdic acid stain.
NMR spectra were obtained with Bruker AC-300 and Varian UNITY-500 spectrometers.

N-(2-C-Acetyl)-(2S,4R)-4-hydroxyproline methyl ester (4.1). (25,4R)-4-

Hydroxyproline methyl ester hydrochloride (1.821 g, 10.0 mmol) was suspended in
CH,Cl; (30 mL), and this suspension was cooled to 0°C. 2-1*C-Acetyl chloride was
added in one portion. A mixture of concentrated NH4OH (1 mL) and H,0 (10 mL) was
then added dropwise. The reaction mixture was stirred atV0°C fo; 3 h The layérs were
separated and then concentrated under reduced pressure. The organic layer contained the
product, which was purified by flash chromatography, eluting with MeOH (5-10% v/v)

in CH,Cl, to yield 4.1 as 273 mg (14.5%) of a colorless oil. 'H NMR (300 MHz, CDCl,,
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two rotamers): & 4.59—4.50 (m, 2H), 3.78, 3.73 (two s, 3H), 3.77-3.71 (m, 1H), 3.55-

3.50 (m, 1H), 2.50-2.25 (m, 1H), 2.08, 1.96 (two d, J=129.0, 129.0 Hz, 3H), 2.21-2.00
(m, 1H). *C NMR (75 MHz, CDCls, two rotamers):  172.8, 170.1 (d, J = 51.7 Hz),
69.7, 68.1, 58.6, 57.4, 55.8, 54.3, 52.6, 39.5, 37.7, 22.1 (enriched), 21.5 (enriched). ESI-
MS: m/z 211.0849 ([M+Na]"); 211.0854 ((M+Na]’, calcd).
N—(2-13C-Acetyl)-(2S,4R)-4—acetoxyproline methyl ester (4.2). Compound 4.1
(102 mg, 0.54 mmol) was dissolved in dry CH,Cl, (1 mL). Acetyl chloride (0.1 mL, 1.41
mmol) was added to the resulting solution in two portions. The reaction mixture was
stirred for approximately 4 h, and then concentréted under reduced pressure to give 4.2 as
a colorless oil in quantitative yield. "H NMR (300 MHz, CDCls, two rotamers): 3 5.41-
5.26 (m, 1H), 4.56-4.52 (m, 1H), 3.95-3.60 (m, 2H), 3.80, 3.75 (two s, 3H), 2.65-2.15 (m,
2H), 2.09, 2.00 (two d, J = 128.1, 128.1 Hz, 3H), 2.08 (s, 3H). *C NMR (75 MHz,
CDCls, two rotamers): 8 172.0, 171.9, 169.6, 169.3 (d, J = 51.6 Hz), 72.5, 70.9, 58 4,
571, 53.0,52.6,52.2,51.4,36.9, 34.8, 22.2,22.1 (enriched), 21.6 (enriched). ESI-MS:
m/z 253.0875 ([M+Na]"); 253.0881 ([M+Na]", calcd).
N-2-BC-Acetyl)-(2S,4R)-4-trifluoroacetoxyproline methyl ester (4.3).
Compound 4.1 (102 mg, 0.54 mmol) was dissolved in dry CH,Cl; (1 mL). Trifluoroacetic
anhydride (0.09 mL, 0.64 mmol) was added to the resulting solution. The reaction
mixture was stirred for approximately 2 h, and then concentrated under reduced pressure
to give 4.3 as a colorless oil in quantitative yield. 'H NMR (300 MHz, CDCl;, two
rotamers): & 5.62-5.50 (m, 1H), 4.65-4.57 (m, 1H), 4.11-4.03 (m, 1H), 3.82, 3.77 (two s,
3H), 3.81-3.79 (m, 1H), 2.73-2.33 (m, 2H), 2.15, 2.06 (two d, J= 128.7, 128.4 Hz, 3H).

3C NMR (75 MHz, CDCls, two rotamers): & 171.4, 171.2, 170.4 (d, J = 51.8 Hz), 158.5
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(app. d, J =41.5 Hz), 156.7 (app. d, J =43.1 Hz), 114.1 (q, J = 283.8 Hz), 76.6, 75.2,

58.1,57.1,53.0, 52.5, 51.2, 36.4, 34.4, 21.7 (enriched), 20.8 (enriched). °’F NMR (282
MHz, CDCl;) 8 -77.6, -79.2. ESI-MS: m/z 307.0609 ([M+Na]"); 307.0599 ([M+Na]",
calcd).

N-(2-C-Acetyl)-(2S,4S)-4-hydroxyproline methyl ester (4.4) and N-(2-°C-
acetyl)—(2S,4S)-4-(2-13C)acetoxyproline methyl ester (4.5). (25,45)-4-Hydroxyproline
methyl ester hydrochloride (0.334 g, 1.84 mmol) was dissolved in DMF (4 mL), and the
resulting solution was cooled to 0°C. Triethylamine (0.8 mL, 5.74 mmol) was added,
upon which a white solid formed. 2-'>C-Acetyl chloride was then added, and the reaction
mixture was stirred for 3 h while being allowed to warm to room temperature. The
reaction mixture was concentrated under reduced pressure. The residue was suspended in
EtOAc, and this suspension was filtered. The filtrate was concentrated to a yellow oil,
and the product was purified by flash chromatography, eluting with MeOH (5% v/v) in
CH,Cl; to yield 4.4 as a colorless oil (0.235 g, 68%). 'H NMR (300 MHz, CDCls, two
rotamers): 8 4.52 (dd, J=9.6, 2.4 Hz, 1H), 4.49-4.42 (m, 1H), 4.04 (d, /= 8.1 Hz, 1H),
3.79, 3.77 (two s, 3H), 3.73-3.57 (m, 2H), 2.40-2.29 (rﬁ, 1H), 2.10,2.02 (two d, J =
129.0, 129.0 Hz, 3H). >*C NMR (75 MHz, CDCls, two rotamers): 3 174.2,170.3 (d, J =
51.2 Hz), 70.7, 68.6, 58.8, 57.3, 56.4, 55.1, 52.5, 39.3, 37.1, 22.1 (enriched), 21.9
(enriched). ESI-HRMS: m/z 211.0772 ((M+Na]"); 211.0776 ({M+Na]", calcd).

From the reactidh mixfuré, the bis-lSC-labéled .N,O-diac'etylated compound 4.5
(0.045 g, 10.5%) was also isolated as a colorless oil. 'H NMR (300 MHz, CDCls, two
rotamers): 8 5.32-5.27 (m, 1H), 4.71 (dd, J=9.0, 3.0 Hz, 0.7 Hz), 4.48 (dd, /= 8.7, 1.8

Hz, 0.3H), 3.87 (dd, J= 11.4, 5.4 Hz, 1H), 3.79, 3.74 (two s, 3H), 3.69-3.64 (m, 1H),
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2.59-2.28 (m, 2H), 2.10, 2.05 (two d, /= 128.1, 128.4 Hz, 3H), 2.03, 1.98 (two d, J =

130.2, 129.9 Hz, 3H). 1*C NMR (75 MHz, CDCls, two rotamers): °C NMR (75 MHz,
CDCl3, two rotamers): 6 171.4, 171.3, 170.1, 169.8, 72.7, 71.3, 70.9, 58.7, 57.3, 56.8,
56.5, 53.0, 52.5, 52.2, 50.8, 37.1, 36.9, 34.7, (22.2, 22.1, 20.9, labeled C). ESI-MS
(mono-"C-labeled): m/z 231.1069 ([M+H]"); 231.1062 ([M+H]", calcd).

N-(2- C-Acetyl)-(2S,4S)-4-trifluoroacetoxyproline methyl ester (4.6).
Compound 4.4 (30 mg, 0.16 mmol) was dissolved in CH,Cl, (1 mL) and trifluoroacetic
anhydride (22.5 pL, 0.16 mmol) was added in one portion. The reaction mixture was
stirred for 2 h, at which point thin-layer chromatography indicated that starting material
was still present. Another portion of trifluoroacetic anhydride (22.5 pL, 0.16 mmol) was
added. The reaction mixture was stirred an additional 2 h, concentrated under reduced
pressure, and placed under vacuum overnight to give 4.6 as a colorless oil in quantitative
yield. "H NMR (300 MHz, CDCls, two rotamers): & 5.57-5.52 (m, 1H), 4.43 (dd, J=8.1,
2.7 Hz, 0.5 H), 4.62 (d, J = 8.4 Hz, 0.5H), 4.03-3.82 (m, 2H), 3.78, 3.72 (two s, 3H),
2.76-2.48 (m, 2H), 2.17, 2.13 (two d, J = 129.0, 129.0 Hz, 3H). 1°C NMR (75 MHz,
CDCl;, two rotamers): & 171.9 (d, J=50.1 Hz), 159.3-156.4 (m), 114.5 (q, J = 284.0),
77.4,59.1,57.5,53.3,53.1,52.9, 52.5,36.9, 35.1 (22.1, 22.0, labeled C). '’F NMR (282
MHz, CDCl;) 8 -74.0, -74.1. ESI-MS: m/z 285.0768 ((M+H]"); 285.0779 ((M+HT",
calcd).

(ProHyp(C(O)CH3)Gly)19 (4.9). (Pro-Hyp-Gly);o (Peptides International, Louisville,
KY; 3.9 mg, 0.0013 mmol) was dissolved in 6 M HCI (5.6 pL) and glacial acetic acid
(11.2 pL) and cooled to 0°C. Acetyl chloride (30 pL, 0.42 mmol) was added, and the

resulting mixture was agitated gently for approximately 25 min. The product was
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precipitated from diethyl ether and collected by centrifugation. The resulting solid was

washed several times with small portions of diethyl ether and then dried under vacuum to
yield (ProHyp(C(O)CH3)Gly)1o (4.9) (3.0 mg, 75%) as a white solid. MS (MALDI) m/z
3111.3 (MH" 3110.4).

X-Ray Crystallography. The crystals of 4.2 and 4.5 used for X-ray structure
determination grew slowly from the oils obtained after their purification by
chromatography. The structure determinations were performed as described previously
(Jenkins et al., 2003).

Measurement of K. Values of Kz for 4.1-4.6 were determined by NMR
spectroscopy using a Bruker NMR spectrometer operating at 300.00 MHz for 'H NMR
(4.1, 4.3, and 4.6) or at 74.43 MHz for *C NMR using a 5-mm broadband probe (4.1,
4.2, 4.4, and 4.5). Identical results were obtained for 4.1 using either 'H or ®C NMR
spectroscopy. NMR samples of 4.1-4.6 were prepared at concentrations of 10 mM in 1,4-
dioxane-ds (99 atom %). Doubling or halving the concentration of 4.1 and 4.3 in the
sample did not alter the values, indicating the absence of effects on Kz from
intermolecular interactions. Experiments were performed using a temperature range of
22-52°C. The temperature settings of the spectrometer were calibrated to within 1°C by
reference to a 100% ethylene glycol standard.

| Measurement of T,,. The structure and stability of a triple helix of peptide 4.9 was
as'séssed by CD spectroscopy uéing :van.Aviv 202 SF i-rllstrument equippiéd Qith an
automated temperature controller. A 0.2 mM solution of peptide 4.9 in 50 mM HOAc¢
was incubated at 4°C for 24 h. Aliquots of 300 pL were placed in 0.1-cm pathlength

quartz cuvettes that had been equilibrated at 5°C. Wavelength scans were performed from
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200-260 nm at 25 and 85°C, with a slit width of 1 nm and an averaging time of 3 s.

Thermal denaturation experiments were performed by raising the temperature from 5 to
45°C in 3-°C steps, equilibrating for 5 min at each temperature, and monitoring at

225 nm with a 20-s averaging time. Values of T, which is the temperature at the
midpoint of the thermal transition, were determined in triplicate by fitting the data to a

two-state model using the software package NLREG v4.0 (Philip Sherrod).
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Chapter 5

BINDING OF NONNATURAL 3-NUCLEOTIDES TO RNASE A

5.1 Introduction

Ribonucleases catalyze the cleavage of RNA. These enzymes are abundant in living
systems, where they play a variety of roles systems (D'Alessio & Riordan, 1997;
Beintema & Kleineidam, 1998). For example, angiogenin is a homolog of bovine
pancreatic ribonuclease (RNase A (Raines, 1998); EC 3.1.27.5) that promotes
neovascularization. Angiogenin relies on its ability to cleave RNA for its angiogenic
activity (Shapiro et al., 1989; Shapiro & Vallee, 1989). An effective inhibitor of the
ribonucleolytic activity of angiogenin could diminish its angiogenic activity, which is an
effective means to limit tumor growth (Olson et al., 1995). Selective ribonuclease
inhibitors could also be useful tools in studying the roles of various ribonucleases in vitro
and in vivo (Leonidas et al., 1999).

Known nucleotide-based inhibitors of ribonucleases have been based on three
strategies. Most common are competitive inhibitors that resemble RNA. Shapiro and
coworkers have developed especially potent inhibitors of RNase A based on two

nucleosides linked by a pyrophosphoryl group (Russo et al., 1997; Russo & Shapiro,
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1999; Russo et al., 2001). Using a different approach, Widlanski and coworkers

showed that 3'-(4-(fluoromethyl)phenyl phosphate)uridine is a mechanism-based
inactivator of RNase A (Stowell et al., 1995). Finally, a new strategy has used an N-
hydroxyurea nucleotide to recruit zinc(Il) and thereby inhibit microbial ribonucleases
(Higgin et al., 2003; Makarov et al., 2004). Each of these strategies is based on
nucleotides containing a ribose or deoxyribose ring. Is that choice optimal?

Here, we synthesize two 3'-nucleotides containing nonnatural furanose rings:
2'-fluoro-2'-deoxyuridine 3'-phosphate and arabinouridine 3'-phosphate. We measﬁre the
inhibition of wild-type RNase A and its T45G variant by these nonnatural 3'-nucleotides
and find that both are significantly more potent than deoxyuridine 3'-phosphate and
uridine 3'-phosphate, two 3'-nucleotides containing natural furanose rings. These results
indicate that the use of nonnatural furanose rings can increase the potency of nucleotide-

based inhibitors of RNase A.

5.2 Results
The syntheses of deoxyuridine 3'-phosphate (dUMP, 5.5a) and 2'-fluoro-2'-

deoxyuridine 3’-phosphate (dU"MP, 5.5b) were accomplished starting from unprotected
nucleosides as shown in Scheme 5.1. Briefly, 5.1 was protected at the 5'-position by
treating it with trityl chloride in dry pyridine at reflux to yield 5.2 (Codington et al.,
1964). Subsequent phosphorylation at the 3'-position was achieved by reacting 5.2 with
diisopropyl dibenzyl phosphoramidite in the presence of 4,5-dicyanoimidazole followed
with oxidation with 3-chloroperoxybenzoic acid to yield 5.3 (Perich & Johns, 1987,

Giner & Ferris, 2002). Deprotection was achieved in two steps, removing the trityl group
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first in a mixture of dry trifluoroacetic acid and trifluoroacetic anhydride, followed by

addition of methanol to complete the initial deprotection (Krainer & Naider, 1993). The
resulting dibenzyl phosphate 5.4 was deprotected by hydrogenolysis using Pd/C as the
catalyst to give 5.5 in 46—51% overall yield. A synthesis for dUMP has been reported, but
involves a phosphorylating agent that is not available commercially (Taktakishvili &
Nair, 2000). dU"MP has also been synthesized previously, but its synthesis involves
harsh conditions and an involved purification (Antonov et al., 1976). The advantages of
the route in Scheme 5.1 include the mild conditions and high yield of the phosphorylation
step, the use of commercially available reagents, the facile deprotection of the trityl

group, and the high purity of the final product after debenzylation.

0] 0] (0]
| r fk/[\iH 1£j|Pr)2NP(OBn)2,I [lL H
HO TrtO icyanocimidazole, TTHO
o) N™~0 TrtCl, pyridine o) N" "0 CH,Cl, 0 N O
—_—— —_——
2. mCPBA
OHX OHX P
5.1a: X=H 5.2a; X=H, 65% BnO' ‘OBn
5.1b: X=F 5.2b: X=F, 73%
5.3a; X=H, 95%
5.3b: X=F, 84%
o) 0]
TFAITFAA, NH fL NH
CH,Cly, EtsN, Py HO Ao
followed by MeOH l fo) N| 1% H,, Pd/C, MeOH l 0 N|
O 0 X
BnO OBn HO OH
5.4a: X=H, 83% 5.5a: X=H, quantitative
5.4b: X=F, 79% 5.58b; X=F, 96%

Scheme 5.1 Synthetic Route to dUMP and dU" MP
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Arabinouridine 3'-monophosphate (araUMP, 5.10) was synthesized from uridine

according to Scheme 5.2. Uridine was protected at the 5’-position by treatment with trityl
chloride in pyridine, then reacted with thiocarbonyldiimidazole to give 5'-trityl-0%,2'-
cyclouridine, 5.6, in moderate yield (Fox & Wempen, 1965). Compound 5.6 was then
phosphorylated at the 3'-position to provide 5.7 (Perich & Johns, 1987; Giner & Ferris,
2002). The protected arabinouridine monophosphate 5.8 was generated by treatment of
5.7 with one equivalent of aqueous sodium hydroxide in methanol (Sato et al., 1994),
followed by deprotection as described above. This is a novel route to araUMP, starting
with inexpensive, commercially available starting materials. Two other routes have been
reported: one starts from a 2',3"-epoxyuridine derivative that is not available
commercially (Roussev et al., 1997), and results in a mixture of isomers; the other starts
from cytidine 2',3'-cyclic phosphate (Nagyvary, 1969; Pollard & Nagyvary, 1973), a

relatively expensive starting material.

0O 0O

0O
fkjﬂ-l (l:\j 1. (iPr),NP(OBn),, fLIN
HO THO dicyanoimidazole, TrtO
o N 0O 1. TrtCl, pyridine 0 NI\O CHCly . o) N*O
S
2. (im),C=S, 2. mCPBA
73%

toluene 0
OHOH i OH O’R’
5.6 BnO OBn
5.7
O
i ,I\JLH TFAITFAA, i ,,J\l:' i 51:;
NaOH TrtO CHACl, EGN, HO H,, PUC, HO
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Scheme 5.2 Synthetic Route to araUMP.
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The phosphoryl pK, values of 3'-UMP, dUMP, dU"*MP, and araUMP were

measured by using *'P NMR spectroscopy, and are listed in Table 5.1. The pK, values of
3.UMP, araUMP, and dU*MP are within error of each other, whereas the pK, value of
dUMP is, as expected from a previous report (Walz, 1971), greater than that of the other
three. The differences in pKj, values likely arise from inductive effects. No
stereoelectronic component is apparent, as the phosphoryl groups of UMP and araUMP

have the same pK, values.

Table 5.1 Values of pK, and K; for 3'-nucleotides

Ki (pM)
Nucleoside Wild-type T45G
3'-phosphate pKa RNase A RNase A
3'-UMP 584+005 39+2 899

dUMP 629+0.07 183 >1700
dU'MP 5890+0.10 55+0.7 181+ 15
araUMP  585+0.06 6=+1 >1000

“ Phosphoryl group pK, values were determined by
P NMR spectroscopy.
? Inhibition was determined in MES-NaOH buffer,
pH 6.0, containing NaCl (50 mM).
The values of K; for the four 3'-nucleotides were measured by their ability to inhibit
the cleavage of the fluorogenic substrate 6-FAM-dArU(dA),-TAMRA by wild-type
RNase A and its T45G variant (Kelemen et al., 1999), and are listed in Table 5.1. All four

3'-nucleotides were potent inhibitors of the wild-type enzyme, whereas inhibition of

T45G RNase A was less pronounced—by up to three orders-of-magnitude.
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5.3 Discussion

3'-Nucleotides with a nonnatural furanose ring can have a greater affinity for wild-
type RNase A than do 3'-nucleotides with a ribose or deoxyribose ring. The K; values
increase in the order: dU'MP ~ araUMP < dUMP < 3'-UMP (Table 5.1). 3'-Nucleotides
with a dianionic phosphoryl group are known to be more potent inhibitors of RNase A
than those with a monoanionic phosphoryl! group (Russo et al., 2001). The difference in
pK, values between dUMP and the other three nucleoside 3’-phosphates is approximately
0.4 pK, units (Table 5.1). Likewise, the K; value of dUMP with wild-type RNase A is
approximately 3-fold higher than those of dU"MP and araUMP. The relative affinity of
araUMP for wild-type RNase A measured herein is twofold greater than that reported
previously (Pollard & Nagyvary, 1973). 3'-UMP has a higher K value with wild-type
RNase A than would be expected based on its pK,. This weaker binding could arise from
the 2'-OH group participating in more unfavorable interactions with the enzyme than do
the smaller 2'-groups (F or H) of the other 3'-nucleotides. These unfavorable interactions
could be reinforced by the tight interaction between the uracil base and Thr45, and by a
slight preference for the C3’-endo (N) conformation of 3'-UMP in solution (Davies &
Danyluk, 1975) (Figure 5.1). It is interesting to note that in the structure of the crystalline
RNase A-3'-UMP complex (Leonidas et al., 2003), the ribose ring is found in the C2'-
endo rather than the C3’-endo conformation (Figure 5.2). Like 3'-UMP, dU"MP resides in
the C3’-endo conformation (Antonov et al.; 1976), but has a smaller fluoro group in its 2'-
position. dUMP (Guschlbauer & Jankowski, 1980) and araUMP (Chwang &
Sundaralingam, 1973; Venkateswarlu & Ferguson, 1999) are predominantly in the C2'-

endo (S) conformation and both have hydrogens where 3'-UMP has a larger hydroxyl
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group. The weaker binding of 3'-UMP compared to dUMP and araUMP lends support

to the hypothesis that ground-state destabilization contributes to the catalytic prowess of

RNase A (Kelemen et al., 2000).

) B
HO ~_.-B ~
/\?G/\F: HO HO

OH R
S-conformation N-conformation
Cy~endo~Cy-ex0 Cy-exo-Cy-endo

Figure 5.1 §- and N-conformation of nucleosides. R = H favors S-conformation; R =
OH, F favors N-conformation.

Figure 5.2 3"-UMP bound to wild-type RNase A. The protein backbone is in blue, 3'-
UMP is in magenta and the active site residue side chains are in green.
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Another possible reason for the K value of 3'-UMP being greater than those of

the other 3'-nucleotides with wild-type RNase A is that the energetic penalty of
desolvating the 2'-OH group is higher than for any of the other 2'-substituents. The 2'-H
and -F of dUMP and dU*MP are more easily desolvated than is a hydroxyl group, due to
their lack of ability form hydrogen bonds with water (Howard, Judith A. K. et al., 1996),
and the 2’-arabino hydroxyl group of araUMP might not need to be desolvated for that 3'-
nucleotide to bind to RNase A because it is oriented away from the active-site residues.
The binding of 3'-nucleotides by T45G RNase A follows a much different trend than
does binding by the wild-type enzyme. The K values increase in the order: 3'-UMP <
dUFMP << araUMP, dUMP. 3’-UMP has half of the affinity for T45G RNase A than for
the wild-type enzyme, whereas dU"MP has 3% of the affinity. The K; values for dJUMP
and araUMP could not be measured, but were estimated to be >1.7 and =1 mM,
respectively. The general decrease in binding between T45G RNase A and the inhibitors
underlines the importance of the interaction between Thr45 and pyrimidine nucleobases
in substrate binding (delCardayre & Raines, 1994, 1995; Kelemen et al., 2000). The
binding of 3'-nucleotides to T45G RNase A appears to be sensitive to the pucker of the
furanose ring: 3’-UMP and dUFMP, which both reside in the C3'-endo conformation, bind
with high micromolar affinities, whereas dUMP and araUMP, which both reside
predominantly in the C2'-endo conformation, have at least millimolar affinities. Without
the anchoring presence of Thr45, the inhibitor ¢an orient its furanosé ring and phosphoryl
group so as to optimize favorable contacts with active-site residues. Thus, 3'-UMP could
form a hydrogen bond between its 2'-OH and His12 or other active-site residues ‘instead

of participating in sterically unfavorable interactions. This putative hydrogen bond could
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be the source of the two-fold higher affinity of T45G RNase A for 3'-UMP than

dU"MP. dU"MP cannot form a hydrogen bond with its 2'-fluoro substituent, but has a
favorable conformation and pK, for binding to the active site at pH 6.

Although araUMP has the same phosphoryl group pK, value as 3'-UMP and dU"MP,
it has at least an order of magnitude lower affinity for T45G RNase A. Ring pucker could
explain the lack of affinity between araUMP and T45G RNase A (compared to 3'-UMP
and dU"MP). When the furanose ring is in the C2'-endo conformation, the nucleobase
and phosphoryl group are placed in such a way that neither can interact optimally with
active-site residues in the absence of the anchoring site provided by Thr45 in the wild-
type enzyme. This lack of favorable interactions should be true for dUMP, as well.
dUMP has the additional handicap of having a higher phosphoryl group pK, than the
other 3'-nucleotides, with consequently diminished Coulombic interactions.

Wild-type RNase A appears to be less sensitive to furanose ring pucker in its binding
to substrates and 3'-nucleotides than is the T45G variant. The two most effective
inhibitors of wild-type RNase A herein are JU'MP and araUMP, which have different
puckers in solution but indistinguishable Kj values. It has already been shown that in the
context of a deoxyribose tetranucleotide ligand, a 2'-fluoro-2'-deoxyuridine residue binds
more weakly to RNase A than does a 2'-deoxyuridine residue (Kelemen et al., 2000).
Hence, we suggest that a most effective residue in creating new inhibitors of RNase A is
arébihburidine, which combines a févéréble monoester pKa vaiué with littlé of no steric

hindrance with the RNase A active site.
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5.4 Experimental Section

General. Reagents obtained from commercial sources were used without further
purification. 2'-Fluoro-2'-deoxyuridine was prepared according to the procedure of
Maruyama and coworkers (Sato et al., 1994). Wild-type RNase A and its T45G variant
were prepared according to procedures reported previously (delCardayre & Raines,
1994);(delCardayre & Raines, 1995; delCardayre et al., 1995). Dry dichloromethane was
drawn from a Baker Cycletainer. Thin-layer chromatography was performed using
aluminum-backed plates coated with silica gel containing F»s4 phosphor and visualized
by UV illumination or staining with I, p-anisaldehyde or phosphomolybdic acid. NMR
spectra were obtained with a Bruker AC-300 or Varian UNITY-500 spectrometer. Mass
spectra were obtained with a Micromass electrospray ionization (ESI) instrument.

5'-Trityl-2'-deoxyuridine (5.2a). 2"-Deoxyuridine (5.1a; 0.492 g, 2.16 mmol) was
placed in a dry, 50-mL round-bottom flask. Triphenylmethyl chloride (0.714 g, 2.56
mmol) and pyridine (10 mL) were added, and the reaction mixture was stirred for 48 h at
room temperature under Ar(g) atmosphere. The reaction mixture was concentrated, and
the residue was dissolved in dichloromethane and washed once with 1 M HCI and twice
with water. The organic layer was dried over MgSQOu(s), filtered, and concentrated. The
residue was crystallized from ethyl acetate/hexanes to yield 5.2a as a white powder (661
mg, 65.0%). '"H NMR (300 MHz, DMSO-ds): 67.80 (d, J = 8.1 Hz, 1H), 7.22-7.41 (m,
15H), 6.29 (t, J = 6.3 Hz, 1H), 5.35 (d, /= 8.1 Hz, 1H), 4.54 (dt, J = 6.1, 3.9 Hz, 1H),
4.06 (dd,/=3.1,6.8 Hz, 1H), 3.44 (d, /= 3.1 Hz, 2H), 2.18-2.49 (ABMX, Jag = 13.7

HZ, Jax =6.3 HZ, Jam = 4.2 HZ, Jex =64 HZ, JBM = 0 HZ, 2H)
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'-Trityl-2'-fluoro-2'-deoxyuridine (5.2b). 2'-Fluoro-2'-deoxyuridine (5.1b;

3.164 g, 12.85 mmol) was dissolved in dry pyridine (20 mL) and concentrated to an oil
under reduced pressure. The resulting oil was dissolved in dry pyridine (50 mL), and
trityl chloride (5.485 g, 19.58 mmol) was added, followed by additional dry pyridine (18
mL). The reaction mixture was heated to reflux under Ar(g) for 3 h and 45 min, and then
concentrated under reduced pressure to a yellow oil. Residual pyridine was removed by
azeotroping with toluene under reduced pressufe. The resulting oil was dissolved in
dichloromethane and washed once with 1 M HCI, once with saturated NaHCO3(aq), and
once with water. The organic layer was dried over MgSO4(s), filtered and concentrated.
The crude product was purified by silica gel chromatography, eluting with MeOH (2.5—
5% v/v) in CH,Cl, to yield 5.2b as a white solid (4.587 g, 73.1%). '"H NMR (300 MHz,
CDCl; + CD;0D): 67.95 (d,J = 8.4 Hz, 1H), 7.42-7.24 (m, 15H), 6.04 (dd, J=16.5,1.2
Hz, 1H), 5.28 (d, J = 8.1 Hz, 1H), 4.98 (ddd, *Jp.s = 52.2,J= 4.3, 1.0 Hz, 1H), 4.53 (ddd,
J=22.2,8.7,4.2 Hz, 1H), 4.13 (bd, J = 8.4 Hz, 1H), 3.58 (m, 2H). °C NMR (75.4 MHz,
CDCl; + CD;0D): §163.93, 150.12, 142.91, 139.95, 128.42, 127.73, 127.14, 101.92,
93.58 (d, J=188.0 Hz), 87.75 (d, J=34.6 Hz), 87.29, 81.53, 68.01 (d, /= 16.7 Hz),
60.93. ’F NMR (282.1 MHz, CDCl; + CD;0D): 6-201.44 (m). ESI-MS (M + Na):
511.1651 (observed), 511.1645 (calculated).

5'-Trityl-2'-deoxyuridine 3'-dibenzylphosphate (5.3a). Dicyanoimidazole (127 mg,
1.08 mmol) was suspended in dry dichlorémethaﬁe (25 mL) in an c;;/ell;dried ‘100-mL>
round-bottom flask equipped with a stir bar. Diisopropyldibenzylphosphoramidite (220
pL, 0.98 mmol) was added to the suspension at room temperature, and the mixture was

allowed to stir for 1.25 h. 5'-Trityl-2'-deoxyuridine (5.2a, 175 mg, 0.37 mmol) suspended
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in dry CH,Cl; (10 mL) was added, and the reaction mixture was stirred at room

temperature for an additional 1.25 h. The reaction mixture was then cooled to 0 °C, and
solid m-chloroperoxybenzoic acid (351 mg) was added in one portion. The reaction
mixture was stirred at 0 °C for approximately 15 min, the ice bath was removed, and the
reaction mixture was stirred at room temperature for an additional 1. h. The reaction
mixture was poured into a separatory funnel containing ethyl acetate and washed three
times with aqueous Na;S;05 (10% w/v), three times with saturated aqueous NaHCO;
(75 mL total), twice with 1 N HCI (50 mL total), once with water, and once with brine.
The organic layer was then dried over MgSQ4(s), filtered, and concentrated under
reduced pressure. The resulting solid was purified by silica gel chromatography, eluting
with CH,Cl, (2.5% v/v) in MeOH to yield 5.3a as a white solid (256 mg, 94.7%). 'H
NMR (300 MHz, CDCl3): 69.80 (bs, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.34-7.25 (m, 25H),
6.30 (dd, J=17.8, 6.3 Hz, 1H), 5.31 (dd, /= 8.4, 1.8 Hz, 1H), 5.09—4.98 (m, 5H), 4.18 (m,
1H), 3.34 (m, 1H), 2.49 (ddd, J=13.8, 5.7, 2.1 Hz, 1H), 2.24-2.15 (m, 1H). °*C NMR
(75.4 MHz, CDCl3): §163.36, 150.22, 142.84, 139.68, 135.27 (d, J = 6.0 Hz), 128.64 (d,
J=2.0Hz), 128.55(d,J= 1.8‘Hz), 128.51, 128.00 (d, J= 2.6 Hz), 127.38, 87.61, 84.45,
84.32 (d, J=6.0 Hz), 77.57 (d, J= 5.2 Hz), 69.62 (t, J = 5.6 Hz), 62.94, 39.20. *'P NMR
(121.4 MHz, CDCls, 'H decoupled): 6-1.40. ESI-MS (M + Na): 753.2338 (observed),
753.2342 (calcd). |

5'-Trityl-2'-fluoro-2'-deoxyuridine 3'-dibenzylphosphate (5.3b). The preparation
of 5.3b was carried out in a manner similar to that used for the preparation of 5.3a. The
product was purified by silica gel chromatography, eluting with MeOH (2.5 to 5% v/v) in

CH,Cl, to yield 5.3b as a white solid (4.623 g, 84.1%). 'H NMR (300 MHz, CDCLy): &
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9.71 (s, 1H), 7.77 (d, J= 8.1 Hz, 1H), 7.38-7.21 (m, 25H), 6.07 (d, J= 16.2 Hz, 1H),

5.25 (d,J= 8.4 Hz, 1H), 5.20~4.87 (m, 6H), 4.23 (bd, J = 7.2 Hz, 1H), 3.54 (m, 2H). °C
NMR (75.4 MHz, CDCl3): §163.11, 149.85, 142.76, 139.52, 135.14 (dd, J=6.8, 6.6
Hz), 128.64, 128.53, 128.01, 127.85, 127.45, 102.57,91.44 (d, J = 193.6 Hz), 87.80 (d, J
=33.6 Hz), 87.75,80.42 (d, /= 8.7 Hz), 71.96 (dd, J= 16.1, 4.4 Hz), 69.86 (dd, J = 7.0,
6.5 Hz), 60.61. ’F NMR (282.1 Hz, CDCl5): §-200.03 (ddd, J=522,16.5,14.2 Ha).
3'p NMR (121.4 MHz, CDCL, 'H decoupled): 6—1.50. ESI-MS (M + Na): 771.2230
(observed), 771.2248 (calculated).

'“Deoxyuridine 3'-dibenzylphosphate (5.4a). Compound 5.3a (270 mg, 0.36
mmol) was dissolved in dry CH,Cl, (5§ mL) under Ar(g), and a solution of trifluoroacetic
acid (139 uL, 1.8 mmol) and trifluoroacetic anhydride (255 pL, 1.8 mmol) in dry CH,Cl,
(0.6 mL) was added by syringe at room temperature. The reaction mixture, which turned
bright yellow, was stirred at room temperature for approximately 10 min, cooled to 0 °C,
then stirred for an additional 10 min. Upon addition of triethylamine (250 pL, 1.79
mmol), the bright yellow color disappeared. After 5 min, MeOH (10 mL) was added, the
reaction mixture was stirred for an additional 5 min, then concentrated under reduced
pressure. The residue was dissolved in CH,Cl,, and washed once with 1 M NaCl. The
organic layer was dried over MgSO4(s), filtered, and concentrated under reduced
pressure. The resulting product was purified by silica gel chromatography, eluting with
MeOH (5% v/v) in CH,Cl, to yield 5.4a as a white solid (151 mg, 82.6%). 'H NMR (300
MHz, CDCls): §8.48 (bs, 1H), 7.61 (d, J = 7.8, 1H), 7.38-7.34 (m, 10H), 6.08 (dd, J =
7.5, 6.0 Hz, 1H), 5.72 (dd, J = 8.1, 2.1 Hz, 1H), 5.12-5.02 (m, 4H), 4.99-4.92 (m, 1H),

4.06 (m, 1H), 3.81-3.67 (m, 2H), 2.67 (bt, 1H), 2.40-2.21 (m, 2H). *C NMR (75.4 MHz,
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CDCl3): 6163.73, 150.38, 140.70, 135.17 (d, J = 6.7 Hz), 128.76, 128.61, 128.02,

102.54, 85.75, 77.93, 69.78 (dd, J = 3.2, 5.7 Hz), 61.64, 38.72. *'P NMR (121.4 MH?,
CDCl, 'H decoupled): §-1.38. ESI-MS (M + Na): 511.1241 (observed), 511.1246
(calculated).

2'-Fluoro-2'-deoxyuridine 3'-dibenzylphosphate (5.4b). The preparation of 5.4b
was carried out in a similar manner to that used for the preparation of 5.4a. The crude
product was purified by silica gel chromatography, eluting with MeOH (2.5-5% v/v) in
CH,Cl, to yield 5.4b as a white solid (1.601 g, 78.6%). '"H NMR (300 MHz, CDCl; +
CD;0D): 67.88 (d, J=8.1 Hz, 1H), 7.38-7.32 (m, 10H), 6.01 (dd, J=2.7, 15.3 Hz, 1H),
5.73 (d, J= 8.4 Hz, 1H), 5.13-4.85 (m, 6H), 4.14 (m, 1H), 3.78 (m, 2H). *C NMR (75.4
MHz, CDCl; + CD;0D): 6163.86, 150.19, 140.31, 134.82 (dd, J= 6.5, 5.8 Hz), 128.69,
128.46, 127.89 (d, J= 5.7 Hz), 102.41, 90.94 (d, J = 195.1 Hz), 87.62 (d, J = 33.8 Hz),
82.40 (d, J= 6.3 Hz), 72.43 (dd, J= 14.7, 4.4 Hz), 70.02 (d, J = 5.8 Hz), 59.21. ""F NMR
(282.13 MHz, CDCl; + CD;0D): §-202.10 (ddd, J=52.2, 16.5, 14.0). >'P NMR (121.4
MHz, CDCl; + CD;OD, 'H decoupled): 6—1.55. ESI-MS (M + Na): 529.1171
(observed), 529.1152 (calculated).

'-Deoxyuridine 3'-phosphate (dUMP, 5.5a). 2"-Deoxyuridine 3'-dibenzylphosphate
(5.4a, 177 mg, 0.36 mmol) was placed in a 100-mL round-bottom flask and flushed with
Ar(g) for approximately 5 min. Palladium on carbon (16 mg) was added and the flask
flushed again with Ar(g) for approximately 5 min. A 4:1 solution of MeOH and aqueous
NH4HCO; (1% w/v) was added slowly, then H,(g) was introduced via a balloon. The
reaction was stirred under Hj(g) for 4 h, then filtered through a Celite plug, concentrated

under reduced pressure to dryness, and placed under vacuum overnight to yield 5.5a as a
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colorless solid (133 mg, 100%). 'H NMR (300 MHz, D,0); 67.69 (d, J=8.1 Hz,

1H), 6.12 (t,J=6.7 Hz, 1H), 5.70 (d, /= 8.3 Hz, 1H), 4.54 (septet, / = 3.6 Hz, 1H), 4.00
(m, 1H), 3.60 (ABX, Jag = 12.4, Jax = 3.4, Jux = 4.7 Hz, 2H), 2.42-2.34 (m, 2H). °C
NMR (75.4 MHz, D,0): §167.12, 152.53, 143.05, 103.29, 88.10 (d, /= 5.7 Hz), 86.56.
75.83 (d, J = 4.0 Hz), 62.25, 39.08. >'P NMR (121.4 MHz, D,0, 'H decoupled): 5-0.13.
ESI-MS (M — H): 307.0342 (observed), 307.0331 (calculated).

2'-Fluoro-2'-deoxyuridine 3'-phosphate (dUF MP, 5.5b) The preparation of 5.5b was
performed in a manner similar to that for the preparation of 5.5a, to yield 5.5b as a
colorless solid. (1.010 g, 95.7%). "H NMR (300 MHz, D,0): 67.66 (d, J= 8.1 Hz, 1H),
5.79 (d,J=18.9 Hz, 1H), 5.64 (d, J= 8.1 Hz, 1H), 5.04 (dd, Jp.n =52.2,J= 4.3 Hz,
1H), 4.34 (dtd, J = 22.5, 9.0, 4.2 Hz, 1H), 3.94 (m, 1H), 3.67 (ABX, Jap = 13.1, Jax =
2.4, Jsx = 4.2 Hz, 2H). >C NMR (75.4 MHz, D,0): §167.14, 152.15, 143.68, 103.17,
92.78 (d, J=190.3 Hz), 90.71 (d, J=35.5 Hz), 83.21 (d, /= 7.8 Hz), 71.82 (d, /= 14.8
Hz), 60.64. ’F NMR (282.13 MHz, D,0): §-199.02 (ddd, J=52.2, 19.3,17.4 Hz). *'P
NMR (121.4 MHz, D,0, 'H decoupled): 6-0.37. ESI-MS (M — H): 325.0221 (observed),
325.0237 (calculated).

5'-Trityluridine. Uridine (5.040 g, 20.6 mmol) and freshly distilled pyridine (45 mL)
were combined in a dry 200-mL round-bottom flask, and cooled to 0 °C under Ar(g).
Trityl chloride (5.7 70 22 20.7 »mmol) in pyridine .(2_5 mL) was added via syrin_ge; The
reaction mixture was stirred, allowing it to warm to room temperature, for 4 days. Ethyl
acetate was added to the reaction mixture, which was then transferred to a separatory
funnel. The organic layer was washed twice with 2 M HCI, once with saturated

NaHCOs(aq), then once with brine. The organic layer was dried over MgSQO4(s), filtered,
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and concentrated under reduced pressure. The resulting residue was recrystallized

from EtOAc/hexanes to yield 5'-trityluridine as a white solid (6.076 g, 61% yield.) 'H
NMR (300 MHz, CD3;OD + CDCl3): 67.97 (d,J= 8.1 Hz, 1H), 7.23-7.45 (m, 15H), 5.89
(d,J=3.3Hz, 1H), 526 (d,J=8.1 Hz, 1H), 4.42 (dd, J=6.1,5.2 Hz, 1H), 4.24 (dd, J =
5.0,3.3 Hz, 1H), 4.13 (dt, J=5.9, 2.8 Hz, 1H), 3.49 (ABX, Jag = 11.0 Hz, Jax = 3.0 Hz,
Jsx = 2.5 Hz, 2H). °C NMR (75.4 MHz, DMSO): §163.04, 150.50, 143.42, 140.62,
128.31, 128.02, 127.20, 101.48, 88.95, 86.42, 82.34, 73.40, 69.53, 63.25. ESI-MS (M +
Na): 509.1677 (observed), 509.1689 (calculated).

5'-Trityl-O%2'-cyclouridine (5.6). 5'-Trityluridine (10.692 g, 22.1 mmol) and
1,1’-thicarbonyldiimidazole (5.087 g, 28.5 mmol) were combined in a 250-mL round-
bottom flask. Toluene (120 mL) was added, and the reaction mixture was heated to reflux
for 1 h. The reaction was then allowed to cool to room temperature. The tan solid product
was removed by filtration, washed with MeOH, and recrystallized from MeOH to yield
5.6 as an off-white solid (9.247 g, 89.7%). '"H NMR (300 MHz, DMSO-dy): 67.94 (d,J =
7.4 Hz, 1H), 7.19-7.32 (m, 15H), 6.33 (d, /= 5.5 Hz, 1H), 5.99 (d, /= 4.6 Hz, 1H), 5.86
(d,J=17.5Hz, 1H), 5.21 (d, J = 6.4 Hz,1H), 4.24 (m, 1H), 4.06 (m, 1H), 2.89 (m, 2H).
3C NMR (75.4 MHz, DMSO): §170.88, 159.25, 143.30, 136.66, 128.02, 127.94, 127.08,
108.88, 89.70, 88.44, 86.64, 85.96, 74.73, 63.01. ESI-MS (M + Na): 491.1578
(observed), 491.1583 (calculated).

5'-Trityl-Oz,Z’-cyclouridine 3'-dibenzylphosphate (5.7). The preparation of 5.7 was
carried out in a manner similar to that used for the preparation of 5.3a. The product was
purified by silica gel chromatography, eluting with MeOH (5% v/v) in CH,Cl; to yield

5.7 as a white solid (3.417 g, 72.7%). "H NMR (300 MHz, CDCls): 67.32-7.23 (m,
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25H), 7.16 (d, J = 7.2 Hz, 1H), 6.03 (d, /= 5.4 Hz, 1H), 5.87 (d, J= 7.5 Hz, 1H),

5.11-4.92 (m, 6H), 4.51 (dd, J= 7.2, 6.9 Hz, 1H), 2.85 (m, 2H). *C NMR (75.4 MHz,
CDCl3): 6171.07, 158.66, 142.81, 134.90 (d, J= 5.5 Hz), 134.10, 128.91 (d, /= 3.5 Hz),
128.69 (d, J= 3.0 Hz), 128.22, 127.94, 127.35, 110.34, 89.91, 87.11, 86.18 (d, /= 6.3
Hz), 85.62 (d, J= 4.5 Hz), 79.73 (d, J = 5.4 Hz), 70.16 (d, J = 5.9 Hz), 62.01. *'P NMR
(121.4 MHz, CDCls, 'H decoupled): 6—1.95. ESI-MS (M + Na): 751.2151 (observed),
751.218S5 (calculated).

5'-Trityl-arabinouridine 3'-dibenzylphosphate (5.8). Methanol (40 mL) was added
t0 5.6 (2.983 g, 4.09 mmol) in a 100-mL round bottom flask. The solid dissolved at first
and then precipitated, so CH2Cl, was added until the solution was clear again. 1 M NaOH
(4 mL, 4 mmol) was added dropwise via a Pasteur pipette, and the reaction was stirred at
room temperature for 8 h. The bulk of the solvent was evaporated under reduced
pressure, and then the residue was dissolved in dichloromethane and washed with water.
The pH of the water layer was ~13. Glacial acetic acid (0.5 mL) was added, the layers
were separated, and the organic layer was washed again with water. The layers were
separated, and the organic layer was washed twice with saturated NaHCOs(aq) and twice
with brine. The organic layer was dried over MgSOs(s), filtered, and concentrated under
reduced pressure. The crude product was purified by silica gel chromatography, eluting
with 1:1 EtOAc¢/CH,Cl, to yield 5.8 as a white solid (1.888 g 61.8%).
'H NMR (300 MHz, CDCL): §10.02 (bs, 1H), 7.59 (d, J= 8.1 Hz, 1H), 7.41-7.17 (m,
25H), 6.15 (d, J=4.8 Hz, 1H), 5.35 (d, /= 8.1 Hz, 1H), 4.98-4.89 (m, 5H), 4.81 (m,
1H), 4.55 (m, 1H), 4.03 (m, 1H), 3.40 (m, 2H). *C NMR (75.4 MHz, CDCL3): §164.05,

150.56, 143.19, 141.94, 135.15 (d, J= 6.1 Hz), 128.63, 128.53, 128.03 (d, /= 2.8 Hz),
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127.90, 127.23, 100.99, 87.25, 85.24, 81.05 (d, /= 5.9 Hz), 80.94 (d, /= 9.8 Hz),

74.50, 69.86 (d, J = 5.4 Hz), 62.03. *'P NMR (121.4 MHz, CDCls, 'H decoupled): 5—
1.17. ESI-MS (M + Na): 769.2303 (observed), 769.2291 (calculated).

Arabinouridine 3'-dibenzylphosphate (5.9). The preparation of 5.9 was carried out
in a manner similar to that used for the preparation of 5.4a. The crude product was
purified by silica gel chromatography, eluting with MeOH (5% v/v) in CH,Cl; to yield
5.9 as a light yellow solid (1.084g, 89.6%). '"H NMR (300 MHz, CDCls): §10.33 (bs,
1H), 7.70 (d, J= 8.4 Hz, 1H), 7.34-7.26 (m, 10H), 6.04 (d, J=3.9 Hz, 1H), 5.60 (d, J =
8.4 Hz, 1H), 5.44 (d, /= 6.3 Hz, 1H), 5.05—4.98 (m, 4H), 4.82 (m, 1H), 4.52 (m, 1H),
4.46 (m, 1H), 4.03 (m, 1H), 3.76 (m, 2H). >C NMR (75.4 MHz, CDCls): §164.59,
150.47,142.19,135.02 (d, J = 6.0 Hz), 128.74, 128.58, 128.04 (d, J = 2.8 Hz), 100.72,
86.02, 83.21, 81.44 (d, /=4.1 Hz), 73.98 (d, /= 4.0 Hz), 70.00 (dd, J = 5.4, 4.8 Hz),
60.98. *'P NMR (121.4 MHz, CDCls, 'H decoupled): —1.60. ESI-MS (M + Na):
527.1180 (observed), 527.1195 (calculated).

Arabinouridine 3'-phosphate (araUMP, 5.10). The preparation of 5.10 was carried
out in a manner similar to that used for the preparation of 5.5a. The product was purified
by reverse-phase HPLC with elution by the gradient: 0-10 min, 95% A, 5% B; 10-20
min, 95-50% A, 5-50% B; 20-25 min, 50-95% A, 50-5% B. Buffer A was H,O
containing TFA (0.1% v/v); Buffer B was CH3CN containing TFA (0.1% v/v). The
desired product eluted between 6 and 8 min, and the byproduct eluted at 21 min. The
fractions were combined and evaporated under reduced pressure to yield 5.10 as a
colorless solid (558 mg, 83.8%). '"H NMR (300 MHz, D,0): §7.67 (d, /= 8.1 Hz, 1H),

598 (d,/=4.2 Hz, 1H), 5.67 (d, J=8.1 Hz, 1H), 4.41-4.35 (m, 2H), 4.03 (m, 1H), 3.72
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(m, 2H). *C NMR (125.7 MHz, D,0): §167.14, 152.18, 144.08, 101.88, 86.73,

84.16 (d, J = 4.9 Hz), 80.51 (broad), 75.18 (d, J = 4.9 Hz), 61.55. *'P NMR (121.4 MHz,
D,0, 'H decoupled): §-0.37. ESI-MS (M — H): 323.0272 (observed), 323.0280
(calculated).

pK. Determination by *'P NMR Spectroscopy. A 3’-nucleotide was dissolved in
D,0 (1.0 mL) to make a 100 mM stock solution. An aliquot (100 pL) of the stock
solution was added to 0.10 M buffer (900 pL), and the resulting solution was filtered.
The buffers used were oxalic acid, citric acid, succinic acid, trisodium citrate, MES,
MOPS, TRIS, CHES and CAPS, each adjusted to an appropriate pH with 2 M HCl or 2
M NaOH. Each filtered sample (900 pL) was placed in an NMR tube, and its *'P NMR
chemicél shift was measured with a Bruker DMX-400 MHz (wide bore) spectrometer
equipped with a quattro-nucleus probe or a Bruker DMX-500 MHz spectrometer
equipped with a broadband probe, referenced to an external standard of H3;PO4, and
'H-decoupled. The pH of each sample was measured with a Beckman ®40 pH meter.

Data were fitted to eq 5.1 with the program Deltagraph 4.0.

Sy + Oy X 100H-PED)
5= low hlgh( — (51)
1+ 10®H-PE)

The reported values are the mean (+ SE) of two determinations.
K; Determination for araUMP, dUMP and dUMP. The value of K; for each
3'-nucleotide was measured by determining its ability to inhibit the turnover of the

substrate 6-FAM-dArU(dA)>-6-TAMRA by RNase A (Kelemen et al., 1999).
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Fluorescence emission intensity was measured at 515 nm, with excitation at 493 nm.

Each assay was carried out in 2.0 mL of 20 mM MES—NaOH buffer, pH 6.0, containing
NaCl (50 mM), RNase A (wild-type, 0.5 pM; T45G, 12.5 pM), and 6-FAM—-dArU(dA),—
6-TAMRA (0.06 pM). The value of AF/At was measured for 3 min after the addition of
RNase A. An aliquot (0.5 pL) of 2 mM inhibitor dissolved in water was added and AF/At
was measured for 3 min in the presence of the inhibitor. Additional aliquots of inhibitor
were added at 3-min intervals, doubling the volume of the aliquot with each addition until
8 nL was added, then 4 pL of a 10 mM solution was added, and subsequent additions
doubled in volume until 32 pL were added, nine additions in all. In each assay, <15% of
the substrate was cleaved. The loss of fluorescence intensity due to dilution was corrected
for by dividing each data point by the corresponding point from an assay in which buffer
instead of inhibitor was added to the enzyme/substrate mixture. The values of K; were

determined by fitting the data to eq 5.2 using the program Deltagraph 4.0.

AF[At = (AF/At)O(KIii [I]j (5.2)

1

In eq 5.2, (AF/ 4%), is the ribonucleolytic activity prior to inhibitor addition.

Fluorescence Data Analysis. During the course of K assays the fluorescence
intensity was found to be quenched by the inhibitors at high inhibitor concentration. To
correct for this quenching, the following assay was conducted. To 2.0 mL of 20 mM
MES—NaOH buffer, pH 6.0, containing NaCl (50 mM) was added 1 pL (60 pM) of the
substrate 6-FAM—~dArU(dA),—6-TAMRA, followed 3 min later by 2 uL of a concentrated

solution of wild-type RNase A (1.5 mM). At 3-min intervals thereafter, aliquots of
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araUMP (1.72 mM) were added, beginning with 5 pL and doubling in volume until

40 uL had been added, 4 additions in all, and the fluorescence intensity was measured. In
a separate assay, aliquots (5, 10, 20, and 40 nL) of 25.7 mM araUMP were added, and the
fluorescence intensity was measured. The two data sets were corrected for loss of
fluorescence intensity due to dilution, then combined and fitted to eq 5.3 using the
program Deltagraph 4.0. A quenching correction factor for each point was calculated
using eq 5.3 (where F., is the value of the final fluorescence intensity measurement and &
=-30.77) and the inhibitor concentration in the cuvette. Each value of AF/Ar was divided
by the correction factor to give the corrected value. The correction factor was the same
for all the inhibitors, assuming that the fluorescence quenching arises from the uracil

moiety of the inhibitors.

y=(1-F, )" +F, (5.3)
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Chapter 6
COLLAGEN MIMICS CONTAINING PRO-GLY AMIDE ISOSTERES: PROBING
THE IMPORTANCE OF GLY-NH:--O=C-PRO HYDROGEN BONDS

6.1 Introduction

The collagen triple helix is a unique tertiary structure. The triple helix consists of
three left-handed polyproline type IT helices wound around a common axis to form a
right-handed helix with a shallow super-helical pitch. In order for the protein to fold
correctly, every third residue must be glycine (Persikov et al., 2000a), creating a triplet
repeat of the sequénce Xaa-Yaa-Gly. The glycine residues form hydrogen bonds with the
residues in the Xaa position, with the Gly-NH as the proton donor and the carbonyl of the
Xaa residue acting as the acceptor. The resulting hydrogen bond ladder (Fig 6.1) is
thought to be a major contributor to the thermal stability of the triple helix
(Ramachandran, 1967), but the strength of the hydrogen bonds has not yet been

measured.

Figure 6.1 A segment of a (Pro-Hyp-Gly) triple helix highlighting the interstrand
hydrogen bonding pattern. Hydrogen bonds are shown in yellow. Carbon is shown in
gray, nitrogen in blue, and oxygen in red. Atomic coordinates are from PDB entry 1CAG
(Bella et al., 1994).
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One attempt to measure the strength of the interstrand hydrogen bond in

collagen mimics was to measure the H/D fractionation factors of (Pro-Pro-Gly);o and
(Pro-Hyp-Gly); triple helices. The fractionation factor is the extent to which a particular
hydrogen-bonding site becomes enriched in deuterium over hydrogen relative to solvent,
and a smaller fractionation factor indicates a stronger hydrogen bond (Loh & Markley,
1994). This study led to the conclusion that the hydrogen bond strengths were similar in
both peptides, but did not provide an estimate of those strengths (Danielson & Raines,
2000). We desired a method to more accurately measure the interstrand hydrogen bond
strength in collagen mimics.

An approach to estimating hydrogen bond strength in proteins such as T4
lysozyme (Koh et al., 1997), staphylococcal nuclease (Chapman et al., 1997; Shin et al.,
1997), chymotrypsin inhibitor 2 (Beligere & Dawson, 2000), turkey ovomuciod third
domain (Lu et al., 1997), the GCN4 coiled coil domain (Blankenship et al., 2002), serine
protease—protein inhibitor complexes (Lu et al., 1999), 4-oxalocrotonate tautomerase
(Silinski & Fitzgerald, 2003), and amyloid fibrils (Gordon & Meredith, 2003), has been
to replace the amide N-H linkage in question with an ester, eliminating the hydrogen
bond donor in one (or more (Beligere & Dawson, 2000)) site. The substitution of ester for
amide is considered a conservative substitution because both moieties have similar
conformational preferences (Wiberg & Laidig, 1987), and inclusion of lactic acid unit in
place of an alanine residué in an o-hélical model peptide has been shown to induce
minimal structural perturbations (Karle et al., 2001; Aravinda et al., 2002). On the other
hand, it has been shown that there is more backbone flexibility around an ester linkage

than around an amide (Mammi & Goodman, 1986). While esters and amides are
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approximately isosteric, they have somewhat different electronic properties, which

introduces differences in their Coulombic interactions and hydrogen bond accepting
capabilities. As a result, the hydrogen bond strengths obtained in this way are estimates,
as it is difficult to correct for these differences, but these estimates have been found quite
informative.

Another approach to eliminating hydrogen-bonding capability with minimal
structural perturbation is to replace an amide bond with an alkene, creating a dipeptide
alkene isostere (Hann et al., 1980; Wipf & Fritch, 1994). A variety of approaches to the
synthesis of dipeptide alkene isosteres has been reported in the literature (Gardner et al.,
1995; Masse et al., 1997; Wipf et al., 1998; Gardner et al., 1999; Oishi et al., 2002;
Tamamura et al., 2002; Vasbinder & Miller, 2002; Tamamura et al., 2003; Wang et al.,
2003), but their use in biological systems has been largely restricted to replacing amide
groups in peptide-derived enzyme inhibitors to decrease their susceptibility to proteolysis
(Johnson, R. L., 1984; Tamamura et al., 2003).

We hypothesized that replacing one glycine N-H linkage in a collagen mimic
peptide with an ester or alkene linkage would allow us to estimate the contribution of

interstrand hydrogen bonds to triple helix stability.

6.2 Results and Discussion
6.2.1 Synthesis of Fmoc-tripeptides for Use in Solid Phase Peptide Synthesis

To facilitate the assembly of collagen mimic peptides with the repeating sequence
(Pro-Yaa-Gly)io (Yaa = Pro or 4(R)-hydroxy-L-proline, Hyp) we synthesized the

tripeptides Fmoc-Pro-Pro-Gly and Fmoc-Pro-Hyp-Gly in solution according to the
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procedure of Ottl and Moroder (Scheme 6.1) (Ottl et al., 1999). Their reported overall

yield for the synthesis of Fmoc-Pro-Hyp-Gly (75% over 4 steps) was much higher than
we could achieve, as our average yields over 4 steps wére 16.2% for Fmoc-Pro-Hyp-Gly
and 19.2% for Fmoc-Pro-Pro-Gly. In addition, we found that the yield of the final step
was poor because of difficulty in purifying the final product. As a result, we desired a

more efficient route to Fmoc-tripeptides starting from readily available starting materials.

X

GlyOBn*HCI 0
[_)‘?O o C\)L(i _EDCIHOBY, &Q
Coz O-N e o NCbz o "DIPEA DMF NCbz 0
}5 HN O
g DMF

6.1a,b 6.2a,b OBn

H 1. Ho, PAIC,
OH TSOH,
MeOH/H,0
2. FmocOSu,
NaHCO3,
dioxane/H,0

a: X
b: X

X
o h
N\N
NFmoc 0
HN O

6.3a,b O
Scheme 6.1 Synthesis of Fmoc-Pro-Yaa-Gly according to the method of Ottl and
Moroder (Yaa = Pro or Hyp) (Ottl et al., 1999).
Holmgren, et al. reported a 5-step synthesis for Fmoc-Pro-Flp-Gly (where Flp =
4(R)-fluoro-L-proline) based on standard Boc chemistry with an average overall yield of
16.7% (Scheme 6.2) (Holmgren et al., 1999). We thought that this general route could be

shortened and made more efficient by eliminating the need to switch from an N-terminal
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Boc protecting group to Fmoc in the final step. Following the steps outlined in

Scheme 6.3, with careful monitoring the final hydrogenolysis reaction, we found that we
could achieve an overall yield of 56.6% over three steps for Fmoc-Pro-Pro-Gly starting
from Boc-Pro. It has also been shown that this synthetic scheme works well for the
synthesis of Fmoc-Pro-Hyp-Gly (F.W. Kotch, personal communication) and Fmoc-Pro-
Flp-Gly (C.L.J., data not shown.) One of the primary advantages of this route is the high

yield and facile purification of the final product from the byproducts of the benzyl

deprotection.
E GlyOBn E E
[-)_/(o EtsN, CH,Cl, O 1. 4N HCl/dioxane / O
—ee—J
N  osu N HN 2. BocPro, DCC Oy-N' HN
Boc Boc "N oBn  HOBY, DM " )-0Bn
O NBoc o
NH4HCO,
Pd/C, MeOH
F. F,

1. 4N HCl/dioxane

3 o 3 o
° [HN_} 2 FmocOSu, ° Q—H{N}
5/ d OH = acon 5/ P OH

NFmoc dioxane/H,0 NBoc

Scheme 6.2 Synthesis of Fmoc-Pro-Flp-Gly (Holmgren et al., 1999).
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GlyOBn, DCC,
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?—«OH ?—H(N 2. FmocProOpr,= 0 (HN
oc oc _>—OBn DIPEA, DMF —>-05n
Y NFmoc o
6.4 6.5
Hap, Pd/C,
MeOH

0
0] [HN
8/ _>—OH
NFmoc O

Scheme 6.3 Improved synthesis of Fmoc-Pro-Pro-Gly. o
6.2.2 Solid Phase Synthesis of Depsipeptides

We also synthesized the Fmoc-trimers 6.6 and 6.7 using the method of Ottl and
Moroder(Ottl et al., 1999) to facilitate assembly of depsipeptides 6.8 and 6.9, which were
designed to eliminate one hydrogen bond donor from each strand of the triple helix. We
found that the solid phase peptide synthesis (SPPS) of 6.8 and 6.9 according to Scheme
6.4 resulted in the isolation of peptides lacking a Pro-Pro segement in the case of 6.8, or a
Pro-Hyp segment in the case of 6.9. The loss of these dipeptide segments was presumably
due to diketopiperazine formation (Gisin & Merrifield, 1972), which was facilitated by
the enhanced leaving group ability of glycolate compared to glycine (Scheme 6.5). To
minimize diketopiperazine formation, we built up the ester-containing sections of 6.8 and
6.9 by incorporating two Fmoc-dipeptide segments (compound 6.10 or 6.11, Scheme 6.6)
and two Fmoc-protected single amino acids (Scheme 6.7). This route avoids the presence

of a free N-terminal nucleophile two amino acids away from the labile ester during the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



179
synthesis, eliminating the diketopiperazine formation. Cleavage of the peptides from

the resin with TFA and subsequent HPLC purification yielded full-length 6.8 and 6.9, as

determined by MALDI-TOF MS.

2. Fmoc-Pro

1. Fmoc-Yaa
3. 4 x Fmoc-Pro-Yaa-Gly

J 6.6 or6.7

FmocProYaaOGly(ProYaaGly)s

1. 3 x Fmoc-Pro-Yaa-Gly
2. N-deprotection
3. 95% TFA, 2.5% H20, 2.5% TIS

(ProYaaGIyL,ProX)GIy(ProYaaGIy)5

Yaa = Pro (6.8) or Hyp (6.9)

Scheme 6.4 Failed synthesis of 6.8 and 6.9.
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Scheme 6.5 Proposed mechanism for two-residue deletion.
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6.10: X=H
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Scheme 6.6 Synthesis of 6.10 and 6.11.
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FmocGly

1. Fmoc-Yaa
2. Fmoc-Pro
3. 4 x Fmoc-Pro-Yaa-Gly

1.6.10 or 6.11
2. Fmoc-GlyPro
3. Fmoc-Yaa

4, Fmoc-Pro

FmocProYaaGlyProYaaOGly(ProYaaGly)s

1. 3 x Fmoc-Pro-Yaa-Gly
2. N-deprotection
3. 95% TFA, 2.5% H,0, 2.5% TIS

(ProYaaGly),ProYaaOGly(ProYaaGly)s

6.8. Yaa = Pro
6.9: Yaa = Hyp

Scheme 6.7 Successful synthesis of 6.8 and 6.9

6.2.3 Effects of Ester and Alkene Isosteres on Triple Helix Formation and Stability
Depsipeptides 6.8 and 6.9 were incubated at 4 °C at a concentration of 0.2 mM in
50 mM HOAC for approximately 24 h, and then studied by CD spectroscopy. Wavelength
scans from 200-260 nm indicated that neither peptide had assembled into a triple helix.
The absence of the triple helix was confirmed by the linear decrease in ellipticity with
increasing temperature. In contrast, (Pro-Pro-Gly);o had a melting temperature (7, which
is the temperature at the midpoint of the thermal transition between native and unfolded
states) of 41 °C and (Pro-Hyp-Gly),o had a T}, of 69 °C under the same conditions. The

failure of 6.8 and 6.9 to assemble into triple helices indicates that each interstrand
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hydrogen bond contributes significantly to triple helix stability, but we could not form

a good estimate of the magnitude of that contribution.

In studying host-guest collagen mimics with the general structure Ac-(Gly-Pro-
Hyp)s-Zaa-Pro-Hyp-(Gly-Pro-Hyp)4-Gly-Gly-NH,, Brodsky and coworkers used the
osmolyte trimethylamine oxide (TMAO) to enhance triple helix thermal stability so that
they could compare the melting temperatures of a variety of Gly->Zaa variants (Beck et
al., 2000). TMAQ is thought to enhance protein stability by an unfavorable interaction
with backbone amide groups. This unfavorable interaction is probably an indirect
interaction arising from enhancement of water structure by TMAO (Zou et al., 2002). We
hypothesized that TMAO might stabilize triple helices of 6.8 and 6.9 enough for us to
measure T, values and compare them to those of (Pro-Hyp-Gly)io and (Pro-Pro-Gly)io
under the same conditions, thus enabling us to obtain an estimate of hydrogen bond
strengths. Indeed, incubating 6.8 and 6.9 with various concentrations of TMAO in
phosphate-buffered saline (PBS, pH 7.4, 150 mM NaCl) for 24 h led to increasing
ellipticity at 225 nm with increasing TMAO concentration at 4 °C, characteristic of
increasing triple helical content (Fig. 6.2). Triple helices of depsipeptide 6.8 began to
show a thermal transition in solutions containing 2 M TMAO or higher, while those of
depsipeptide 6.9 did not exhibit clear transitions at any TMAO concentration, as shown
in Fig. 6.3. Mass spectra of the samples of 6.9 after thermal melt experiments indicated
that the depsipeptide had decomposed. In comparison, 6.8 showed minimal
decomposition after thermal melt experiments. No further experiments were carried out
with depsipeptide 6.9 due to its propensity for decomposition; however, according to the

fractionation factor experiments cited above (Danielson & Raines, 2000), the interstrand
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hydrogen bond strengths for (Pro-Pro-Gly),o and (Pro-Hyp-Gly)o are similar. Hence,

dipeptide isosteres based on Pro-Gly should be a good approximation for those based on

Hyp-Gly.
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Figure 6.2 CD spectra of depsipeptides 6.8 () and 6.9 (B) with various concentrations

of TMAO.
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Figure 6.3 T, determinations of triple helical 6.8 (4) and 6.9 (B) with various
concentrations of TMAO.

The T values of triple helical 6.8 (above a threshold concentration of 2 M
TMAO) and (Pro-Pro-Gly);¢ increased linearly with TMAO concentration, allowing us to
extrapolate to obtain T}, values at 0 M TMAO for both peptides (Fig. 6.4). The

extrapolated T value for (Pro-Pro-Gly)o was 32.8 °C, identical to the measured value of
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33 °C in the absence of TMAO. The extrapolated 7y, value for 6.8 was 10.7 °C,

giving a ATy, of 22 °C. This value closely matches the ATy, at 2 M TMAO, which was
observed to be 20 °C. Using eq. 6.1 with a AS value of 0.21 kcal/mol (Holmgren et al.,
1999), this difference in melting temperature translates to a AAG® s value of 4.2
kcal/mol. This value, however, does not take into account the differences in solvation

between amides and esters.

80
504
- 40
5 ]
& 304
e
=~ 20
104 a (Pro-Pro-Gly)10
] * 6.8
0 LML UAREN MU LA RERAR BARM
0 051152 253 354
[TMAOQ]

Figure 6.4 Extrapolation of T,, values for triple helical (Pro-Pro-Gly);9 and 6.8 to 0 M
TMAO.

Differences in solvation between amides and esters can be estimated by the AAG®
of octanol-water partitioning for analogous small molecule amides and esters. For
example, the AAG°(octanol/water) for methyl acetate vs. N-methlyacetamide is -1.7
kcal/mol (Leo et al., 1971). Taking solvation effects into account is one way to correct for
differences in electrostatics between amides and esters. Eq. 6.2 (F = folded, U.=
unfolded) (Koh et al., 1997) gives a method for incorporating this correction factor into
the estimate of hydrogen bond strength. Thus, the AAG® for removal of one hydrogen

bond donor from each strand of a triple helix is estimated to be > 5.9 kcal/mol, therefore
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each hydrogen bond contributes approximately 2 kcal/mol to the stability of the triple

helix.
AAG° = ATAS (6.1)
AGQ(F)backbone H-bond_AAGo(F_")U)electrostatics =
AAG® sotanol—water — AAG s = +1.7 keal/mol — 4.2 kcal/mol = —5.9 kcal/mol (6.2)

The replacement of a Pro-Gly unit in (Pro-Pro-Gly);o with the dipeptide isostere
6.12 (also denoted Pro=Gly) yields peptide 6.13, which lacks both a hydrogen bond
donor and an acceptor. The Fmoc derivative of 6.12 was a generous gift from Prof. Scott
J. Miller, and the synthesis of 6.13 by standard SPPS protocols went smoothly.
Incubation of 6.13 for 24 h in 50 mM HOA ¢ yielded no triple helix formation, as
determined by CD wavelength scan and thermal melt experiments. The CD spectrum
from 200-260 nm exhibited only a small maximum near 225 nm, similar to the signature
spectra of a polyproline type II helix (Feng et al., 1996). The CD signal at 227 nm
decreased linearly with temperature, confirming the observation that no significant

amount of triple helix had formed.

4;)'_\\_«0 (Pro-Pro-Gly)4Pro-Pro=Gly(Pro-Pro-Gly)s
H

OH
6.12 6.13
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Repeating the thermal melt experiments on the peptide 6.13 in increasing

concentrations of TMAO revealed that no transition could be observed at less than 3.5 M
TMAO (Fig 6.5). The Ty, value of triple helical 6.13 in 3.5 M TMAO was 14.0 °C, and
that in 4.0 M TMAO was 19.5 °C. Extrapolation of the Tj, data to 0 M TMAO would
indicate a melting temperature of —24.7 °C; however, with only two points on which to
base the extrapolation, the error in the extrapolated T, is likely to be very large.
Furthermore, it is difficult to interpret this set of data in any quantitative manner, since
the effects of removing an additional hydrogen bond acceptor and the conformational
effects of Pro=Gly versus Pro-Gly on peptide backbone torsion angles ¢ and y
(especially in the context of a collagen triple helix) are unknown. The conclusion that
may be drawn from the replacement of a Pro-Gly segment by alkene isostere 6.12 is that
the resulting triple helix is much less stable than when the amide linkage of a Pro-Gly
unit is replaced by an ester. The most likely reason for the comparative decrease in the
stability of triple helices containing the alkene isostere vs. the ester linkage may be more
rigid enforcement of ¢ and y angles in the alkene isostere that are unfavorable for triple
helix formation; however, a larger disruption in solvation at the alkene moiety than the

ester may also play a role.
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Figure 6.5 T, determinations of triple helical 6.13 with various concentrations of TMAO.

6.2.4. Assembly of Heterotrimeric Collagen Mimics

To obtain a more direct measurement of the contribution of one interstrand
hydrogen bond to triple helix stability, formation of a triple helix lacking only one
hydrogen bond (rather than three) is necessary. The formation of such a heterotrimer
requires the ability to link the strands together covalently and selectively. Moroder and
éoworkers have devised a method to do this by the selective formation of two disulfide
bonds, creating a minimal “cystine knot” (Scheme 6.8) (Ottl et al., 1996; Ottl & Moroder,
1999a; Ottl et al., 1999). They have also shown that this process is difficult when
peptides are used which have a high propensity to form stable triple helices at room
temperature (e.g., peptides containing predominantly Pro-Hyp-Gly repeats) (Sacca et al.,

2002).
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Scheme 6.8 Synthesis of d ébllageﬁ nil:mic with a cy>s-tz'ne knbt (Otﬂ et dl., 1996, Ol &
Moroder, 1999b; Ot et al., 1999). NpysCl is 3-nitropyridine-2-sulfenyl chloride.

We desired a more efficient synthesis of heterotrimers using the cystine knot

technology, and hypothesized that this might be accomplished by doing the assembly on
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a solid support, as outlined in Scheme 6.9. The advantages of doing the assembly on a

solid support are twofold: (1) the deprotection and activation reactions can be carried out
using large excesses of reagents without requiring subsequent HPLC purification of the
activated peptide, and (2) the coupling reactions can be carried out with larger excesses
of peptides without the difficult problem of removing any homodimer formed during the
reactions, because it can simply be washed away from the heterodimer bound to the resin.
Furthermore, the excess peptide cah casily be recovered from the reaction mixture.

We tested this idea by forming a heterotrimer consisting of one Pro-Pro-Gly
repeat per strand, as shown in Scheme 6.9. The protected constituent peptides 6.14 and
6.15 were synthesized by standard SPPS methods in excellent yields. Peptide 6.14 was
attached via the N-terminal lysine residue to commercially available p-
nitrophenylcarbonate-derivatized Wang resin. The Cys(StBu) residue was deprotected by
reaction with PBuj3 and activated by reaction with 2,2°-dithiobis(5-nitropyridine)
((Npys),) forming a labile mixed disulfide.(Rabanal et al., 1996) Deprotection of 1.5 eq.
of peptide 6.15 with PBus and subsequent reaction with activat¢d 6.14 on-resin yielded
the resin-bound dimer. Deprotection and concomitant activation of the Cys(Acm) residue
on-resin with 3-nitro-2-pyridine sulfenyl chloride (Npys-Cl) was followed by reaction
with another 1.5 equivalents of 6.15. Subsequent cleavage of the product from the resin
with TFA afforded the assembled trimer 6.16 in 55% crude yield, assuming 100%

loading of 6.14 onto the resin.
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Scheme 6.9 Solid-phase assembly of a model cystine knot.

With the model trimer 6.16 in hand, we attempted to repeat the sequence with
full-length peptides 6.17 and 6.18 to make trimer 6.19 (Scheme 6.10). Unfortunately, we
found that it was difficult to achieve the coupling between the N-terminal Lys of 6.17 and
the activated Wang resin. Repeated attempts at reliably effecting the loading of 6.17 via
the Lys residue onto a variety of other p-nitrophenylcarbonate-activated resins (Novasyn
TGA™, PEGA™, and CLEAR™ resins) also failed.

The reason for the failure of peptide 6.17 to attach toa Vgrigty of resins is unclear.
It 1s clear that the chemistry of forming a carbamate linkage between the N-terminal Lys
residue and the activated carbonate moiety on the resin is not the main problem, as
peptide 6.14 was able to be attached efficiently to Wang resin in this manner. It is likely

that the size or the conformation of 6.17 is the barrier to loading. Xaa-Pro bonds have a
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high propensity to adopt the cis-amide conformation (Stewart et al., 1990; Weiss et

al., 1998; Jabs et al., 1999), which would increase the effective size of the peptide,
decreasing its accessibility to the active sites in the pores of the resin. In addition, it is
also possible that the peptides are assembling into triple helices in solution, which would

also create a barrier for access of the Lys residue to the resin.
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Scheme 6.10 Proposed on-resin assembly of a cystine-knot-tethered collagen mimic.

6.3. Conclusions and Future Directions

Assembly of heterotrimeric collagen mimics on solid phase remains an important
goal. Encouraging preliminary results have been obtained by synthesizing the peptide
(Pro-Pro-Gly);o-Gly-Cys(Acm)-Cys(StBu)G (6.20) on PEGA resin and performing the
deprotection, activation, and coupling reactions shown in Scheme 6.10 without cleaving

and purifying 6.20 and reattaching it to the resin (F. W. Kotch, unpublished results).
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Purification of the final full-length trimer from byproducts still remains as a

significant challenge.

Once an effective synthesis of disulfide-linked heterotrimers is achieved,
measurement of melting temperatures by CD spectroscopy will provide an avenue to
measuring the contribution of interstrand hydrogen bonds to collagen triple helix
stability. Another important approach to this determination will be to measure the melting
temperatures of the tethered triple helices by differential scanning calorimetry (DSC),
which will provide more direct access to thermodynamic values associated with triple
helix denaturation than CD determination of melting temperatures can provide.

The analysis of homotrimeric collagen mimics has provided some insight into the
contribution of interstrand hydrogen bonds to triple helix stability. One estimate of the
strength of this hydrogen bond is ~2 kcal/mol, well within the accepted range for
hydrogen bonds in proteins. The study of heterotrimeric collagen mimics containing
amide bond isosteres will provide further insight into the contribution of interstrand
hydrogen bonds to collagen stability because it will provide a way to minimize the
structural perturbations that may contribute to the observed decrease in stability of the

~ depsipeptide- and alkene isostere-containing collagen mimics we have studied.

6.4. Experimental Section

Ceneral. Reagents werebobtained from Aldrich Chemical (Milwaukee, WI) or Fisher
Scientific (Hanover Park, IL) and used without further purification. Amino acids and
their derivatives were obtained from Fisher Scientific, Bachem Bioscience (King of

Prussia, PA), or Novabiochem (San Diego, CA). Dichloromethane was distilled over
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CaH,(s) or drawn from a Baker Cycletainer. Thin-layer chromatography was

performed by using aluminum-backed plates coated with silica gel containing Fs4
phosphor and visualized by UV illumination or staining with I, p-anisaldehyde stain, or
phosphomolybdic acid stain. NMR spectra were obtained with Bruker AC-300 and
Varian UNITY-500 spectrometers.

N-Benzyloxycarbonyl-prolylproline (6.12). Benzyltrimethylammonium
hydroxide (Triton B, 20.2 mL, 40% w/v in MeOH, 48.4 mmol) was added to proline
(5.485 g, 47.6 mmol), and additional MeOH was added to effect complete dissolution of
the proline. The mixture was concentrated under reduced pressure to remove the
methanol and then placed under high vacuum for 1 h to obtain a waxy solid. The solid
was cﬁssolved in dry DMF (80 mL) and then added to a solution of N-benzyloxycarbonyl
prolinoxy succinimide (Z-Pro-OSu, 15.053 g, 43.5 mmol) in DMF (100 mL). The
reaction mixture was stirred overnight at room temperature. The solvent was removed
under reduced pressure, and the residue was dissolved in 5% (w/v) KHCO; (aq) and
washed twice with diethyl ether. The aqueous layer was placed under aspirator vacuum
for 1 h to remove residual ether, then acidified with 6 N HCI to pH 2. The precipitate was
collected by filtration, washed with water, and air-dried overnight, giving 6.1a (12.962 g,
89%), which was carried on without further purification. '"H NMR (300 MHz,
CDCl3+CD30D, two rotamers): 8 7.40-7.27 (m, 5H), 5.12, 5.03 (two ABq, J=12.3,11.7
Hz, 2H), 4.58-4.30 (m, 3H), 3.84-3.33 (m, 4H), 2.30-1.67 (m, 8H). '*C NMR (75 MHz,
CDCl3+CDs0D, two rotamers): 8 173.6,173.4,171.7,171.4, 155.0, 154.2, 136.3, 136.1,
128.2, 128.0, 127.9, 127.8, 127.5, 67.2, 66.9, 58.8, 58.7, 58.0. 57.4, 47.0, 46.6, 46.5, 29.8,

28.8,24.7, 24.0, 23.4. ESI-HRMS: m/z 345.1434 ((M-HJ); 345.1451 ((M-HT, calcd).
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N-Benzyloxycarbonyl-prolylprolylglycine benzyl ester (6.2a). N-

Benzyloxycarbonyl-prolylproline (6.1a, 8.003 g, 23.1 mmol), glycine benzyl ester
tosylate salt (10.158g, 30.1 mmol), PyBOP (15.226 g, 29.3 mmol), and
hydroxybenzotriazole hydrate (4.401 g, 28.7 mmol) were dissolved in dry DMF (250
mL). Diisopropylethylamine (15.0 mL, 86.1 mmol) was added and the mixture was
stirred at room temperature for 24 h. The solvent was removed under reduced pressure,
the resulting residue was dissolved in EtOAc, and this solution was washed twice each
with 5% (w/v) KHSO4 and 5% (w/v) KHCO3, and once each with water and brine. The
organic layer was dried over MgSO4(s), filtered, and concentrated under reduced
pressure. The crude product was purified by silica gel chromatography, eluting with 5%
(v/v) MeOH/CH;Cl,. Some of the fractions contained residual impurities, and these
fractions were pooled and repurified by chromatography, eluting with EtOAc. The
fractions (from both purifications) containing pure product were pooled and concentrated
to yield 6.2a (9.135 g, 80%) as a white solid. 'H NMR (400 MHz, CDCls, two rotamers):
0 7.39-7.24 (m, 10H), 5.18-4.94 (m, 4H), 4.66-3.29 (m, 8H), 2.56-1.46 (m, 8H).
N-(9H-Fluoren-9-ylmethoxycarbonyl)-prolylprolylglycine (6.32). (Method A)
To 6.2a (9.135 g, 18.5 mmol) under an Ar(g) atmosphere was added tosic acid
monohydrate (4.405 g, 23.2 mmol) and Pd/C (10 wt % Pd, 0.946 g), followed by a
solution of MeOH (140 mL) and water (130 mL). The flask was flushed with Ar(g),
Hx(g) was infroduced via a Ballooh; &nd tﬁe reacﬁoﬁ was stirred ovémight. The‘whité
solid did not all dissolve initially, so MeOH (60 mL) was added, followed by more Ha(g)
via balloon. The reaction mixture was again stirred overnight, filtered through Celite, and

concentrated under reduced pressure. To a solution of the crude product in dioxane (100
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mL) and water (100 mL) was added 9-fluorenylmethyloxycarbonyloxy succinimide

(FmocOSu, 7.508 g, 22.3 mmol). Additional dioxane was added until the FmocOSu
dissolved, followed by NaHCOs(s) (3.125g, 37.2 mmol). The reaction mixture was stirred
for 3 d, and concentrated under reduced pressure to remove the bulk of the dioxane.
Aqueous KHCO; (2.5% w/v, 150 mL) was added and the resulting solution was washed
twice with Et,O and twice with EtOAc. The aqueous layer was placed under aspirator
vacuum for 1 h to remove residual organic solvents, acidified with 6 N HCl to pH 3, and
allowed to stir for 1 h. The oil that initially formed became solid, and was collected by
filtration and rinsed with water. A second crop of product was obtained by re-acidifying
the aqueous layer. The combined solids were air-dried overnight to give 6.3a (3.417 g, 38
%) as a white solid. 'H NMR (300 MHz, CDCl): 8 7.74-28 (m, 8H), 4.62-2.95 (m, 11H),
2.20-1.72 (m, 8H). ESI-MS: m/z 492.4 ((M+H]"); 492.5 ((M+H]", calcd).
t-Butyloxycarbonyl-prolylglycine benzyl ester (6.4). t-Butyloxycarbonyl-
proline (5.268 g, 24.5 mmol), glycine benzyl ester tosylate salt (9.088 g, 26.9 mmol),
dicyclohexylcarbodiimide (5.075 g, 24.5 mmol), and hydroxybenzotriazole hydrate
(3.756 g, 24.5 mmol) were dissolved in dry DMF (200 mL) and diisopropylethylamine
(12.8 mL, 73.5 mmol) was added. The reaction mixture was stirred overnight, filtered to
remove DCU, and concentrated under reduced pressure. The residue was dissolved in
EtOAc and washed twice each with 5% (w/v) KHCOj3 and 5% (w/v) KHSOy, and once
with brine. The organic layer was dried over MgSOy (s), filtered, and concéﬁtrated under
reduced pressure. The crude product was purified by silica gel chromatography, eluting

with 1:1 hexane/EtOAc to yield 6.4 (6.987 g, 79%) as a white solid. '"H NMR (300 MHz,
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CDCls): 67.39-7.28 (m, 5H), 5.17 (ABq, J = 12.3 Hz, 2H), 4.36-3.99 (m, 3H), 3.50-

3.30 (m, 2H), 2.36-1.82 (m, 4H), 1.46 (s, 9H).
N-(9H-Fluoren-9-ylmethoxycarbonyl)-prolylprolylglycine benzyl ester (6.5). ‘
BocProGlyOBn (6.4, 4.259 g, 11.8 mmol) was dissolved in dioxane (50 mL) and placed
under Ar(g) atmosphere. 4 N HCI in dioxane (29 mL, 116 mmol) was added via syringe.
The reaction mixture was stirred for 1.5 h, and then concentrated to dryness. The residue
was dissolved in dry DMF (80 mL), and diisopropylethylamine (4.2 mL, 24.1 mmol) was
added, followed by FmocPro pentafluorophenyl ester (5.934 g, 11.8 mmol). Additional
DMF (20 mL) was added, then the reaction mixture was stirred overnight and then
concentrated under reduced pressure. The crude product was purified by silica gel
chromatography, eluting with EtOAc, to yield 6.5 (5.392 g, 79%) as a white solid. 'H
NMR (300 MHz, CDCl3): 6 7.77-7.17 (m, 13H), 5.19-4.94 (m, 2H), 4.73-3.02 (m, 11H),
2.57-1.61 (m, 8H). *C NMR (125 MHz, DMSO-ds, two rotamers): & 171.85, 171.75,
171.2,170.6, 170.1, 170.0, 153.74, 153.67, 144.0, 143.8, 140.7, 140.6, 127.65, 127.57,
127.2,127.0,125.1, 124.81, 124.76, 120.1, 120.0, 66.5, 66.1, 59.1, 59.0, 57.8, 57.3, 46.9,
46.6,46.3, 46.1,'29.5, 28.91, 28.87, 28.6, 24.33, 24.26, 23.7, 22.6.
N-(9H-Fluoren-9-ylmethoxycarbonyl)-prolylprolylglycine (6.3a). (Method B)
Pd/C (10 wt % Pd, 0.372 g) was added to solid 6.5 (3.692 g, 6.35 mmol) under an Ar(g)
atmosphere. MeOH (100 mL) was added and the flask was flushed well with Ar(g). Ha(g)
was added via a balloon and the reaction mixture was stirred for 4.75 h, filtered through
Celite, and concentrated under reduced pressure. The resulting solid was triturated
overnight with EtOA¢/Et;O and then filtered and air-dried to yield 6.3a (2.7 g, 86%) as a

white solid. 'H NMR (300 MHz, CD;0D): & 7.82-7.28 (m, 8H), 4.69-3.35 (m, 11H),
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2.29-1.74 (m, 8H). 13C NMR (125 MHz, DMSO-dg, two rotamers): d 171.84,

171.76,170.1, 170.0, 153.8, 153.7, 144.0, 143.8, 143.7, 140.7, 140.6, 127.64, 127.57,
127.1,127.0, 125.1, 124.81, 124.76, 120.1, 120.0, 66.5, 66.0, 59.2, 59.0, 57.8, 57.3, 46.9,
46.6,46.3,46.1,29.5,28.91, 28.87, 28.6, 24.33,24.26, 23.7, 22.6. ESI-HRMS: m/z
490.1965 ([M-H]); 490.1978 ([M-HT, calcd).

N-(9H-Fluoren-9-ylmethoxycarbonyl)-prolylprolylglycolate (6.6) Compound
6.6 was prepared according to the method of Moroder and Ottl (Method A) (Ottl et al.,
1999). '"H NMR (300 MHz, DMSO-de): 8 7.87-7.27 (m, 8H), 4.68-4.10 (m, 8H), 3.73-
3.09 (m, 4H), 2.25-1.73 (m, 8H). ESI-MS: m/z 493.4 ((M+H]"); 493.5 ((M+HT", calcd).

N-(9H-Fluoren-9-ylmethoxycarbonyl)-prolyl-4(R)-hydroxyprolylglycolate
(6.7) Compound 6.7 was prepared according to the method of Moroder and Ottl (Method
A) (Ottl et al., 1999). 'H NMR (300 MHz, DMSO-de): 8 7.85-30 (m, 8H), 4.62-4.20 (m,
8H), 3.70-3.35 (m, 4H), 2.30-1.75 (m, 8H). ESI-MS: m/z 509.2 ([M+H]"); 509.2
([M+H]", calcd).

N-(9H-Fluoren-9-ylmethoxycarbonyl)-glycylproline. Glycylproline (1.022 g,
5.94 mmol) was dissolved in Na,COs(aq) (10% (w/v), 20 mL), and a solution of Fmoc-Cl
(1.696 g, 6.56 mmol) in dioxane (15 mL) was added. Additional dioxane (30 mL) was
added and the reaction mixture was stirred for 3 h. Water (100 mL) was added and the
reaction mixture was washed twice with Et,0. The aqueous layer was acidified with 6 N
HCl to pH 2 and extracted four times with EtOAc. The coml;ined EtOAc extracts were
dried over MgSQO4(s), filtered, concentrated under reduced pressure, and placed under
high vacuum overnight to yield Fmoc-Gly-Pro (2.255 g, 96%) as a white solid. 'H NMR

(300 MHz, CDCL): 8 9.84 (bs, 1H), 7.76-7.26 (m, 8H), 6.19, 5.93 (two broad m, 1H),
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4.60-3.41 (m, 8H), 2.31-1.87 (m, 4H). ®C NMR (75 MHz, CDCl3): § 174.0, 168.5,

156.4,145.5,143.8,141.2,127.7,127.0,125.2,119.9, 67.6, 67.3, 61.4, 59.3, 47.0, 46 .3,
43.3, 28.5, 24.6. ESI-MS: m/z 393.1 ((M-H]); 393.2 ([M-H], calcd).
N-(9H-Fluoren-9-ylmethoxycarbonyl)-prolylglycolate (6.10). -
Fluorenylmethyloxycarbonylproline (FmocPro, 0.515 g, 1.53 mmol) and
hydroxybenzotriazole (0.275 g, 1.80 mmol) were dissolved in dry CH,Cl; (25 mL).
Dicyclohexylcarbodiimide (0.325 g, 1.58 mmol) was added, followed by benzyl glycolate
(0.25 mL, 1.76 mmol) and diisopropylethylamine (0.55 mL, 3.16 mmol). The reaction
was stirred overnight, filtered to remove DCU, and concentrated under reduced pressure.
The resulting yellow oil was dissolved in EtOAc, washed twice each with 5% (w/v)
KHCOj3 and 5% (w/v) KHSOj, then dried over MgSOu(s), filtered, and concentrated
under reduced i)ressure. The crude product was/puriﬁed by silica gel chromatography,
eluting with 25% (v/v) EtOAc/hexanes to yield the benzyl ester (0.281 g, 38%) as a white
foam. The benzyl ester (507 mg, 1.04 mmol) was combined with Pd/C (10 wt % Pd, 49
mg) under Ar(g) and MeOH (40 mL) was added. The flask was flushed with Ar(g) and
H,(g) was introduced via a balloon. The reaction mixture was stirred for 3 h, then filtered
through Celite and concentrated under reduced pressure. The crude product was purified
by silica gel chromatography, eluting with 5-10 % (v/v) MeOH/CH,Cl, to yield 6.10
(0.172 g, 42%) as a white solid. '"H NMR (300 MHz, CDCl;): § 9.12 (bs, 1H), 7.75-7.25
(m, 8H), 4.73-4.14 (m, SH), 3.64-3 41 (m, 2H), 2.27-1.81 (m, 4H). *C NMR (75 MHz,
CDCl;, two rotamers): 8 171.7, 170.7, 170.6, 155.2,154.7,143.9, 143.8, 143.6, 143.5,

141.2, 127.6, 127.0, 125.0, 124.9, 124.8, 124.7, 119.9, 67.7, 67 .4, 60.7, 60.5, 58.9, 58.4,
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47.0,46.9,46.5,30.7,29.7, 24.1, 23.1. ESI-HRMS: m/z 394.1273 ([M-H]); 394.1291

([M-HJ, calcd).

N-(9H-Fluoren-9-ylmethoxycarbonyl)-4(R)-t-butoxyprolylglycolate (6.11)
Compound 6.11 was synthesized by a method similar to that used for 6.10 to yield 215
mg (55%) of a white foam. '"H NMR (300 MHz, CDCl;) § 7.78-7.28 (m, 8H), 4.73 (ABq,
J=16.3,2H), 4.61-4.15 (m, 5H), 3.76 (app. dt, /= 10.3, 6.0 Hz, 1H), 3.34 (app dt,J =
11.2,5.1 Hz, 1H), 2.34-2.20 (m, 2H), 1.21, 1.16 (two s, 9H). >C NMR (75 MHz, CDCl,,
two rotamers) 8 171.7, 170.9, 155.3, 154.4, 143.8, 143.7, 141.3, 127.7, 127.0, 125.1,
124.9,124.8,119.5, 74.4, 69.1, 68.2, 67.9, 67.3, 60.6, 60.2, 57.8, 57.3, 53.4, 53.3, 47.1,
37.5,28.2. ESI-HRMS: m/z 466.1871 ([M-HJ), 466.1866 ([M-HJ, calcd).

Solid phase peptide synthesis. Peptides were assembled on solid phase using an
Applied Biosystems Model 432A (Synergy) peptide synthesizer using HBTU with HOBt
and DIPEA as the coupling reagent, or an Applied Biosystems Pioneer instrument using
HATU/DIPEA as the coupling reagent. Both instruments employ the Fmoc/t-Bu coupling
strategy. It was found that the best resin for collagen mimic peptide synthesis using the
Synergy instrument was 2-chlorotrityl resin, and the best resin for the Pioneer instrument
was polyethyleneglycol-grafted polystyrene (PEG-PS) resin. Syntheses were carried out
using 1.5-3 eq. of each segment to be coupled. Cleavage of the peptide from the resin
was achieved using a mixture 95% TFA/2.5% H,0/2.5% triisopropyl silane (TIS) for 1.5-
3 h. Peptides were isolated by precipitation from the cleavage cocktail with t-butyl
methyl ether, purified if necessary by preparative reverse-phase HPLC, and characterized

by MALDI-TOF MS (Table 6.1).
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Table 6.1 MALDI-TOF MS characterization of peptides produced by solid phase

peptide synthesis.
MALDI-TOF MS
Peptide Observed (M+H)" Calculated (M+H)"
6.8 2530.9 25313
6.9 2691.2 2691.2
6.13 2513.8 25133
6.14 820.8 820.5
6.15 (StBu-protected) 5189 5184
6.16 1516.0 1515.6
6.17 3138.2 3137.7
6.18 (StBu-protected) 2778.7 2778.3

Circular Dichroism (CD) spectroscopy of depsipeptides 6.8 and 6.9. The
depsipeptides were dissolved in buffer (either 50 mM HOAc, pH 3, or 0-4 M TMAO in
phosphate-buffered saline, pH 7.4, 150 mM NaCl) to achieve a final concentration of
~0.2 mM, then were incubated at 4 °C for at least 24 h prior to study. Solutions for study
were degassed on ice under vacuum for approximately 20 min immediately before
placement into pre-cooled 1-mm-pathlength quartz cuvettes. Wavelength spectra were
recorded at 4 °C from 260-200 nm, sampling every 1 nm and averaging for 3 s at each
wavelength. Temperature scans were conducted from 4 °C to 60-80 °C (depending on
the expected melting temperatures of the triple helices being studied), raising the
temperature in 3-°C steps, equilibrating for 5 min at each temperature, and monitoring at
225 nm with a 20-s avefaging time for each data point.sz.welerftgth Spectra weré o
recorded again at the highest temperature used in the temperature scans using the same
parameters as at 4 °C. Melting temperatures were determined by fitting the raw CD data

using the software package NLREG 4.0 (Phillip Sherrod, 1998.)
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Circular Dichroism (CD) spectroscopy of peptide 6.13. Peptide 6.13 was dissolved

in 50 mM HOAc (0.36 mM) or phosphate-buffered saline (PBS, pH 7.4, 0.22 mM) with
various concentrations of TMAOQ (0-4 M) and the solutions was placed at 4 °C for >24 h.
Samples were degassed under vacuum for 15 min at 0°C before performing CD
measurements. Wavelength spectra were recorded from 200-260 nm at 4°C, sampling
every 1 nm with a 3-s averaging time. Temperature scans were run by raising the
temperature of the samples in 3 °C increments from 4-73 °C and equilibrating for 10 min
at each temperature before taking a wavelength spectrum from 210-260 nm, sampling for
3 s every 3 nm. Wavelength spectra were also recorded at 73 °C, using the same

parameters as for the wavelength scan at 4 °C.
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