COLLAGEN MIMETIC PEPTIDES FOR
WOUND ASSESSMENT AND HEALING

by
Sayani Chattopadhyay

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Chemistry)

at the
UNIVERSITY OF WISCONSIN–MADISON
2012
COLLAGEN MIMETIC PEPTIDES FOR WOUND ASSESSMENT AND HEALING

submitted to the Graduate School of the University of Wisconsin-Madison in partial fulfillment of the requirements for the degree of Doctor of Philosophy

By
Sayani Chattopadhyay

Date of final oral examination: March 16, 2012
Month and year degree to be awarded: May 2012

The dissertation is approved by the following members of the Final Oral Committee:
Ronald T. Raines, Professor, Chemistry
Nicholas L. Abbott, Professor, Chemical and Biological Engineering
Sandro Mecozzi, Associate Professor, Pharmacy
Douglas B. Weibel, Assistant Professor, Biochemistry
Eric R. Strieter, Assistant Professor, Chemistry
Dedicated to my parents, my sisters,
my grandparents, and Rishi
ABSTRACT

COLLAGEN MIMETIC PEPTIDES FOR WOUND ASSESSMENT AND HEALING

Sayani Chattopadhyay

Under the supervision of Professor Ronald T. Raines

at the University of Wisconsin–Madison

Collagen is one of the most abundant proteins found in nature, accounting for $\frac{1}{4}$ of the dry weight of vertebrate tissue and $\frac{3}{4}$ of the dry weight of human skin. Collagen triple helices self-assemble to form cross-linked fibers of high tensile strength and stability, and provide a highly organized, three-dimensional matrix surrounding cells. An in-depth understanding of the collagen structure and bioactivity over the last few decades has led to its development as a biomaterial for tissue repair and tissue engineering, as I describe in CHAPTER 1.

Chronic wounds in skin have major impacts on the physical and mental health of affected individuals. Current clinical approaches to promote wound healing include protection of the wound bed from mechanical trauma (e.g., splinting or bandaging), meticulous control of surface microbial burden combined with topical application of soluble cytoactive factors (e.g., growth factors or exogenous extracellular matrix components), and surgical excision of the wound margin or the entire bed. These approaches often fall short, and the heterogeneity and complexity of wound beds confound any single treatment approach. Hence, there is an urgent need for new and unconventional treatment methods that will compensate for the lack of significant progress based on current therapies. This thesis reports a novel treatment strategy based on developing...
collagen mimetic peptides that can enter wounded tissue and deliver cytoactive factors. My research approach relies on: (A) treating pathologic wounds by engineering the wound bed itself; and (B) modulating the key cellular elements differentially, so as to customize the treatment to specific wound types and their locations in the body.

In CHAPTER 2, I implement recent discoveries about the structure and stability of the collagen triple helix to design new chemical modalities that can anchor to natural collagen. These collagen mimetic peptides are incapable of self-assembly into homotrimeric triple helices, but are able to anneal spontaneously to endogenous collagen type I. I show that such collagen mimetic peptides containing 4-fluoroproline residues, in particular, bind tightly to bovine type I collagen in vitro and to a mouse wound ex vivo. These synthetic peptides, covalently attached to fluorophores, can aid in assessing the most damaged regions in a wound.

CHAPTERS 3 and 4 report studies in which I link the collagen mimetic peptide to compounds that are capable of modulating the various complex steps of wound healing, so as to expedite the process. These polypeptide complexes are noncovalently immobilized on cutaneous wounds in a diabetic mouse model to investigate their clinical efficacy. In CHAPTER 3, I report the use of Substance P attached to the collagen mimetic peptide for treatment of splinted-wounds in diabetic mice. A one-time topical application of the peptide conjugate led to its sustained bioactivity in the wound tissue, and we observed significantly enhanced rates of wound closure and re-epithelialization, along with lowered collagen deposition compared to commercial Substance P and vehicular controls. We also validated the synergism of insulin with Substance P activity, and showed that polyethylene glycol in the vehicle is beneficial.
CHAPTER 4 reports results in which we use a similar approach to anchor a ligand for transforming growth factor-β receptors to wound beds, and observe enhanced collagen deposition and inflammatory influx in the damaged tissue. The reported results provide a proof-of-principle for using collagen mimetic peptides as an effective bio-compatible delivery system, and show promise to treat wounds differentially, based on their nature, position in the body, and cosmetic requirements.

This therapeutic approach can be now expanded for the topical application of growth factors like VEGF and PDGF, as indicated as a future direction for the project in CHAPTER 5. My approach will enable others to anchor modulating factors in the wound bed, where they can be released over time, eliminating the need for repeated application. Thus, the strategies and results reported in this dissertation establish synthetic collagen mimetic peptides as a new modality for assessing and repairing wounds.
Acknowledgements

I would like to take this opportunity to express my deep and sincere gratitude to everyone who has provided me with assistance throughout my graduate career. First and foremost, I am grateful to Professor Ronald Raines, who gave me the opportunity to work with his group on this project. The first day I had met him in his office, he had asked me what kind of projects I saw myself working on for the next five years. I remember telling him “something that is application-based”. And when I did get the opportunity to join his group, he suggested that I work on the ‘wound-healing’ project. This was an indication of things to come. I found the most unique balance of independence and guided research under Prof. Raines’ supervision. Thereafter the last 5.5 years on this project has been an exciting journey that gave me the chance to work in widely diverse fields like animal surgery and basic histopathology. And I thank Prof. Raines’ for his enthusiasm, insight, and guidance through the whole process.

I am grateful to my thesis committee: Professors Nicholas Abbott, Sandro Mecozzi, Douglas Weibel, and Eric Strieter for being available to help me through this final chapter of graduate school. I am particular grateful to Prof. Abbott for his constructive guidance and insight during the WID/GO group meetings over the last few years. I am thankful to my collaborators at the UW School of Veterinary Medicine; in particular Prof. Jonathan McAnulty and Prof. Richard Dubielzig for not only letting me work with their groups, but also making me feel at home there. I have enjoyed working with Kathy Guthrie, Patty Kierski, Dana Tackes, Diego Calderon, and Kevin Johnson who actually made animal surgery fun! And I am grateful to Leandro Teixeira for having the patience to answer questions on histopathology from a chemist, and agreeing to go through hundreds of slides for the purpose.
I also thank Dr. Gary Case at the Peptide Synthesis Facility, for all his assistance and insightful discussion sessions, Dr. Darrell McCaslin in the Biophysics Instrumentation Facility, and Dr. Martha Vestling at the Mass Spectrometry Facility at Chemistry for their assistance.

I am grateful to the Raines group members for their assistance, incredible brain-storming sessions, and invaluable friendship. I am indebted to those who helped me at the very beginning of my graduate career, including Matt Shoulders, Frank Kotch, Annie Tam, Daniel Gottlieb, Luke Lavis, and Jeet Kalia. Joe Binder, Christine Bradford, and Greg Ellis have been great bay-mates, who gave me the opportunity to discuss matters outside science; namely running, cooking, and football. I am grateful to Langdon Martin, Ben Caes, and Mike Palte for letting me approach them with myriad questions over the last two years. I also had the privilege to work alongside: Chelcie Eller, Joelle Lomax, Sean Johnston, Mike Levine, Nadia Sundlass, Greg Jakubczak, Trish Hoang, Jim Vasta, Kristen Anderson, Rob Presler, Nick McGrath, Amit Choudhary, John Lukesh, Ho-Hsuan Chou, Kevin Desai, Caglar Tanrikulu, Raso Biswas, Brett VanVeller, Cindy Chao, Kelly Gorres, Rebecca Turcotte, Katrina Jensen, Eddie Myers, Nicole McElfresh, Ian Windsor, Thom Smith, Robert Newberry, and Matt Aronoff.

I am grateful to my friends outside of work, who have been a constant source of support and laughter. These include Jayashree Nagesh, Anushree Bopardikar, Ashok Sekhar, Piramanayagam Nainar, Neethi Ajay, Mary Beth Anzovino, and all past and present friends in the Indian Graduate Students’ Association. Thanks for making my stay in Madison a happy one.

I will always be grateful to my parents, Mita and Somnath Chattopadhyay, for all the love and support they give me. Their inspiration and unfailing faith in my abilities helped me get through some of the more difficult times in the last few years. Growing up watching my father as
a chemist definitely had an important role in my decision to pursue higher studies. My two sisters Suhana and Soumi have been incredible sources of support, and have inspired me to try and be a ‘good’ older sibling.

Finally, I am eternally grateful to my husband and the love of my life, Rishi Amrit. His love, encouragement, patience, and unfailing support have seen me through every single day in the last three and half years. He has been my best friend and strongest critic, and his ability to see through my smiles and tears, and offer constructive advice was invaluable. I look forward to my life ahead with him.
Table of Contents

Abstract .. i
Acknowledgements .. iv
Table of Contents .. vii
List of Tables .. xi
List of Figures ... xii
List of Abbreviations .. xxii

CHAPTER I
Development and applications of collagen-based biomaterials for wound healing 1

1.1 Introduction ... 2
1.2 The collagen molecule .. 3
 1.2.1 Origin and *in vivo* interactions .. 4
 1.2.2 Biodegradability of collagen ... 5
 1.2.3 Collagen-based biomaterials ... 6
 1.2.4 Cross-linking in collagen .. 7
1.3 Collagen in wound healing ... 8
 1.3.1 Skin replacement .. 9
 1.3.2 Aqueous injectables and hydrogels .. 11
 1.3.3 Sponges .. 14
 1.3.4 Recombinant collagen sponges .. 17
 1.3.5 Films and membranes .. 17
 1.3.6 Wound dressings .. 18
1.4 Synthetic collagen and collagen mimetic peptides ... 20
3.3.3 *In vivo* mouse model .. 64
3.3.4 Harvesting the wounds .. 65
3.3.5 Histopathological analyses ... 66
3.3.6 Statistical analyses ... 67
3.4 Results and discussion ... 67
 3.4.1 CMP-SubP in wound healing ... 69
 3.4.2 Wound closure in presence of insulin ... 72
3.5 Conclusions .. 74
3.6 Acknowledgements ... 93

CHAPTER 4

Immobilizing a TGF-β receptor ligand in the collagen matrix of cutaneous wounds modulates wound healing .. 94

 4.1 Abstract ... 95
 4.2 Introduction .. 96
 4.3 Results and discussion ... 99
 4.3.1 Tβrl–CMP in wound healing ... 101
 4.3.2 Dose response .. 106
 4.4 Materials and methods .. 107
 4.4.1 Peptide synthesis and purification .. 108
 4.4.2 *In vivo* mice model .. 109
 4.4.3 Harvesting the wounds .. 111
 4.4.4 Histopathological analyses ... 111
 4.4.5 Statistical analyses ... 113
 4.5 Conclusions ... 113
 4.6 Acknowledgments ... 133
CHAPTER 5

Future Directions .. 134

5.1 To identify and design the covalent attachment of growth factors and other molecules to the collagen mimetic peptides ... 135
5.2 Multivalent display of collagen-mimetic peptides on a peptide backbone for therapeutic purposes ... 136
5.3 Design and synthesis of a collagen 'duplex' ... 138

APPENDIX ... 147

Appendix 1: For Chapter 2 ... 148

A.1 Collagen mimetic peptides annealing to in vivo diabetic wounds 148
 A.1.1 Experimental methods ... 149
 A.1.2 Results and discussion .. 149

Appendix 2: For Chapter 3 ... 156

A.2 Dose Response of CMP–SubP ... 156
 A.2.1 Results and discussion .. 156

Appendix 3: For Chapter 4 ... 164

A.3.1 The effects of topical insulin administration in wounds treated with Tβrl–CMP. 164
 A.3.1.1 Results and discussion .. 164
 A.3.2 Extent of collagen deposition in wounds treated with Tβrl–CMP 16 days post-
 treatment ... 167
 A.3.2.1 Results and discussion .. 167
 A.3.3 Inflammatory response in wounds treated with Tβrl–CMP 16 days post-treatment
 .. 173
 A.3.3.1 Results and discussion .. 173
 A.3.4 Inflammatory reaction and wound size in response to increasing concentrations of
 Tβrl–CMP ... 178
 A.3.4.1 Results and discussion .. 178

REFERENCES ... 184
List of Tables

Table 1.1. Commercial forms of reconstituted collagen .. 25

Table 1.2. Amino-acid composition of human type I collagen [Adapted from (Piez, 1985)] 26

Table 1.3. Biomedical applications of collagen ... 27

Table 2.1. Thermostability of synthetic collagen triple helices ... 43
List of Figures

Figure 1.1. Higher order assembly of collagen triple helix. [Adapted from (Klug et al., 1997)]24

Figure 1.2. Bilayer structure of Biobrane® and its adherence to wound surface to promote healing. [Adapted from www.burnsurgery.org (Demling et al.)] 28

Figure 2.1. Representation of a collagen mimetic peptide (CMP) annealing to damaged collagen..44

Figure 2.2. CMPs (1–4) and dyes used in this work. Each CMP has a C-terminal (Gly-Ser)₃-LysOH segment. CMP–dye conjugates are indicated in the text with a superscript: IRCMP for IRDye® 800CW, RCMP for Rhodamine Red™-X, and FCMPI for 5-carboxyfluorescein. .. 46

Figure 2.3: Photographs of CMPs annealed to calf-skin type I collagen. Fluorescently labeled CMPs in MeOH were added to collagen, which was washed with PBS, DMSO, and MeOH, and photographed after 12 days. (A) RCMPI; (B) RCMPII; (C) RCMPIII; (D) RCMPIV; (E) Rhodamine Red™-X NHS ester that had been reacted with ethylamine. .. 48

Figure 2.4. Plot of the retention of CMPs on a gel of rat-tail type I collagen. Fluorescently labeled CMPs were applied to a gel, which was then washed at 48-h intervals and monitored for at 494 nm. ◆: FCMPI; ■: FCMPII; ○: 5-carboxyfluorescein NHS ester that had been reacted with ethylamine. .. 50
Figure 2.5. Photograph of the annealing of CMPs to mouse collagen ex vivo. Fluorescently labeled CMPs were applied to 6-mm cutaneous wounds on mouse pelts, washed, and imaged. (A) IR-CMP 1, photograph. (B) IR-CMP 1, fluorescence image. (C) IR-CMP 2, fluorescence image. (D) IR-CMP 2, fluorescence image. (E) IR-CMP 4, fluorescence image. In panels A–C, the circles (6 mm) denote wounds treated with IRDye® 800CW NHS ester that had been reacted with ethylamine. In panels (B) and (C), the mouse pelts are outlined. .. 52

Figure 2.6. Cytotoxicity of CMPs. The proliferation of human dermal fibroblast cells was assessed by fluorescence emission using a Calcein AM / EthD-1 assay after incubation for 72 h with unlabeled CMPs [◆, CMP 1; ■, CMP 2; ●, (Pro-Hyp-Gly)₇] or doxorubicin (○).. 54

Figure 3.1. Representation of a collagen mimetic peptide–Substance P conjugate (CMP–SubP) annealing to a damaged collagen triple helix... 75

Figure 3.2. Photographs depicting the effect of SubP-immobilization on splinted mouse wounds. Images are from Day 0 (immediately post-treatment) or Day 16 after removal of the splints but before euthanasia. Wounds were treated with (A) saline; (B) PEG (5% w/v) in saline; (C) insulin (50 I.U.) in saline; (D) SubP (25 nmol) in PEG/saline; (E) CMP (25 nmol) in PEG/saline; (F) CMP–SubP (25 nmol) in PEG/saline. Saline-treated wounds showed extensive scabbing (>85% of the total wound area). Wounds treated with free SubP had more scabs than those treated with CMP–SubP. 77
Figure 3.3. Bar graph showing the effect of SubP-immobilization on the size and re-epithelialization of splinted mouse wounds. Data are from Day 16 post-treatment. The mean size of the CMP-SubP treated wounds was zero (all the wounds were closed), and the result was significantly different from that of all controls ($p<0.05$). Re-epithelialization in wounds treated with free CMP was less than those treated with either SubP or CMP-SubP, indicating that wound closure was primarily due to contraction in these wounds. CMP-SubP treatment showed significantly more extensive epithelial layer formation compared to both saline and PEG/saline controls ($p<0.05$). Values are the mean ± SE ($n=16$).

Figure 3.4. Bar graph showing the effect of SubP-immobilization on collagen deposition in splinted mouse wounds. Data are from Day 16 post-treatment. Collagen deposition was down-regulated in wounds treated with both free and conjugated SubP. Values are the mean ± SE ($n=16$) and refer to collagen deposition as a percentage of the total area of the wound.

Figure 3.5. Histological images depicting the effect of SubP-immobilization on healing pattern of splinted mouse wounds. Data are from Day 16 post-treatment. Left: Wounds stained with hematoxylin and eosin. Right: Wounds stained with picrosirius red and imaged under polarized light. Wounds were treated with (A) saline; (B) PEG (5% w/v) in saline; (C) insulin (50 I.U.) in saline; (D) SubP (25 nmol) in PEG/saline; (E) CMP (25 nmol) in PEG/saline; (F) CMP-SubP (25 nmol) in PEG/saline. Lesions were present in all control wounds (edges indicated by “*” symbols), whereas treatment with CMP-SubP led to complete closure, minimal or no scab formation, and uniform granulation tissue formation.
Figure 3.6. Bar graph showing the effect of SubP-immobilization on inflammation in splinted mouse wounds. Data are from Day 16 post-treatment. Inflammation was scored on a scale of 0–4, and was lower in wounds treated with CMP–SubP. Values are the median ± SE (n = 16).

Figure 3.7. Photographs depicting the additive effect of insulin and SubP-immobilization on non-splinted mouse wounds. Images are from Day 0 (immediately post-treatment) or Day 12 before euthanasia. Wounds were treated with (A) CMP–SubP in saline; (B) CMP–SubP + insulin (50 I.U.) in saline. In the absence of insulin, wounds showed extensive scab formation and appeared to become more damaged over a period of 12 days.

Figure 3.8. Bar graphs showing the additive effect of insulin during SubP-immobilization on non-splinted mouse wounds. Data are from Day 12 post-treatment. (A) Wound size and re-epithelialization. (B) Collagen deposition and inflammation (0–4 scale). Additional insulin decreased wound size, collagen deposition, and inflammation, and increased re-epithelialization. Values are the mean ± SE (n = 6 wounds).

Figure 3.9. Bar graphs showing the effect of SubP-immobilization in saline (with and without insulin) and in 5% w/v PEG/saline (with insulin) medium on non-splinted mouse wounds. Data are from Day 12 post-treatment. (A) Wound closure, which refers to the reduction of the area between wound edges after 12 days. (B) Wound size, which refers to histopathological measurement of the largest diameter after 12 days. Values are the mean ± SE (n = 6 wounds).
Figure 4.1: Graphical representation of the TGF-β-receptor complex formation and subsequent activation of the Smad2/3 proteins in cell cytoplasm by the kinase domain of the complex. The phosphorylated Smad2/3 then associates with the Smad4 and translocates into the nucleus to bind with DNA-binding partners and regulate gene expression. (A) In the native state, TβRI and TβRII form non-covalent homodimers on the cell surface that bind to TGF-β with high avidity ($K_d \sim 5-30$ pM). (B) Preorganization of the TGF-β signaling complex on the collagen matrix via conjugation with collagen mimetic peptide (PPG), that can anneal with native collagen in the wound bed. Such preorganization of the extracellular domains of the receptors should cause avid interaction with endogenous TGF-β.

Figure 4.2. Bar graph showing the effect of TβRI-immobilization (0.5 μmol in 5% w/v PEG/saline) on collagen deposition in non-splinted mouse wounds. Data are from Day 12 post-treatment. Fibrovascular influx was scored on a scale of 0–4, and was significantly higher ($p < 0.05$) in wounds treated with TβRI-CMP in comparison to all the control-treated wounds (*). Values are the median ± SE ($n = 10$).

Figure 4.3. Bar graph showing the effect of TβRI-immobilization (0.5 μmol in 5% w/v PEG/saline) on inflammation in non-splinted mouse wounds. Data are from Day 12 post-treatment. Inflammation was scored on a scale of 0–4, and was significantly higher ($p < 0.05$) in wounds treated with TβRI-CMP in comparison to control wounds treated with the vehicle, soluble TβRI, and CMP (*). Values are the median ± SE ($n = 10$).
Figure 4.4. Bar graph showing the effect of TβrI-immobilization (0.5 μmol in 5% w/v PEG/saline) on re-epithelialization of non-splinted mouse wounds. Data are from Day 12 post-treatment. The extent of re-epithelialization with TβrI-CMP-treatment was higher than that of all the control-treatments. Values are the mean ± SE (n = 10) ... 121

Figure 4.5. Bar graph showing the effect of TβrI-immobilization (0.5 μmol in 5% w/v PEG/saline) on closure of non-splinted mouse wounds. Data are from Day 12 post-treatment. There was no significant difference between the sizes of the wounds, which was calculated as a percentage of the original wound size on Day 0. Values are the mean ± SE (n = 10) ... 123

Figure 4.6. Photographs depicting the effect of TβrI-immobilization on splinted mouse wounds. Images are from Day 0 (immediately post-treatment) or Day 16 after removal of the splints but before euthanasia. Wounds were treated with (A) saline; (B) PEG (5% w/v) in saline; (C) Soluble TβrI (0.5 μmol) in 5% w/v PEG/saline; (D) CMP (0.5 μmol) in 5% w/v PEG/saline; (E) TβrI-CMP (0.5 μmol) in 5% w/v PEG/saline. All wounds treated with TβrI-CMP except for one showed complete closure (n = 16) ... 125

Figure 4.7. Bar graph showing the effect of TβrI-immobilization (0.5 μmol in 5% w/v PEG/saline) on size and re-epithelialization of splinted mouse wounds. Data are from Day 16 post-treatment. (A) The mean size of the TβrI-CMP-treated wounds was significantly different (*) from that of all the controls (p < 0.05). (B) TβrI-CMP treatment showed significantly more (*) extensive epithelial layer formation compared to both saline and PEG/saline controls (p < 0.05). Values are the mean ± SE (n = 16). ... 127
Figure 4.8. Bar graphs showing dose response to increasing concentrations of Tβrl–CMP solutions in saline (25 μL) in 6 mm non-splinted mouse wounds. Data are from Day 12 post-treatment. (A) New collagen deposition (calculated as percentage of a demarked area of the wound at a depth of 0.75 μm from the healed surface). (B) Re-epithelialization. Collagen deposition was up-regulated at higher concentrations of Tβrl–CMP. Values are the mean ± SE (n = 10). .. 129

Figure 4.9. Histological images depicting the effect of Tβrl-immobilization in different doses on collagen deposition and size in non-splinted mouse wounds. Data are from Day 12 post-treatment. Left: Wounds stained with picosirius red and imaged under polarized light. Right: Wounds stained with hematoxylin and eosin. Images represent wounds treated with Tβrl–CMP at concentrations of (A) 50 mM in saline; (B) 10 mM in saline; (C) 2 mM in saline; (D) 0.4 mM in saline; (E) 0.08 mM in saline. At this time point, lesions were still present in all the wounds, and there was more collagen deposition in the wounds treated with higher concentrations of Tβrl–CMP........... 131

Scheme 5.2.1. Synthesis of CMP–polymer conjugate ... 141

Figure 5.3.1. Design of a collagen ‘duplex’ template. (A) The template could act as a scaffold to study triple helix formation in vitro. (B) Duplex strands linked by thioether and disulfide bonds at the C- and N-terminus respectively. (C) Solid-phase synthetic scheme for thioether synthesis. ... 142

Figure 5.3.2. Alternative design for a collagen ‘duplex’ template. (A) Duplex strands linked by amino and disulfide bonds at the C- and N-terminus respectively. (B) Solid phase
synthetic scheme for di-lysine coupling. (C) Solid-phase synthetic scheme for coupling of Fmoc-6-aminohexanoic acid to lysine .. 144

Figure 5.3.3. MALDI-TOF mass-spectra for the polymeric products of the synthetic scheme outlined in Figure 5.3.2C ... 146

Figure A.1.1. Comparison of 10-week-old db/db and normal mice. (A) Exposure of subcutaneous and visceral fat showing more fat in the db/db mouse compared to the wild-type mouse. (B) Sections of epididymal fat of db/db and wild-type mice, showing large size of db/db adipocytes compared with wild-type despite identical food intake. [Adapted from (Wang et al., 2008d)]... 150

Figure A.1.2. Graphical representation of the cross-section of a wound bed in skin. 152

Figure A.1.3: Photographs of the annealing of 5CMP 1 to db/db mouse collagen in vivo. Fluorescently labeled CMP 1 and 5-FAM were applied to 8-mm cutaneous dorsal wounds on mice, washed, and imaged. A. Wound treated 5-FAM. B. Wound treated with 5CMP 1. The outline of the wound-edge is shown in (A) and (B).................... 154

Figure A.2.1. Bar graph representing extent of re-epithelialization in response to increasing concentrations of CMP-SubP solutions in 6 mm non-splinted wounds. Wounds were treated with 0.08, 0.4, 2, 10, and 50 mM solutions (25 µL) in 5% w/v PEG/saline. Data are from Day 12 post-treatment. There were no significant differences in the mean length of the new epithelial layer formed in wounds treated with 0.08, 0.4, and 2 mM CMP-SubP. Values are the mean ± SE (n = 10)................................. 158
Figure A.2.2. Bar graph representing collagen deposition in response to increasing concentrations of CMP-SubP solutions in 6 mm non-splinted wounds. Wounds were treated with 0.08, 0.4, 2, 10, and 50 mM solutions (25 μL) in 5% w/v PEG/saline. Data are from Day 12 post-treatment. New collagen deposition was maximal at 2 mM concentration of CMP-SubP. Values are the mean ± SE (n = 10).…………………………. 160

Figure A.2.3. Bar graph representing inflammatory influx in response to increasing concentrations of CMP-SubP solutions in 6 mm non-splinted wounds. Wounds were treated with 0.08, 0.4, 2, 10, and 50 mM solutions (25 μL) in 5% w/v PEG/saline. Data are from Day 12 post-treatment. The influx of inflammatory cells peaked on treatment with 2 mM CMP-SubP solution. Data represents median ± SE (n = 10). 162

Figure A.3.1. Bar graph showing the additive effect of insulin (50 I.U) during Tβr1-CMP-immobilization on non-splinted mouse wounds. Data are from Day 12 post-treatment. (A) Wound closure, which refers to reduction in area between wound edges as a percentage of the original area. (B) Wound size, which refers to histopathological measurement of wound of the largest diameter. (C) Length of new epithelial layer, measured as the length of advancing keratinocyte layers on either edges of the wound bed. (D) Collagen deposition measured as a percentage of a de-marked area of the wound. (E) Inflammation score. Data represents mean ± SE (n = 6). ……………………. 165

Figure A.3.2.1. Bar graph showing the effect of Tβr1-CMP-immobilization on collagen deposition of non-splinted mouse wounds. Data are from Day 16 post-treatment. Collagen deposition was comparable in all the wounds. Values are the median ± SE (n = 10). …… 169
Figure A.3.2.2. Bar graph showing the effect of Tβrl-CMP –immobilization on collagen deposition of splinted mouse wounds. Data are from Day 16 post-treatment. Collagen deposition was comparable in all the wounds. Values are the mean ± SE (n = 16). 171

Figure A.3.3.1. Bar graph showing the effect of Tβrl-CMP –immobilization on inflammatory influx of non-splinted mouse wounds. Data are from Day 16 post-treatment. Values are the median ± SE (n = 10). 174

Figure A.3.3.2. Bar graph showing the effect of Tβrl-CMP –immobilization on inflammatory influx of splinted mouse wounds. Data are from Day 16 post-treatment. Values are the median ± SE (n = 16). 176

Figure A.3.4.1. Bar graph representing inflammatory reaction in the wounds in response to increasing concentrations of Tβrl-CMP in non-splinted 6 mm mouse wounds. Wounds were treated with 0.08, 0.4, 2, 10, and 50 mM solutions (25 μL) in 5% w/v PEG/saline. Data are from Day 12 post-treatment. Values are the median ± SE (n = 10). The number of ‘chronic active’ wounds was measured as a percentage of the total number of wounds receiving treatment [▲]. The inflammatory score for a wound treated with 20 mM Tβrl-CMP in a separate experiment is also indicated in the same graph [▲]. 180

Figure A.3.4.2. Bar graph representing wound size in response to increasing concentrations of Tβrl-CMP in non-splinted 6 mm mouse wounds. Wounds were treated with 0.08, 0.4, 2, 10, and 50 mM solutions (25 μL) in 5% w/v PEG/saline. Data are from Day 12 post-treatment. Values are the mean ± SE (n = 10). 182
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>three dimensional</td>
</tr>
<tr>
<td>5-FAM</td>
<td>5-carboxyfluorescein</td>
</tr>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>Ala, A</td>
<td>alanine</td>
</tr>
<tr>
<td>A°</td>
<td>angstrom</td>
</tr>
<tr>
<td>Arg, R</td>
<td>arginine</td>
</tr>
<tr>
<td>Asn, N</td>
<td>asparagine</td>
</tr>
<tr>
<td>Asp, D</td>
<td>aspartic acid</td>
</tr>
<tr>
<td>BMP</td>
<td>bone morphogenetic proteins</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Boc</td>
<td>t-butoxycarbonyl</td>
</tr>
<tr>
<td>Bu</td>
<td>n-butyl</td>
</tr>
<tr>
<td>Calcein-AM</td>
<td>acetomethoxy calcein</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>CH$_3$CN</td>
<td>acetonitrile</td>
</tr>
<tr>
<td>CMP</td>
<td>collagen mimetic peptide</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CST</td>
<td>corticospinal tract</td>
</tr>
<tr>
<td>C-terminal</td>
<td>carboxy-terminal</td>
</tr>
<tr>
<td>Cys, C</td>
<td>cysteine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DCC</td>
<td>dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>dH₂O</td>
<td>distilled water</td>
</tr>
<tr>
<td>DHT</td>
<td>dehydrothermal</td>
</tr>
<tr>
<td>DIEA</td>
<td>diisopropylethyl amine</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>EthD-1</td>
<td>ethidium homodimer-1</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration (United States of America)</td>
</tr>
<tr>
<td>FGF</td>
<td>fibroblast growth factor</td>
</tr>
<tr>
<td>flp</td>
<td>(2S,4S)-fluoroproline</td>
</tr>
<tr>
<td>Flp</td>
<td>(2S,4R)-fluoroproline</td>
</tr>
<tr>
<td>Fmoc</td>
<td>9H-fluoren-9-ylmethoxycarbonyl</td>
</tr>
<tr>
<td>GAG</td>
<td>glycosaminoglycans</td>
</tr>
<tr>
<td>GH</td>
<td>growth hormone</td>
</tr>
<tr>
<td>Gln, Q</td>
<td>glutamine</td>
</tr>
<tr>
<td>Gly, G</td>
<td>glycine</td>
</tr>
<tr>
<td>GS</td>
<td>glycine–serine</td>
</tr>
<tr>
<td>GTA</td>
<td>glutaraldehyde</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>h</td>
<td>hour/s</td>
</tr>
<tr>
<td>HA</td>
<td>hyaluronic acid</td>
</tr>
<tr>
<td>HBGF</td>
<td>heparin binding growth factor</td>
</tr>
<tr>
<td>HBTU</td>
<td>O-benzotriazole-(N,N,N',N')-tetramethyl-uronium-hexafluorophosphate</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>hGF</td>
<td>human growth hormone</td>
</tr>
<tr>
<td>His, H</td>
<td>histidine</td>
</tr>
<tr>
<td>HOBr</td>
<td>1-hydroxybenzotriazole</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>Hyp, O</td>
<td>(2S,4R)-hydroxyproline</td>
</tr>
<tr>
<td>i.d.</td>
<td>inner diameter</td>
</tr>
<tr>
<td>IACUC</td>
<td>Institutional Animal Care and Use Committee</td>
</tr>
<tr>
<td>IGF-1</td>
<td>insulin-like growth factor-1</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IR</td>
<td>infra-red</td>
</tr>
<tr>
<td>(K_d)</td>
<td>dissociation constant</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>KGF</td>
<td>keratinocyte growth factor</td>
</tr>
<tr>
<td>Leu, L</td>
<td>leucine</td>
</tr>
<tr>
<td>Lys, K</td>
<td>lysine</td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>matrix-assisted laser desorption/ionization-time of flight</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
<tr>
<td>Met, M</td>
<td>methionine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>mmol</td>
<td>millimoles</td>
</tr>
<tr>
<td>mmol</td>
<td>micromoles</td>
</tr>
<tr>
<td>MMP</td>
<td>matrix metalloproteinase</td>
</tr>
<tr>
<td>Mmt</td>
<td>monomethoxytrityl</td>
</tr>
<tr>
<td>NaCl</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>NaOH</td>
<td>sodium hydroxide</td>
</tr>
<tr>
<td>NH₄OAc</td>
<td>ammonium acetate</td>
</tr>
<tr>
<td>NHDF</td>
<td>normal human dermal fibroblast</td>
</tr>
<tr>
<td>NHS</td>
<td>N-hydroxysuccinimide</td>
</tr>
<tr>
<td>NK</td>
<td>neurokinin</td>
</tr>
<tr>
<td>Nleu</td>
<td>N-isobutylglycine</td>
</tr>
<tr>
<td>NNM</td>
<td>N-methylmorpholine</td>
</tr>
<tr>
<td>N-terminal</td>
<td>nitrogen-terminal</td>
</tr>
<tr>
<td>o.d.</td>
<td>outer diameter</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>PAA</td>
<td>poly(acrylic acid)</td>
</tr>
<tr>
<td>Pbf</td>
<td>2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PDGF</td>
<td>platelet-derived growth factor</td>
</tr>
<tr>
<td>PEG</td>
<td>poly(ethylene glycol)</td>
</tr>
<tr>
<td>Phe, F</td>
<td>phenylalanine</td>
</tr>
<tr>
<td>PHEMA</td>
<td>polyhydroxyethyl methacrylate</td>
</tr>
<tr>
<td>pM</td>
<td>picomolar</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PMNL</td>
<td>polymorphonuclear leucocytes</td>
</tr>
<tr>
<td>PNA</td>
<td>peptide nucleic acid</td>
</tr>
<tr>
<td>PPII</td>
<td>polyproline II</td>
</tr>
<tr>
<td>Pro, P</td>
<td>proline</td>
</tr>
<tr>
<td>PVA</td>
<td>poly(vinyl alcohol)</td>
</tr>
<tr>
<td>PyBOP</td>
<td>benzotriazol-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate</td>
</tr>
<tr>
<td>PyBrOP</td>
<td>bromo-tris-pyrrolidino-phosphonium hexafluorophosphate</td>
</tr>
<tr>
<td>Sar</td>
<td>sarcosine</td>
</tr>
<tr>
<td>SARA</td>
<td>Smad anchor for receptor activation</td>
</tr>
<tr>
<td>Ser, S</td>
<td>serine</td>
</tr>
<tr>
<td>SPPS</td>
<td>solid-phase peptide synthesis</td>
</tr>
<tr>
<td>Sub P</td>
<td>Substance P</td>
</tr>
<tr>
<td>tBu</td>
<td>tertiary-butyl</td>
</tr>
<tr>
<td>TEA</td>
<td>triethyl amine</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>TGF-β</td>
<td>transforming growth factor-β</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>Tm</td>
<td>melting temperature</td>
</tr>
<tr>
<td>TNF</td>
<td>tumor necrosis factor</td>
</tr>
<tr>
<td>Trt</td>
<td>trityl</td>
</tr>
<tr>
<td>Tyr, T</td>
<td>tyrosine</td>
</tr>
<tr>
<td>TβRI</td>
<td>transforming growth factor-β receptor I</td>
</tr>
<tr>
<td>TβRI-ED</td>
<td>transforming growth factor-β receptor I-extracellular domain</td>
</tr>
</tbody>
</table>
TβRII transforming growth factor-β receptor II
TβRII-ED transforming growth factor-β receptor II-extracellular domain
Tβrl transforming growth factor-β receptor ligand
UV ultraviolet
v/v volume per volume
VEGF vascular endothelial growth factor
vWA van Willebrand factor type A
VWF van Willebrand factor
w/v weight per volume
β-Ala β-alanine
μL microliter
μM micromolar
CHAPTER 1*

Development and applications of collagen-based biomaterials for wound healing

* This chapter is in preparation for publication as a review:

Sayani Chattopadhyay and Ronald T. Raines; (2012) Development and applications of collagen-based biomaterials for wound healing
1.1 Introduction

Over the past two decades, numerous innovations have occurred in the area of collagen-based biomaterials, and these have had a major impact in advancing our approach towards soft-tissue repair and tissue engineering. Since the turn of the 20th century, collagen-based materials were used in the form of gut sutures, human cadaver and porcine skin, amnion, and placenta. These early efforts led the way to development of injectable collagen matrices and bone-regeneration scaffolds, along with evolution and improvement of production techniques and cross-linking methods. For most soft and hard connective tissues, collagen fibrils and their networks comprises the majority of the extracellular matrix (ECM) and forms a highly organized, three-dimensional scaffold surrounding the cells. It plays a dominant role in maintaining the biological and structural integrity of the ECM and is a highly dynamic and flexible material that undergoes constant re-modeling to define cellular behavior and tissue function (Aszódi et al., 2006).

Collagen is found in abundance in nature and can be easily purified from living organisms, as it constitutes more than 30% of vertebrate tissue. It is surface-active and is capable of penetrating a lipid-free interface (Fonseca et al., 1996). It shows biodegradability and higher biocompatibility compared to other natural polymers like albumin and gelatin, and is non-toxic and very weakly antigenic towards biological systems (Maeda et al., 1999). One of the major reasons for the use of collagen as a biomaterial is its capability to form fibers with high tensile strength and stability via cross-linking and self-aggregation. It can be modified and formulated in a large number of forms that are now commercially available (Table 1.1). An in-depth understanding of the collagen structure and bioactivity achieved over many years has helped to harness these diverse properties of collagen and applying them for biomedical purposes.
1.2 The Collagen Molecule

Collagen is the most abundant protein in animals and its presence in all connective tissue makes it one of the most studied biomolecules of the ECM. It accounts for about 25% of the dry weight of mammals and in humans, comprises ~75% of the dry weight of skin. To date, 29 different types of collagen, based on their polymeric structures have been characterized (collagen type XXIX belongs to the class of collagens containing von Willebrand factor (VWF) type A (vWA) domains (Söderhäll et al., 2007)), and all of them display a triple-helical primary structure. Of these, collagen I, II, III, V, and XI have fibrillar structures. Collagen helices are comprised of three α-chains that assemble together based on their molecular sequences. The three parallel polypeptide strands in a left-handed polyproline II-type (PPII) helical conformation coil around one another to form a right-handed triple helix (Figure 1.1). In animals the individual collagen triple helices (tropocollagen) come together in a complex manner to form macroscopic fibers and networks that are observed in tissue, bone, and basement membrane. Each α chain in the collagen helix is composed of thousands of amino acids, and each third residue is glycine (Gly) resulting in the Xaa-Yaa-Gly repeat unit, where Xaa and Yaa can be any amino acid (Table 1.2). The presence of Gly is essential at every third residue in order to ensure a tight packing of the three α chains in the tropocollagen molecule. The Xaa position is often occupied by (2S)-proline (Pro) and the Yaa position by (2S,4R)-4-hydroxyproline (Hyp), making Pro-Hyp-Gly the most common repeat triplet in collagen (Ramshaw et al., 1998). The 29 different types of collagen are composed of approximately twenty five different α-chain conformations, a combination of which assembles to form the different types. Although these three chains can be identical, heterotrimeric triple helices are more prevalent than the homotrimeric forms.
Of the various types of collagen characterized, only a few are used in the production of collagen-based biomaterials. Tropocollagen assembles into 10–300 nm sized fibrils and then the fibrils agglomerate to form collagen fibers that range between 0.5 to 3.0 μm in diameter. Fibril forming collagens (type I, II, III, and V) have large sections of homologous sequences independent of the organism (Timpl, 1984), and constitute the most commonly used forms of collagen-based biomaterials for wound healing and tissue engineering purposes. In type IV collagen (basement membrane), the regions with triple-helical conformations are interrupted with large non-helical domains as well with short non-helical peptide interruptions. Fibril associated collagens (type IX, XI, XII, and XIV) have small chains, type VI is microfibrilla collagen and type VII is anchoring-fibril collagen (Samuel et al., 1998). Type I collagen is at present the “gold-standard” in the field of tissue-engineering.

1.2.1 Origin and in vivo interactions

Collagen can be extracted from different sources, including almost all living animals. Common sources for biomedical applications include bovine skin and tendons, porcine skin, and rat-tail. The properties of the protein differ from one animal to the other: typically human or porcine dermis, or collagen from swine intestine or bladder mucosa are used (Badylak, 2004). It is sometimes used as a de-cellularized ECM that can act as a scaffolding material for tissue regeneration. However care has to be taken to account for the immunological, physical scaffold size, and availability of such acellular collagen.

The interaction between the cells with collagen, directly or indirectly, gives rise to the cell-matrix interactions. Direct cell–collagen interactions involve four different kinds of receptors: (i) receptors (like glycoprotein VI) that recognize peptide sequences containing the
Pro-Hyp-Gly unit (Smethurst et al., 2007), (ii) receptors of the integrin family and discoidin domain receptor 1 and 2, that bind to Phe-Hyp-Gly sequence, (iii) receptors of integrin-type that recognize cryptic motifs in the collagen structure, and (iv) receptors with affinity for the non-collagenous domains of the molecule. Many proteins (like decorin and laminin) that contain RGD or similar sequences recognized by integrin, can bind to both collagen and integrin, promoting cell adhesion and proliferation (Fiedler et al., 2008).

1.2.2 Biodegradability of collagen

As a primary structural protein in the body, collagen is particularly resistant to enzymatic attack by neutral proteases. At neutral pH the triple helix is, however, cleaved at certain positions by matrix metalloproteinases (MMPs). Collagen types I–III are hydrolyzed by MMP-1, MMP-2, MMP-8, MMP-13, and MMP-14 (Aimes et al., 1995; Fields, 1991; Ohuchi et al., 1997). Some others, like MMP-3 and MMP-9, bind to type I collagen but do not participate in its degradation (Allan et al., 1991; Allan et al., 1995).

The ability of the MMPs to hydrolyze collagen depends on three criteria: successful binding to collagen molecules, unwinding of the three polypeptide strands, and cleaving each strand of the triple helix. The collagen fibrils are degraded starting from the exterior. After the triple helix is unwound, further degradation of the collagen molecule is facilitated by gelatinases and non-specific proteases that act on these fragments and break them down to small peptides and amino-acid residues.

Application or introduction of exogenous collagen elucidates a complex cellular response that depends on the type of collagen. High biocompatibility and biodegradability of collagen by human collagenases makes exogenous collagen ideal for use in biomedical applications, and the
rate of degradation can be modulated by cross-linking techniques (Weadock et al., 1996). Some of the degradation products of collagen types I–III has been shown to induce chemotaxis of human fibroblasts (Postlethwaite et al., 1978), and such degradation is thought to promote restoration of tissue structure and functionality (Yannas et al., 1982).

1.2.3 Collagen-based biomaterials

Collagen-based biomaterials can be classified into two categories based on the extent of their purification from natural sources: de-cellularized collagen matrices that maintain the original tissue properties and ECM structure; and functional scaffolds prepared via extraction, purification, and collagen polymerization.

The first technique of de-cellularizing collagen entails physical (snap freezing and high pressure), chemical (acidic and alkaline treatment, chelation with EDTA, and using detergents and solutions of high osmolarity), and enzymatic (trypsin treatment) methods to produce the biomaterial (Gilbert et al., 2006). Collagen in this form is typically used as sutures, cardiac valves, and ligamentary prostheses. In the second technique, collagen-based scaffolds have been synthesized by processing collagen solutions with other biomolecules, such as elastin (Buijtenhuijs et al., 2004), glycosaminoglycans (GAG) (Ellis et al., 1996), and chitosan (Wu et al., 2007). Based on their application, the products are gels, sponges, tubes, spheres, and membranes (Table 1.3). Production of such biomaterials requires the extraction and purification of collagen from natural tissues. The dissolution of collagen is, however, impeded by the low solubility of natural collagen due to the presence of covalent cross-linking. Natural collagen is insoluble in organic solvents but can dissolve in aqueous solutions, depending on the nature of the cross-linking present. The most common solvent systems in use include neutral salt solution
(0.15–0.20 M NaCl) (Fielding, 1976), dilute acidic solutions (0.5 M acetic acid, citrate buffer), and proteolytic enzymes, as collagen triple helix is moderately resistant to proteases like pepsin, chymotrypsin, or ficin below ~20 °C (Piez, 1984). The telopeptide ends of polymeric chains are affected, but under controlled conditions the helices remain intact. Pepsin at 1:10 ratio of enzyme to dry tissue weight in dilute acetic acid provides a medium in which collagen can be swollen and dissolved (Piez, 1985).

1.2.4 Cross-linking in collagen

The high tensile strength and proteolytic resistance of natural collagen can be attributed to cross-linking. But due to dissociation of such linkages over time and the extraction processes, the reconstituted forms of collagen (sponges, films) become weak and can disintegrate on handling or under the pressure of surrounding tissues in vivo. Hence efforts have been made to use cross-linking agents to control the in vivo absorption as well as rate of biodegradation. Cross-linking in collagen takes advantage of chemical modifications of the amino and carboxyl groups within the molecules in order to form covalent bonds. These polymerization techniques are grouped into three types:

(i) Chemical cross-linking using formaldehyde (Ruderman et al., 1973), glutaraldehyde (Harriger et al., 1997; Wu et al., 2007), carbodiimides (Powell et al., 2006; Powell et al., 2007), polyepoxy compounds (Tu et al., 1993), acyl azides (Petite et al., 1990), and hexamethylenediisocyanate (Zeugolis et al., 2009). A major drawback of the chemical cross-linking approach is the toxic effects of residual molecules and compounds formed during in vivo degradation (Speer et al., 1980; van Luyn et al., 1992). In an alternative approach, the biomaterials are stabilized by forming ionic bonds between the amino groups of polycationic
molecules like chitosan and the carboxyl groups of collagen. Non-toxic chitosan is mixed with collagen just before lyophilization, making the process simple.

(ii) Physical cross-linking circumvents the problems posed by chemical methods and involves the use of ultraviolet (UV) light or thermal sources to induce collagen-scaffold polymerization. Both dehydrothermal treatment (DHT) and exposure to UV light at 254 nm increase the temperature for collagen shrinkage, tensile strength of the fibers, and resistance to proteolytic degradation (Weadock et al., 1995). UV irradiation takes only 15 min (in contrast to DHT treatment, which takes 3–5 days. DHT treatment increases the sensitivity of collagen to trypsin and lowers the propensity for degradation by pepsin and lysosomal cathepsins (Gorham et al., 1992). Similarly, UV-irradiation increases enzymatic resistance, thereby increasing load-bearing capacity (Weadock et al., 1996).

(iii) Enzymatic cross-linking agents such as transglutaminase have also been used to enhance tensile strength and hydrolytic resistance in collagen-based biomaterials (Khew et al., 2008). This method is the least cytotoxic as no residues or by-products are left behind in the scaffold structure.

1.3 Collagen in Wound Healing

Collagen fibers, sponges, and fleeces have long been used in medicine as hemostatic agents. Collagen sponges are particularly useful in this regard, as their wet strength allows the suturing of the material to soft tissue, thereby providing a template for new tissue growth. Collagen-based implants have been used as vehicles for delivery of cultured keratinocytes and
drugs for skin replacement and burn wounds (Boyce, 1998; Leipziger et al., 1985; McPherson et al., 1986b). Implanted collagen sponges are infiltrated by amorphous connective tissue containing GAG, fibronectin, and new collagen, followed by various cells—primarily fibroblasts and macrophages. Reports have shown that when cells are bound to an extracellular matrix, like implanted collagen sponge, there is an increase in the production of new collagen (Postlethwaite et al., 1978). Depending on the degree of cross-linking, the collagen sponge is degraded into peptide fragments and amino acids in 3–6 weeks by collagenases, and the implant is then replaced by native collagen type I produced by the fibroblasts. Chemical composites with other biomaterials, and acetylated, succinylated, or methylated collagen have also been used for the purpose of immobilizing therapeutic enzymes or controlled drug delivery. One such modification that shows promise for future applications is biotinylation of collagen (Boyce et al., 1992). After covalent attachment of biotin, a model substance (horseradish peroxidase) was bound either with an avidin bridge or via avidinylation of the protease. Biotinylation of collagen was also used to attach peptide growth factors like heparin binding growth factor (HBGF) and epidermal growth factor (EGF), and thereby modulate healing in full-thickness wounds (Stompro et al., 1989).

1.3.1 Skin Replacement

A full-thickness excision wound in porcine model was used to study the effects of a collagen matrix implant on granulation tissue formation, wound contraction, and re-epithelialization (Leipziger et al., 1985). The wounds with the implants showed enhanced granulation tissue formation and re-epithelialization, and contraction was reduced significantly, showing a bias towards wound regeneration and cosmetic utility. In subsequent works, artificial skin was developed as a form of sponge and cultured skin substitutes developed on collagen lattices were used for skin wounds. Reconstituted collagen type I is useful for this purpose by
virtue of its mechanical strength and biocompatibility (Rao, 1996). Cultured skin substitutes preserved from cryo-preserved skin cells have been used to cure chronic diabetic wounds (Boyce, 1998). In lieu of pathological skin, the contracted collagen lattice served as a support for epithelial growth and differentiation (Yannas et al., 1989). Collagen implants have also been used in corneal healing, and corneal cells appeared normal when cultured individually on synthetic collagen matrix (Orwin et al., 2000). Corneal scaffolds have also been constructed with recombinant human collagen (Griffith et al., 2009) and can induce collagen secretion by fibroblasts (Carrier et al., 2008). Microbial baggage control has been attempted by the addition of antimicrobial drugs like amikacin to bovine skin collagen (Boyce et al., 1993). Cutaneous models with melanocytes (Régnier et al., 1997), dendritic cells (Bechetouille et al., 2007), and adipose tissue (Trottier et al., 2008) have been developed.

Cultured skin substitutes exhibited delayed keratinization after grafting in comparison to native skin autografts (Supp et al., 1999). To address this issue, collagen-based systems were modified with other proteins like glycosaminoglycan (GAG), and fibrin. Human epidermal keratinocytes were cultured on membranes composed of GAGs and collagen (Boyce et al., 1988). Keratinocytes and fibroblasts were attached to those membranes, which were then cross-linked, reducing their rate of bio-degradation (Boyce et al., 1995; Harriger et al., 1997). When the collagen-substitutes were incubated in reduced humidity in vitro, they stimulated restoration of a functional epidermis (Supp et al., 1999). Similarly, cultured cells were best grafted in combination with either a thin layer of collagen or fibrin, but not both (Lam et al., 1999). Attachment and delivery of peptide growth factors via an avidin bridge has been attempted by covalent biotinylation of bovine collagen. The activity of the growth factor was not
compromised, and the strategy demonstrated potential for modulating wound healing (Boyce et al., 1992; Stompro et al., 1989).

More recently, acellular bilayer artificial skin with an outer later composed of silicone and an inner layer composed of collagen matrix was developed as a split-thickness skin graft, and proven to be biocompatible with the long-term post-operative tissue (Suzuki et al., 2000). Bilayered-collagen gel seeded with human fibroblasts in the lower part and human keratinocytes in the upper layer have been used as the ‘dermal’ matrix of an artificial skin. This product was commercialized by Organogenesis (U.S.A) under the brand name Apligraf®, and was the first bio-engineered skin to receive FDA approval, in 1998. Organogenesis has other collagen-based products currently under development, including Revitix™ (a topical cosmetic product), VCTO1™ (a bilayered bio-engineered skin), or Forta-Derm™ Antimicrobial (an anti-microbial wound dressing).

1.3.2 Aqueous Injectables and Hydrogels

Dermatological defects have been treated with subcutaneous injections of collagen solutions for the last few decades. This application is of high commercial success, particularly in the area of plastic and reconstructive surgery. Injectable autologous dermal collagen has been developed for this purpose. An extensive study (McPherson et al., 1986a) showed that treating reconstituted pepsin-solubilized bovine corium collagen dispersions with glutaraldehyde (GTA) had a significant impact on their physiochemical stability and that the biological response was a function of the degree of cross-linking (McPherson et al., 1986b). At low GTA concentrations, the response was characterized primarily by influx of fibroblasts, neovascularization, and little inflammation. Treatment of the collagen dispersions with higher concentrations of GTA caused a
foreign body/giant cell reaction, and calcification. The neutral solubility of such treated fibrils decreased at elevated temperatures, but there was a significant increase in proteolytic stability compared to the non-cross-linked fibers. The cross-linked solutions were more viscous than their un-treated counterparts (McPherson et al., 1986a; Wallace et al., 1989). The increased viscosity made it difficult to inject the cross-linked formulations into the affected tissue, where the distribution of the injected material was not uniform and formed palpable masses, as seen in histological sections. A blend containing hyaluronic acid (HA) (0.3–0.5%) resulted in a significant ease in the injection process. A patent filed by the same group indicated that low molecular weight compounds such as maltose and neutral polymers such as dextran can be used as lubricants to facilitate injection into the tissue.

The effectiveness of local anesthetics and central analgesics, when formulated as collagen-based injections was improved by 30 to 5-fold compared to control injections of the drugs alone. The question posed was whether this prolonged delivery was due to a slow-down in the rate of diffusion of the drug due to the viscosity of collagen, or due to interactions between the drug molecule and collagen. Subsequent work (Rosenblatt et al., 1989) showed that fibrillar collagen was capable of moderating the release-rate of only very large protein drugs such as fibrinogen, and significant amounts of non-fibrillar content was necessary to regulate the diffusion of smaller proteins like chymotrypsinogen. In reality, the apparent slow diffusion of drugs when delivered via collagen matrices was a combined result of both electrostatic and hydrophobic interactions.

The scope for using injectable collagen formulations for the delivery of growth factors and consequent cellular regeneration and tissue repair is vast. In a porcine model, intestinal wound repair was attempted by treatment with collagen suspensions carrying transforming
growth factor-β (TGF-β) or fibroblast growth factor (FGF). Wounds treated with the collagen dispersion of the growth factors were stronger than were control wounds. These formulations were also successful in partially reversing the steroid-induced impairment of breaking-load in intestinal-wound models (Slavin et al., 1992). Investigations of cellular function, migration, proliferation, and differentiation in collagen gels led to further understanding of the mechanism and kinetics of transport, as well as the influence of growth factors, laminin, and fibronectin (Parkhurst et al., 1992; Parkhurst et al., 1994; Saltzman et al., 1992).

Collagen gels positioned between the stumps of transected spinal cord resulted in axons emerging from the interface with the spinal tissue and then growing into the implanted collagen gel within a month (Marchand et al., 1993). The tensile strength and durability of the collagen implant was strengthened by co-precipitation with chondroitin-6-sulfate or cross-linking by carbodiimide, which also regulated the normal scarring process, promoted axon growth (Marchand et al., 1993), and fibroblast proliferation (Docherty et al., 1989). The efficacy of injectable fluid collagen solution into the lesion that self-assembles in situ was also compared to implanted solid collagen gel (Joosten et al., 1995). Corticospinal Tract (CST) axons were visualized in the matrix, along with an influx of astroglial and microglial cells into the collagen. The solid collagen gel in the form of a sponge on the other hand, which was implanted pre-assembled, did not show any axon growth or the influx of astroglial and microglial cells.

Collagen hydrogels have been used as a drug delivery system due to its capacity to present a large and constant surface area. A common practice has been to combine natural and synthetic polymers with synergistic properties. This imparts higher mechanical strength to the natural polymers and biological acceptability to their synthetic counterparts. Synthetic polymers such as poly(vinyl alcohol) (PVA) and poly(acrylic acid) were blended with natural polymers
such as collagen and hyaluronic acid (HA), formulated into hydrogels, films, and sponges that were then loaded with growth hormone (GH) (Cascone et al., 1995). These formulations provided a controlled-release of GH from the collagen hydrogel, based on the collagen content of the system. Due to their low antigenicity, bovine and equine collagen matrices are used routinely in clinical applications. Gels have been formulated with atelocollagen, produced by the removal of telopeptide ends using pepsin, and were used for the delivery of chondrocytes in order to repair cartilage defects (Uchio et al., 2000).

A recent development in the field has been the development of a drug-delivery system using liposomes sequestered in collagen gel that can release insulin and GH into circulation in a controlled manner (Weiner et al., 1985). Collagen interacted with these vesicles, decreasing lipid peroxidation as well as the permeability of neutral or negatively charged liposomes suspended in the collagen gel (Pajean et al., 1993; Weiner et al., 1985) in the results was a slow diffusion of the encapsulated compound over a period of 3–5 days. Collagen can also be used as an additive in oil-based suspensions, to sustain the release of proteins lyophilized, ground, and suspended in a lipophilic liquid. This technology appears to have good potential for a topical treatment of surgical and non-surgical wounds, and burns.

1.3.3 Sponges

Commercially available collagen sponges are insoluble forms of the protein derived from animals like cows, horses, and pigs. It is prepared by lyophilizing aqueous acid- or alkali-swollen collagen solutions containing 0.1–5% of dry matter. The porosity of such sponges is controlled by varying the collagen content and freezing-rate. These sponges are capable of absorbing large amounts of tissue exudate, adhere smoothly to the wet wound bed and maintain a moist
environment, while shielding against mechanical trauma and bacterial infection (Yannas, 1990). They are used routinely as a wound dressing for severe burns, pressure sores, donor site, leg ulcers, and in in vitro systems (Geesin et al., 1996). Collagen sponges have been combined with elastin, fibronectins, and GAGs to impart resilience and fluid-binding capacity (Doillon et al., 1986; Lefebvre et al., 1992). These materials can be cross-linked further with GTA and conjugated to polymers such as polyhydroxyethyl methacrylate (PHEMA), to produce hydrophilic matrices with increased mechanical strength. Three-dimensional collagen lattices loaded physiologically with fibroblasts have been developed as an in vitro model for wound healing (Carlson et al., 2004). Collagen promotes cellular motility, and inflammatory cells actively invade the porous scaffold (Chvapil et al., 1986). A highly vascularized granulation tissue forms, that in turn stimulates the formation of new granulation tissue and epithelial layers. Sponge implantation in burn wounds caused a rapid recovery of the skin due to an intense infiltration of neutrophils in the sponge (Boyce et al., 1988).

Collagen-based sponges by virtue of the above properties, act as an effective scaffold for the activity of exogenously applied growth factors in wounds. Type I collagen sponge expedites wound healing by promoting the deposition of newly synthesized large-diameter collagen fibers parallel to the fibers in the sponge; thereby reversing the decreased tensile strength in large open dermal wounds. When these sponges are further seeded with fibroblasts or coated with basic fibroblast growth factor (FGF) prior to implantation in a guinea-pig dermal wound model, they promote both early dermal and epidermal wound healing (Marks et al., 1991). Recombinant platelet-derived growth factor (PDGF), on introduction into the wound matrix via a collagen sponge scaffold facilitated increased fibroblast influx into the wounds and enhanced capillary formation in comparison to control treatments (Lepistö et al., 1994).
Collagen sponges were also found to be suitable for short-term delivery of antibiotics to the wounds bed, and sponges soaked with solutions of gentamicin, cefotaxim, fusidic acid, clindamycin, and vancomycin released 99.9% of the antibiotics under sink conditions after two days in vitro (Wachol-Drewek et al., 1996). Local infection was contained when gentamicin containing collagen matrix was placed on a septic focus in rat abdomen (Vaneerdeweg et al., 1998). These sponges did not exhibit any unwanted side-effects and were absorbed into the tissue after a few days (Stemberger et al., 1997).

Apart from acting as a scaffold for growth factors and antibiotics, porous collagen sponges have also found use for cell culture, either for tissue engineering purposes ex vivo or as a direct implant. They have been used to create cartilage via chondrocytes (with or without FGF) (Fujisato et al., 1996; Toolan et al., 1996), abdominal walls via myoblasts (van Wachem et al., 1996), and develop axons in spinal cord from Schwann cells (Paño et al., 1994). Dense collagen type I matrices can also act as a scaffold for in vitro fibroblast cell culture (Sung et al., 2009) and studies into angiogenesis (Cross et al., 2010). A combination of collagen biomaterials and mesenchymal stem cells could provide a useful strategy to treat wounds and a current topic involves delivery of such stem cells using collagen scaffolds (Altman et al., 2008; Trottier et al., 2008). A modified sponge that can act as an artificial skin graft was developed by combining fibrillar collagen with gelatin (Koide et al., 1993), that was then stabilized via dehydrothermal cross-linking. A similar sponge incorporating gelatin has since been used as a carrier matrix for mesenchymal stem cells targeting cartilage stem cell therapy (Ponticiello et al., 2000).
1.3.4 Recombinant collagen sponges

Recombinant collagen sponges self-assemble into ordered biological structures and fibrils. Upon formulation via in-mold cross-linking, a homogeneous three-dimensional sponge with porous microstructures interconnected by thin sheets of collagen fibrils was produced (Olsen et al., 2003). This assembly was in contrast to the commercial natural collagen sponge, which has thicker sheets and fibers. Recombinant collagen type I in the form of sponges exhibited a lower inflammatory reaction compared to its natural counterpart, whereas recombinant collagen type II is a good choice as a carrier for chondrogenic growth factors. Due to its superior hemostatic properties, recombinant collagen type III is well suited for wound-management applications.

1.3.5 Films and membranes

Collagen films have been used in wound healing and tissue engineering primarily as a barrier membrane. Films of approximately 0.1–0.5 mm thickness were cast from collagen solutions and air-dried in a manner similar to ophthalmological shields. As an added advantage, films made from bio-degradable materials like telopeptide-free reconstituted collagen demonstrated a slow release of encapsulated drugs (Rubin et al., 1973). Drugs were loaded into the collagen membranes via hydrogen bonding, covalent bonding, or encapsulation. They afford easy sterilization and become pliable after hydration, without compromise to their mechanical strength.

Collagen membranes have been used for wound dressings, dural closures, reinforcement of compromised tissues, and guided tissue regeneration. Wound healing in diabetic db/db mice was moderated by a sustained release of human growth hormone (hGF) encapsulated in collagen
films (Maeda et al., 2001). In another study, films made with collagen–polyvinyl alcohol (PVA) mixtures cross-linked with GTA vapors have been tested as a depot formulation for recombinant hGF (Cascone et al., 1995). A patent (Song et al., 1992) gives details of single and multilayer collagen films as vehicles for the sustained release of pharmaceuticals, especially growth factors. The individual collagen films were attached together by applying gentle pressure to form multilayer membranes, and PDGF was released from these films at a constant rate up to 100 h and improved wound healing in vivo.

These bio-degradable collagen membranes can serve as scaffolds for the survival of transfected fibroblasts (Rosenthal et al., 1997). A blend of collagen and another polymer, such as an atelocollagen matrix, added on the surface of polyurethane films promoted the attachment and proliferation of fibroblasts, and supported their growth (Park et al., 2000). Collagen-based films and membranes contain extra matrices that improve the conditions for long-term cell survival. Olsen and co-workers have also demonstrated the feasibility of using recombinant collagen type I from P. Pastoris yeast to formulate films that can be used for tissue engineering and guided tissue regeneration post dental surgery.

1.3.6 Wound dressings

Collagen plays a pivotal role in pre- and post-operative surgical applications. Due to their low antigenicity and inherent biocompatibility with most endogenous tissue, natural collagen has been used historically for surgical repair and abdominal wall repair (Van der Laan et al., 1991). Wound dressings based on collagen are practical and easily remodeled due to their simple membrane structure, relative uniformity, and abundant availability. These factors were taken into account for the development of novel surgical adhesives synthesized from porcine collagen and
polyglutamic acid. The adhesives were used to prevent air from leaking out of damaged lungs during the long process of recovery. The absorption of such collagen-based adhesives can be regulated by altering the collagen content of the system.

Collagen-based wound dressings have been in use for a long time for the purpose of burn wound coverage and ulcer treatments (Doillon et al., 1986; Peters, 1980; Yannas et al., 1982). They have a distinctive practical and economic advantage compared to growth factor and cell-based treatment of full-thickness wounds. They have been formulated in a number of different forms (Table 1). An unconventional form of these treatments consisting of powdered avian collagen was effective in expediting chronic wound healing (Whitaker et al., 1992). The powder promoted cellular recruitment, activation of the inflammation phase of wound healing, and support for new tissue growth—very similar in function to collagen sponges.

Some common and commercially viable skin, dermal substitutes, and dressings like Alloderm™ (human dermis), Amniograph™ (amniotic membrane), Integra® (acellular collagen-GAG scaffold), and Oasis™ (porcine skin), are used for medical applications. A combination of collagen with alginate was also successful in promoting the inflammatory phase of the wound healing, while imparting mechanical strength—a characteristic of collagen fibrils.

Collagen dressings were also synthesized with a semi-occlusive polymer film attached to its outer surface (Zitelli, 1987). Such occlusive films are resistant to bacterial attack as well as further mechanical trauma, and provides proper air and vapor permeability. They are also successful in reducing contraction and scarring, and increasing the rate of epithelialization. A commercially successfully example of such a dressing used extensively in burn care is Biobrane®, which consists of a silicone membrane knitted with a nylon membrane—both of
which are incorporated with porcine collagen peptides (Figure 1.2). Used as a temporary dressing, this composite promotes granulation and acts as an adjunct therapy for full-thickness wounds (Lal et al., 2000; Smith, 1995).

1.4 Synthetic collagen and collagen mimetic peptides

The efficacy of collagen as a biomaterial in wound healing and engineering collagen type I in skin and tendons is well established, but the use of such collagen derived from animal sources is sometimes complicated by allergic reactions and pathogen transmissions (Koide, 2007). Recombinant triple-helical collagen produced in *Escherichia coli* has much promise (Pinkas et al., 2011).

A potential alternative to conventional biomaterials are synthetic peptides that can be constructed easily in laboratory settings from natural amino acids, be processed easily, and have a controlled degradation pattern. They are susceptible to modifications with non-natural amino acids and other small molecules. Peptide-based biomaterials were developed to mimic the intricate fibrillar structure of native collagen-based ECM and function as a scaffold for cells. A promising candidate in this regard is peptide-amphiphile nanofibers (Hartgerink et al., 2001; Hartgerink et al., 2002). An undecapeptide was shown to self-assemble into cylindrical nanofibers, ~7 nm in diameter and several micrometers in length due to the presence of N-terminal alkyl chains. The peptide fragment, when exposed to the aqueous environment displayed repeated chemistry on the fiber surface—a phosphoserine residue stimulated formation of calcium phosphate minerals, while Arg-Gly-Asp segment promoted cell adhesion and growth on the surface of the fiber.
Nanofibrillar gels cross-linked by the self-assembly of self-complementary amphiphilic peptides in a physiological medium were developed by Zhang and co-workers (Zhang, 2003). These gels have more than 90% water content and the matrix is composed of interwoven nanofibers ~10 nm in diameter and 200 nm pores (Marini et al., 2002). The tailor-made self-assembling peptides were shown to provide de novo-designed scaffolds for three-dimensional cell cultures. These nanofibrillar gels maintained the morphology of differentiated chondrocytes and developed a cartilage-like ECM rich in proteoglycans and collagen type II, thereby showing potential for an active role in cartilage repair (Kisiday et al., 2002).

The development of artificial collagen-like materials from collagen mimetic peptides has much potential. Native chemical ligation have been used to polymerize CMPs in aqueous solutions (Paramonov et al., 2005). The resulting 1000-kDa peptides exhibited fiber-like structures that were micrometers in length. The presence of cysteine and lysine residues on these peptides can be exploited for further cross-linking and modification by functional moieties.

Other groups have developed novel peptide-based systems for synthesizing collagen-like supramolecules via the spontaneous assembly of preorganized collagen mimetic peptides (Koide et al., 2005; Kotch et al., 2006). The repeat unit in these peptides is Pro-Hyp-Gly, which is also the most common repeat unit in natural type I collagen, and the peptide strands are linked to each other via disulfide bridges in a staggered arrangement. This design promotes the formation of elongated triple-helical supramolecules (Kotch et al., 2006).

Peptoid-containing collagen mimetic peptides developed by Goodman and co-workers (Johnson et al., 2000) were shown to interact with epithelial cells and fibroblasts when immobilized on a synthetic surface. The cell-binding peptides required a minimum of nine Gly-
Pro-Nleu units and were not cytotoxic. Amine-functionalized latex nanoparticles functionalized with (Gly-Pro-Hyp)$_{10}$ units were shown to be capable of inducing human platelet-aggregation, with a potency close to that of type I (Cejas et al., 2007), and these Gly-Pro-Hyp segments represent functional platelet-collagen receptor recognition motifs within collagen (Smethurst et al., 2007). These peptides can thus play active roles in the wound-healing process. A short peptide (Pro-Pro-Gly)$_{5}$ was also established to be a potent chemo-attractant for alveolar macrophages that induces the migration of polymorphonuclear leucocytes (PMNL) into lungs (Inoue et al., 2009; Laskin et al., 1990; Laskin et al., 1994). Coating with peptides mimicking segments of type I collagen promoted mesenchymal cell adhesion to hydroxyapatite surface and improved bone formation (Hennessy et al., 2009).

Triple-helical stability and cellular responses of collagen segments can be affected by even a single-site replacement of Hyp with (4R)-Flp or (4S)-flp, as shown by Fields and co-workers (Malkar et al., 2002). (4R)-Flp-containing peptide has a greater T_m than does its (4S)-flp or Hyp analogue, and also promoted greater cell adhesion and spreading on its surface. This rational use of fluoroproline residues in the mimetic strands could form the basis for new collagen ligands and biomaterials.

To advance the use of collagen mimetic peptides in the engineering of wounds, a key requisite is the ability of such peptides to anneal or adhere to endogenous collagen. Single strands of collagen mimetic peptides containing (Pro-Hyp-Gly)$_n$ as well as polyethylene glycol conjugated with these peptides have been shown to bind to collagen films (Wang et al., 2005) and show promise for imaging and wound-healing studies (Wang et al., 2008a). Gold-nanoparticles functionalized with (Pro-Hyp-Gly)$_n$-based peptides were visualized to bind to the 'gap' regions of native collagen (Mo et al., 2006). These peptides have a bias to be in their
homodimeric triple-helical form at room temperature. This bias mandates pre-heating to temperatures as high as 80 °C to unfold the peptides before they can be used for binding with native collagen, and restricts work to synthetic surfaces and conditions that are not clinically relevant. Accordingly, there is an imperative need for the development of collagen mimetic peptides that can interact with natural collagen at room temperature and physiological conditions. In this thesis, I address this need and further the use of synthetic collagen as an effective biomaterial.
Figure 1.1. Higher order assembly of collagen triple helix. [Adapted from (Klug et al., 1997)]
Table 1.1. Commercial forms of reconstituted collagen

<table>
<thead>
<tr>
<th>Collagen Form</th>
<th>Name (Company)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partially Purified Skin</td>
<td>Life Cell</td>
</tr>
<tr>
<td>Collagen Sponge</td>
<td>Helistat (Integra LifeSciences)</td>
</tr>
<tr>
<td></td>
<td>Instat (Johnson & Johnson)</td>
</tr>
<tr>
<td></td>
<td>ActiFoam (MedChem)</td>
</tr>
<tr>
<td></td>
<td>SkinTemp (BioCor)</td>
</tr>
<tr>
<td>Collagen Fiber</td>
<td>Helitene (Integra LifeScience)</td>
</tr>
<tr>
<td></td>
<td>InstatFibrillar (Johnson & Johnson)</td>
</tr>
<tr>
<td></td>
<td>Avitene (Medichem)</td>
</tr>
<tr>
<td>Collagen Powder</td>
<td>BioCore (Medifil)</td>
</tr>
<tr>
<td>Collagen Composite Dressing</td>
<td>Fibracol (Johnson & Johnson)</td>
</tr>
<tr>
<td></td>
<td>Biobrane (UDL Laboratories)</td>
</tr>
<tr>
<td>Hydrolyzed Collagen</td>
<td>Chronicure (Derma Sciences)</td>
</tr>
</tbody>
</table>
Table 1.2. Amino-acid composition of human type I collagen [Adapted from (Piez, 1985)]

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>α1(I)-chain</th>
<th>α2(II)-chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>124</td>
<td>111</td>
</tr>
<tr>
<td>Arginine</td>
<td>53</td>
<td>56</td>
</tr>
<tr>
<td>Asparagine</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>Aspartic Acid</td>
<td>33</td>
<td>24</td>
</tr>
<tr>
<td>Glutamic Acid</td>
<td>52</td>
<td>46</td>
</tr>
<tr>
<td>Glutamine</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>Glycine</td>
<td>345</td>
<td>346</td>
</tr>
<tr>
<td>Histidine</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Hydroxylsine</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Hydroxyproline</td>
<td>114</td>
<td>99</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Leucine</td>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td>Lysine</td>
<td>34</td>
<td>21</td>
</tr>
<tr>
<td>Methionine</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Proline</td>
<td>127</td>
<td>108</td>
</tr>
<tr>
<td>Serine</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>Threonine</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Valine</td>
<td>17</td>
<td>34</td>
</tr>
</tbody>
</table>
Table 1.3. Biomedical Applications of Collagen

<table>
<thead>
<tr>
<th>Composition</th>
<th>Biomaterial Form</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagen</td>
<td>Gel</td>
<td>Cosmetic Skin Defects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drug Delivery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vitreous Replacement Surgery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coating of Bioprostheses</td>
</tr>
<tr>
<td></td>
<td>Sponge</td>
<td>3D Cell Culture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wound Dressing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemostatic Agent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin Replacement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drug Delivery</td>
</tr>
<tr>
<td></td>
<td>Hollow Fiber Tubing</td>
<td>Cell Culture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nerve Regeneration</td>
</tr>
<tr>
<td></td>
<td>Sphere</td>
<td>Micro-carrier for Cell Culture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drug Delivery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wound Dressing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dialysis</td>
</tr>
<tr>
<td></td>
<td>Membrane</td>
<td>Tissue Regeneration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corneal Shields</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin Patches</td>
</tr>
<tr>
<td></td>
<td>Rigid Form</td>
<td>Bone Repair</td>
</tr>
<tr>
<td></td>
<td>Sponge</td>
<td>3D Cell Culture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wound Dressing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin Replacement</td>
</tr>
<tr>
<td>Collagen + GAG</td>
<td>Membrane</td>
<td>Tissue Regeneration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skin Patches</td>
</tr>
<tr>
<td>Collagen + Hydroxyapatite</td>
<td>Powder Sponge</td>
<td>Bond-Filling and Repair</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drug Delivery (BMP)</td>
</tr>
</tbody>
</table>
Characteristics
1. Wound closed: protected
2. Optimum healing environment
3. Rapid reepithelialization along inner membrane

Figure 1.2. Bilayer structure of Biobrane® and its adherence to wound surface to promote healing [Adapted from www.burnsurgery.org (Demling et al.)]
CHAPTER 2*

Peptides that anneal to natural collagen *in vitro* and *ex vivo*

* This chapter has been submitted for publication as:

Sayani Chattopadhyay, Christopher J. Murphy, Jonathan F. McAnulty, and Ronald T. Raines; (2012) Peptides that anneal to natural collagen *in vitro* and *ex vivo*
2.1 Abstract

Collagen comprises 1/4 of the protein in humans and 3/4 of the dry weight of human skin. Here, we implement recent discoveries about the structure and stability of the collagen triple helix to design new chemical modalities that anchor to natural collagen. The key components are collagen mimetic peptides (CMPs) that are incapable of self-assembly into homotrimeric triple helices, but are able to anneal spontaneously to natural collagen. We show that such CMPs containing 4-fluoroproline residues, in particular, bind tightly to mammalian collagen in vitro and to a mouse wound ex vivo. These synthetic peptides, coupled to dyes or growth factors, could herald a new era in assessing or treating wounds.
2.2 Introduction

Collagen is a helix of three polypeptide strands. Each of these strands consists of ~300 Xaa-Yaa-Gly units, where Xaa is often (2S)-proline (Pro) and Yaa is (2S, 4R)-4-hydroxyproline (Hyp). Studies with collagen mimetic peptides (CMPs) show that replacing Pro with Hyp in the Yaa position stabilizes the collagen triple helix (Inouye et al., 1976). Initially, this stability was attributed to water molecules forming bridging hydrogen bonds between the 4-hydroxyl groups and main-chain oxygen (Bella et al., 1995). We showed, however, that collagen stability was enhanced dramatically by replacing Hyp in the Yaa position with (2S, 4R)-4-fluoroproline (Flp; Table 1), which has a side chain that is compromised severely in its ability to form hydrogen bonds (Engel et al., 1998; Holmgren et al., 1998; Holmgren et al., 1999). We concluded that stereoelectronic effects were responsible for the extra stability conferred by Hyp (Bretscher et al., 2001; Holmgren et al., 1998; Holmgren et al., 1999; Kotch et al., 2008). Briefly, the 4R-electronegative substituents enforce a C'-exo ring pucker that preorganizes the main-chain dihedral angles of the residue in the Yaa position to be those required in a collagen triple (Shoulders et al., 2009b; Shoulders et al., 2010).

In contrast to Hyp in the Yaa position, Pro in the Xaa position of a collagen triple helix adopts a C'-endo ring pucker (DeRider et al., 2002; Vitagliano et al., 2001). Accordingly, we found that replacing Pro in the Xaa position with (2S, 4S)-4-fluoroproline (flp), which prefers an endo ring pucker, enhances triple-helical stability (Doi et al., 2003; Hodges et al., 2003; Renner et al., 2001). Even though introducing flp into the Xaa position or Flp into the Yaa position is highly stabilizing, introducing both is highly destabilizing due to steric interactions between proximal fluoro-groups within the same cross section of a triple helix (Doi et al., 2005; Hodges et al., 2005; Shoulders et al., 2008; Shoulders et al., 2009a). Nevertheless, reagents that can have
adverse consequences for the structure and heterotrimeric triple helices in which (flp-Flp-Gly)$_7$ and (Pro-Pro-Gly)$_7$ are in a ratio 1:2 or 2:1 are more stable than the homotrimeric triple helices attainable from either of these strands alone (Hodges et al., 2005).

Natural collagen is not effective in retaining passively absorbed materials. Efforts have been made to deliver and immobilize materials on natural collagen by chemical coupling. (Tiller et al., 2001) Such covalent modification requires the use of electrophilic reagents that can alter the attributes of endogenous collagen, as well as damage other biopolymers. Hence, we sought to develop a non-covalent means to anchor a material to natural collagen.

Strand invasion plays a key role in molecular biology. A common example is the invasion of a single DNA or PNA strand into a DNA duplex to form base pairs with one of the parental DNA strands within a displacement loop (or “D-loop”) (Kasamatsu et al., 1971; Nielsen, 1999). Natural collagen contains loops or interruptions in its triple helix, (Long et al., 1995; Paterlini et al., 1995) and these domains are accessible to CMPs (Leikina et al., 2002; Miles et al., 2001; Mo et al., 2006). We sought to take advantage of this phenomenon in wound tissue, which abounds in frayed and broken collagen (Figure 2.1). We suspected that fluoroproline-based CMPs might anneal to collagen under physiological conditions, unlike (Pro-Hyp-Gly)$_n$- based peptides, which require a high-temperature pre-treatment to dissociate triple helices into single strands (Wang et al., 2005; Wang et al., 2008a). Such heating could damage the peptide or a pendant molecule, and is not attractive in a clinical setting. Here, we report on the annealing of CMPs to natural collagen in vitro and ex vivo.
2.3 Experimental procedures

2.3.1 General materials and methods

Commercial chemicals were of reagent grade or better, and were used without further purification. Anhydrous THF, DMF, and CH₂Cl₂ were dispensed from CYCLE-TAINER® solvent delivery systems from J. T. Baker (Phillipsburg, NJ). Other anhydrous solvents, including DMSO, were obtained in septum-sealed bottles. In all reactions involving anhydrous solvents, glassware was either oven- or flame-dried.

Flash chromatography was performed with columns of silica gel 60, 230–400 mesh from Silicycle (Québec City, Canada). Semi-preparative HPLC was performed with a Varian Dynamax C-18 reversed phase column. Analytical HPLC was performed with a Vydc C-18 reversed phase column.

IRDye® 800CW NHS ester was from LI-COR (Lincoln, NE). Rhodamine Red™-X NHS ester and 5-carboxyfluorescein NHS ester were from Life Technologies (Grand Island, NY). Insoluble calf-skin collagen from ICN Biomedicals (Irvine, CA) and rat-tail type I collagen (5 mg/ mL) from Life Technologies were used for the in vitro annealing and retention studies, respectively. Cryopreserved PrimaPure™ normal human (adult) dermal fibroblasts (NHDF) were from Genlantis (San Diego, CA), and a LIVE/DEAD® Viability / Cytotoxicity Kit for mammalian cells was from Life Technologies.

Mass spectrometry was performed with either a Micromass LCT (electrospray ionization, ESI) mass spectrometer from Waters (Milford, MA) in the Mass Spectrometry Facility in the Department of Chemistry or an Applied Biosystems Voyager DE-Pro (matrix-assisted laser
desorption/ionization) mass spectrometer from Life Technologies in the Biophysics Instrumentation Facility at the University of Wisconsin–Madison.

2.3.2 Peptide synthesis

Peptides were synthesized by SPPS using an Applied Biosystems Synergy 432A Peptide Synthesizer from Life Technologies at the University of Wisconsin–Madison Biotechnology Center. The first seven coupling were of a normal duration (30 min), subsequent couplings were extended (120–200 min). Fmoc-deprotection was achieved by treatment with piperidine (20% v/v) in DMF. CMPs 1–4 were synthesized on FmocLys(Boc)-Wang resin (100–200 mesh). CMPs 1–3 were synthesized by segment condensation of their corresponding Fmoc-tripeptides (3 equiv).

For CMP 1, Fmocflp-Flp-GlyOH was synthesized from commercial BocflpOH and BocFlpOH, (Chorghade et al., 2008) as described previously (Hodges et al., 2005). Briefly, PyBOP-mediated coupling of BocFlpOH to the tosylate salt of glycine benzyl ester yielded a dipeptide, which was converted to its HCl salt, coupled to FmocflpOH, and subjected to hydrogenation to yield the tripeptide. Fmocflp-Flp-GlyOH, FmocGlyOH, and FmocSer(tBu)OH were used in SPPS, resulting in CMP 1.

For CMPs 2 and 3, FmocPro-Pro-GlyOH was synthesized by using N,N'-dicyclohexylcarbodiimide-mediated coupling as reported previously (Jenkins et al., 2005). FmocPro-Pro-GlyOH, FmocProOH, FmocSarOH, FmocGlyOH, and FmocSer(tBu)OH were used in SPSS, resulting in CMPs 2 and 3.
CMP 4 was synthesized by the sequential coupling of FmocProOH, FmocGlyOH, and FmocSer(tBu)OH by SPPS.

Peptides were cleaved from the Wang resin by using 95:2.5:2.5 TFA / triisopropylsilane / H$_2$O (total volume: 2 mL), precipitated from t-butylmethyl ether at 0 °C, and isolated by centrifugation. Peptides were purified by semi-preparative HPLC using the following linear gradients: CMP 1, 5–45% B over 60 min, CMP 2, 10–90% B over 50 min, and CMP 3, 5–85% B over 45 min, where solvent A was H$_2$O containing TFA (0.1% v/v) and solvent B was CH$_3$CN containing TFA (0.1% v/v). All peptides were judged to be >90% pure by analytical HPLC and MALDI–TOF mass spectrometry: m/z [M + H]$^+$ calculated for CMP 1 2531, found 2635; m/z [M + Na]$^+$ calculated for CMP 2 2403, found 2402; m/z [M + Na]$^+$ calculated for CMP 3 2417, found 2416; m/z [M + H]$^+$ calculated for CMP 4 2658, found 2657; m/z [M + H]$^+$ calculated for (Pro–Hyp–Gly)$_n$ 1889, found 1889.

2.3.3 CMP–Fluorophore conjugates synthesis

The general method optimized for the mg-scale synthesis of peptide–dye conjugates was as follows. A CMP (1 equiv) was mixed with a fluorescent dye (1.13 equiv) in a sufficient volume of DMSO containing triethylamine (20 equiv). The resulting solution was allowed to stir at room temperature in the dark for 48 h, and then subjected to purification by reversed phase HPLC using a linear gradient 10mM triethylammonium acetate (pH 7.0) and MeOH. The purified products were characterized by HRMS–ESI or MALDI mass spectrometry. The highly anionic products of conjugation to IRDye® 800CW NHS were stored in glass vials with the ammonium form of a cation-exchange resin. This resin was prepared by stirring Dowex$^\text{TM}$
50WX4-50 resin overnight in 1 M NH₄OAc. Before use, the resin was washed in 1 M NH₄OAc, water, acetone, and hexane, and air-dried.

2.3.4 In vitro annealing

A 660 μM solution (50 μL) of CMPs 1–4 or Rhodamine Red™-X NHS ester (Figure 2.2) that had been reacted with ethylamine (2 equiv) was added to calf-skin type I collagen (~10 mg) in a Falcon™ tube. The tubes were incubated in a water bath at 37 °C. After 2 h, each tube was agitated with a vortexing mixer and washed vigorously with phosphate-buffered saline (PBS; 4×), DMSO (4×), and MeOH (4×). These washings were discarded, and the samples were incubated in MeOH at room temperature for 12 days.

2.3.5 Retention on a collagen gel

Rat-tail type I collagen (5 mg/mL), sterile 10× PBS, sterile 1 N NaOH, and sterile H₂O were cooled on ice. The amount of each reagent was calculated to make a collagen solution with a final concentration of 3.8 mg/mL in 1× PBS as follows:

Total volume of collagen gel: V

Volume of collagen (V₁) = V × [collagen]final / [collagen]initial

Volume of 10× PBS (V₂) = V / 10

Volume of 1 N NaOH (V₃) = V₁ × 0.025

Volume of H₂O (V₄) = V − (V₁ + V₂ + V₃)
The 10x PBS, 1 N NaOH, and H₂O were mixed in a sterile tube. The collagen suspension was added slowly to the mixture, which was then mixed thoroughly. This suspension was added to the wells of a 48-well plate (200 μL/plate), which was incubated at 37 °C in a 93% humidity incubator for 1 h. The resulting gel was rinsed with 1x PBS. Solutions (0.5 mM) of F-CMP 1, F-CMP 2, and neutralized 5-FAM were prepared in PBS containing DMSO (5% v/v). An aliquot (20 μL) of each solution was added to the wells. The plates were incubated at 37 °C and 93% humidity, and the gel was washed with 4-°C PBS until no more fluorescence was detected in the wash solution. The total amount of wash volume was 300 μL per well. The wells were re-filled with PBS buffer (500 μL), and the culture plate was incubated at 37 °C, 90% humidity and 5% v/v CO₂. The PBS was exchanged as above every 48 h. The concentrations of labeled peptide released during incubation were determined at 2-day intervals by measuring the absorbance of the wash solutions at 494 nm using a Cary 50Bio spectrophotometer from Varian (Palo Alto, CA).

2.3.6 Ex vivo annealing

Pelts were harvested from euthanized mice and stored at -80 °C. Immediately prior to an annealing experiment, pelts were thawed and shaved with an electric clipper. The treatment area was cleaned in a circular motion with cotton swabs wetted with sterile PBS, and all residual hair was removed. Two identical cutaneous defects were created in each pelt by using a 6-mm biopsy punch, and the top layer of skin was removed by using a forceps and scissors. The wounds were washed with sterile PBS and air-dried. One wound on each pelt was treated with a 50-μM solution (25 μL) of fluorescently labeled IR-CMPs 1 or IR-CMP 2, and the other wound was treated with the same amount of the free dye (IRDye® 800CW NHS ester) that had been reacted with ethylamine (2 equiv). The treated wounds were incubated for 1 h at room temperature in a moist
environment, and then washed with PBS and DMSO successively for 10 min each. Similar comparisons between CMP 2 and CMP 4 were made by creating identical wounds on mice pelts, and treating one of them with \(^R \)CMP 2 and the other with \(^R \)CMP 4. (For the pelts treated with free and conjugated RhodamineRed\(^\text{TM} \)-X dye, it was necessary to rub the wounds with DMSO during the wash due to the highly hydrophobic nature of the dye.) The pelts were then imaged using an Odyssey Imager from LI-COR (for the IRDye\(^\text{®} \) 800CW) and a dissecting fluorescent microscope (for the Rhodamine Red\(^\text{TM} \)-X Dye).

2.3.7 Multiplex cytotoxicity assay

Solutions of CMPs 1 and 2, and (Pro-Hyp-Gly)\(_7 \) (20 mM) were diluted in anhydrous DMSO to a final concentration of 100x. Serial dilutions were made in DMSO in 96-well polypropylene microtiter plates using the Precision XS liquid handler from BioTek (Winooski, VT). Compounds were divided equally into the wells of a 384-well microtiter plate in all 4 quadrants using a Biomek FX liquid handler with 96-channel pipetting head from Beckman Coulter (Brea, CA). Compounds were stored at \(-20^\circ \text{C} \) in DMSO until the day of the assay. Freeze-thaw cycles were limited to a maximum of ten per plate.

NHDF cells were maintained as reported previously. (Langenhan et al., 2005) Cells were harvested by trypsinization using trypsin (0.25% w/v) and EDTA (0.1% w/v), and then counted with a Cellometer Auto T4 cell counter from Nexcelom (Lawrence, MA), before dilution for plating. Cell plating, compound handling, and assay set-up were performed as reported previously, (Langenhan et al., 2005) except that the cells were plated in 50-\(\mu \text{L} \) volumes in 384-well clear-bottom tissue-culture plates from Corning (Lowell, MA). Compounds were added from 384-well stock plates at a 1:100 dilution using a Biomek FX liquid handler. Loaded plates
were incubated for 72 h at 37 °C and 5% v/v CO₂. Calcein AM (to 10 μM) and ethidium homodimer-1 (to 100 μM) were added (total volume: 30 μL), and the plates were incubated for 30 min at 37 °C. The emission in each well was determined by using a Safire-2 microplate reader from Tecan (Männedorf, Switzerland) to monitor emission at 530 and 615 nm for calcein AM and ethidium homodimer-1, respectively. CellTiter-Glo reagent (15 μL) from Promega (Madison, WI) was added, and the resulting solution was incubated for 10 min at room temperature with gentle agitation to lyse the cells. The luminescence in each well was determined to confirm the data from the absorbance measurements.

2.4 Results and discussion

2.4.1 Design and synthesis of collagen mimetic peptides

CMPs containing seven Xaa-Yaa-Gly units can be synthesized readily by solid-phase peptide synthesis (SPPS). These peptides can form stable triple helices (Table 1) that resemble those in natural collagen, as is apparent from circular dichroism spectroscopy, analytical ultracentrifugation, X-ray crystallography, fiber diffraction analysis, and electron microscopy (Fallas et al., 2010; Fields, 2010; Jenkins et al., 2002; Koide, 2007; Przybyla et al., 2010; Shoulders et al., 2009c; Woolfson, 2010). This synthetic strategy facilitates the introduction of nonnatural residues, like flp and Flp (Chorghade et al., 2008), into a CMP.

As our preferred CMP, we chose Ac-(flp-Flp-Glyh-(Gly-Ser)₃-LysOH (1). The N-terminal acetyl group precludes any unfavorable Coulombic interactions with natural collagen, and the C-terminal lysine residue provides an amino group for conjugation by N-acylation. The (Gly-Ser)₃ unit serves as a flexible, soluble spacer.
As control CMPs, we chose Ac-(Pro-Pro-Gly)$_7$-(Gly-Ser)$_3$-LysOH (2), Ac-(Pro-Pro-Gly)$_3$-(Pro-Pro-Sar)-(Pro-Pro-Gly)$_3$-(Gly-Ser)$_3$-LysOH (3), and Ac-Pro$_2$-(Gly-Ser)$_3$-LysOH (4). We anticipated that CMP 2 should be effective in annealing, though less so than CMP 1 because of its lesser preorganization (Bretscher et al., 2001; DeRider et al., 2002; Kotch et al., 2008). The methyl group of the central sarcosine (Sar) in CMP 3 provides a subtle but strong impediment to triple-helix formation by obviating the interstrand GlyNH···O=CPro hydrogen bond (Chen et al., 2011), but allows CMP 3 to retain the other physicochemical characteristics of CMP 2. Finally, the linear polyproline strand of CMP 4 is not capable of annealing to natural collagen by triple-helix formation.

CMPs 1–3 were synthesized by a convergent route relying on the condensation of Xaa-Yaa-Gly units. CMP 4 was synthesized the sequential coupling of amino-acid monomers. For annealing experiments, biocompatible dyes were conjugated to the CMPs by O- to N-acyl transfer using an NHS ester of the dyes (Figure 2.2).

2.4.2 Annealing of collagen-mimetic peptides to collagen in vitro

In initial wound assessment studies, we treated insoluble calf-skin collagen (type I) with fluorescently labeled CMPs 1–4, as well as with the unconjugated fluorophore. We monitored the changes in color and binding by visual inspection over several days. CMPs 1 and 2, which have f/p-Flp-Gly and Pro-Pro-Gly units, respectively, annealed to collagen firmly as seen by the persistent color of the insoluble collagen after 12 days (Figure 2.3A and 2.3B). In contrast, collagen treated with CMPs 3 and 4, and free dye lost all apparent color during the first day and retained none after 12 days (Figure 2.3C–2.3E). These initial results validated our strategy (Figure 2.1), but did not differentiate between CMPs 1 and 2.
2.4.3 Retention of collagen-mimetic peptides on a collagen gel

Next, we assessed the time-dependent retention of CMPs 1 and 2 on a gel of rat-tail collagen (type I) under physiological conditions. Over the course of days, CMP 1 exhibited much greater retention than did CMP 2 (Figure 2.4). Nearly a third of the fluoroproline-containing CMP (1) was retained after two weeks, whereas virtually all of the proline-containing CMP (2) was lost after one week. These data are consistent with the preorganization endowed by the fluoroproline residues (Hodges et al., 2005).

2.4.4 Annealing of collagen-mimetic peptides to an ex vivo wound

Then, we analyzed the ability of CMPs 1 and 2 to bind to cutaneous wounds on pelts harvested from mice. Identical wounds were created on mice pelts by removing the top layer of the skin, and the consequence wound beds were treated with CMP 1, CMP 2, or the free fluorophore, incubated, and washed. Both CMPs 1 and 2 remained annealed to the wound bed after aggressive washing, whereas the free dye did not (Figure 2.5A–C). We repeated the experiment by treating the wound on one side of the pelt with CMP 2 and the other side with CMP 4. As expected, CMP 2 showed much greater binding than did CMP 4 (Figure 2.5D and 2.5E). The fluorescence in these experiments was limited primarily to the wound bed and its edges, where the concentration of damaged collagen is likely to be higher than in the surrounding unbroken skin.

2.4.5 Toxicity of collagen-mimetic peptides to human cells

Finally, we performed cytotoxicity assays on CMPs 1 and 2 to determine their suitability for future work in vivo. The CMPs were tested for toxicity towards a relevant model, normal
human dermal fibroblast cells. Doxorubicin served as the positive control and (Pro-Hyp-Gly)$_7$ as the negative control. Both peptides proved to be non-toxic to human fibroblast cells (Figure 2.6).

2.5 Conclusions

We have demonstrated the efficacy of the strategy depicted in Figure 2.1. Both the (flp-Flp-Gly)$_7$-based CMP (1) and the (Pro-Pro-Gly)$_7$-based CMP (2) bind strongly to collagen at room temperature in vitro and ex vivo. Binding does not require heating the CMP prior to its application. CMP 1 is retained longer on collagen than is CMP 2, providing the option of a long-term attachment of an effector molecule or its sustained release over a shorter time period. Neither peptide is toxic to human fibroblast cells. We anticipate that either CMP 1 or CMP 2 could be used to affix a pendant molecule in a wound bed, obviating the need for repeated application. This methodology avails a myriad of possibilities for the delivery of therapeutic small molecules, peptides, and proteins, and could be especially useful for treating highly traumatized wounds (e.g., in burn patients) or slowly healing wounds (e.g., in diabetic patients) (Gurtner et al., 2008; Schultz et al., 2009). We foresee a CMP with a pendant dye highlighting areas of maximal tissue damage (which would have many sites for annealing), and a CMP with a pendant growth factor expediting the healing process.
<table>
<thead>
<tr>
<th>Collagen Mimetic Peptide</th>
<th>Xaa</th>
<th>Yaa</th>
<th>Triple Helical T_m (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Xaa-Yaa-Gly)$_7$</td>
<td>Pro</td>
<td>Hyp</td>
<td>36 (Bretscher et al., 2001)</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td>Flp</td>
<td>45 (Bretscher et al., 2001)</td>
</tr>
<tr>
<td></td>
<td>flp</td>
<td>Pro</td>
<td>33 (Hodges et al., 2003)</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td>Pro</td>
<td>No helix (Hodges et al., 2005)</td>
</tr>
<tr>
<td></td>
<td>flp</td>
<td>Flp</td>
<td>No helix (Hodges et al., 2005)</td>
</tr>
<tr>
<td>(Xaa-Yaa-Gly)$_{10}$</td>
<td>Pro</td>
<td>Hyp</td>
<td>61–69 (Berisio et al., 2004; Holmgren et al., 1999)</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td>Flp</td>
<td>91 (Holmgren et al., 1999)</td>
</tr>
<tr>
<td></td>
<td>Flp</td>
<td>Pro</td>
<td>58 (Doi et al., 2003)</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td>Pro</td>
<td>31–41 (Holmgren et al., 1999; Nishi et al., 2005)</td>
</tr>
<tr>
<td></td>
<td>flp</td>
<td>Flp</td>
<td>30 (Doi et al., 2005)</td>
</tr>
</tbody>
</table>
Figure 2.1. Representation of a collagen mimetic peptide (CMP) annealing to damaged collagen to anchor a molecule (X) in a wound bed.
wound

collagen

CMP-X
Figure 2.2. CMPs (1–4) and dyes used in this work. Each CMP has a C-terminal (Gly-Ser)_3-LysOH segment. CMP-dye conjugates are indicated in the text with a superscript: IRCMP for IRDye® 800CW, RCMP for Rhodamine RedTM-X, and FCMP for 5-carboxyfluorescein.
IRDye® 800CW NHS ester

Rhodamine Red™-X NHS ester

5-carboxyfluorescein NHS ester
Figure 2.3. Photographs of CMPs annealed to calf-skin type I collagen. Fluorescently labeled CMPs in MeOH were added to collagen, which was washed with PBS, DMSO, and MeOH, and photographed after 12 days. (A) 8CMP 1; (B) 8CMP 2; (C) 8CMP 3; (D) 8CMP 4; (E) Rhodamine Red™-X NHS ester that had been reacted with ethylamine.
Figure 2.4. Plot of the retention of CMPs on a gel of rat-tail type I collagen. Fluorescently labeled CMPs were applied to a gel, which was then washed at 48-h intervals and monitored for at 494 nm. ◆: FCMP 1; ■: FCMP 2; ○: 5-carboxyfluorescein NHS ester that had been reacted with ethylamine.
Figure 2.5. Photograph of the annealing of CMPs to mouse collagen *ex vivo*. Fluorescently labeled CMPs were applied to 6-mm cutaneous wounds on mouse pelts, washed, and imaged. (A) IRCMP 1, photograph. (B) IRCMP 1, fluorescence image. (C) IRCMP 2, fluorescence image. (D) RCCMP 2, fluorescence image. (E) RCCMP 4, fluorescence image. In panels A–C, the circles (6 mm) denote wounds treated with IRDye® 800CW NHS ester that had been reacted with ethylamine. In panels (B) and (C), the mouse pelts are outlined.
Figure 2.6. Cytotoxicity of CMPs. The proliferation of human dermal fibroblast cells was assessed by fluorescence emission using a Calcein AM / EthD-1 assay after incubation for 72 h with unlabeled CMPs [◆, CMP 1; ■, CMP 2; ●, (Pro-Hyp-Gly)$_7$] or doxorubicin (○).
2.6 Acknowledgments

We are grateful to N. L. Abbott, M. D. Shoulders, F. W. Kotch, L. J. Martin, and G. A. Ellis for contributive discussions. This work was supported by grants R01 AR044276 and RC2 AR058971 (NIH), and a Wisconsin Institute of Discovery Seed Grant. MALDI–TOF mass spectrometry was performed at the University of Wisconsin–Madison Biophysics Instrumentation Facility, which was established with Grants BIR-9512577 (NSF) and S10 RR13790 (NIH).
CHAPTER 3*

Noncovalent immobilization of a Substance P–collagen mimetic peptide conjugate promotes wound healing in mice

* This chapter has been prepared for publication as:

3.1 Abstract

Wound healing is a complex process involving an inflammatory reaction, deposition of fresh epithelial tissue, collagen deposition, contraction, and wound repair, all of which require the recruitment of cytoactive factors. The one-time application of such factors to wounds does not maintain a sufficient concentration to promote substantial healing. Here we report on an improved mode for the topical application of a cytoactive factor to a wound bed. This mode relies on the ability of a collagen mimetic peptide (CMP) to anneal to damaged collagen triple helices within the bed. As a model factor, we choose Substance P, a neuropeptide of the tachykinin family that is known to mediate vasodilation and inflammatory response in early wound healing. Using splinted wounds in mice, we show that the one-time application of a CMP–Substance P conjugate enhances wound closure and re-epithelialization compared to unconjugated Substance P and vehicular controls. In addition, we validate the synergism of insulin with Substance P and show that polyethylene glycol in the delivery vehicle improves healing. These data predicate a new paradigm for the efficacious localization of cytoactive factors in wound beds.
3.2 Introduction

Chronic and slow-healing pathologic wounds have a major debilitating effect on the physical and mental health of patients, as well as being a significant drain on health care resources. Commonly, slow-healing wounds manifest in victims of severe burn injuries and physical trauma, whereas chronic wounds emerge from diabetes and vascular problems. Healing of these wounds is a complex process in which humoral and neural factors, the extracellular matrix, and various cell types participate at specific times (Baum et al., 2005; Gibran et al., 2007; Singer et al., 1999). Re-epithelialization, granulation, tissue formation, collagen deposition, and contraction are important phases of the healing process that determine the quality of healing, as well as the bias for wound repair or wound regeneration. (Gurtner et al., 2008)

Among the molecular factors that modulate the immunologic and inflammatory responses in wounds are the neuropeptides (Holzer, 1988), such as Substance P (SubP).

SubP is an undecapeptide of the tachykinin family that is produced by sensory neurons, stored in the terminal end of unmyelinated cutaneous nerve fibers, and released upon noxious stimuli (Holzer, 1988). Nerve fibers containing SubP have been localized in human skin and burn wounds in the vicinity of blood vessels and sweat glands (Dunnick et al., 1996). After release from the sensory nerves, SubP binds to a specific cell-surface neurokinin receptor (NK-1) or is degraded by neural peptidases. Hence, SubP does not need to be internalized into the cells to stimulate proliferative activity in the wound bed. Upon release, SubP not only mediates vasodilation in early wound repair (Holzer, 1998; Iwamoto et al., 1989), release of histamine by mast cells (Barnes et al., 1986; Weidner et al., 2000), and angiogenesis (Seegers et al., 2003), indicating that healing is promoted by an interaction between tissue and nervous system, but also leads to interaction with immunocompetent cells, including granulocytes (Wiedermann et al.,
These effects are not restricted to the initial point of stimulus, but are also observed in the surrounding area. SubP shows a proliferative activity on fibroblasts (Kähler et al., 1993a; Kähler et al., 1996; Nilsson et al., 1985; Ziche et al., 1990) and keratinocytes via the NK receptors (McGovern et al., 1995; Tanaka et al., 1988). This neuropeptide thus participates in vasodilation associated with inflammatory response and stimulates proliferation of epithelial, vascular, and connective tissue.

Previous efforts to study wound-healing mediated by SubP in vivo have involved its administration by subcutaneous or intraperitoneal injections (Barnes et al., 1986; Buttow et al., 2003; Delgado et al., 2005) in small rodents, as well as topical application on dorsal wounds of diabetic mice (Scott et al., 2008) and human corneal wounds (Lee et al., 2002). These treatments improved healing—wound size and scab formation decreased significantly as a function of increasing SubP concentration in comparison to saline-treated controls (Delgado et al., 2005). Moreover, the neuropeptide was shown to induce production of TNF-α, IL-1β, IL-2, and IL-6 by T-cell lymphocytes, macrophages, and neutrophils, thereby increasing the rate of wound healing (Delgado et al., 2003).

To enhance the activity of SubP, we sought to design a delivery system for SubP that would provide for sustained residency of the peptide in the wound. We reasoned that a strategy based on collagen would have numerous advantages. Collagen comprises ¼ of the protein in humans and ⅓ of the dry weight of human skin (Shoulders et al., 2009b). The most abundant forms of collagen, type I and type II, can be isolated easily from animal tissues and have been used as shields in ophthalmology, sponges in wound care, pellets and gels for biologic delivery, and matrices for cell culture (Lee et al., 2001).
Collagen fibers have a loose structural network, and are thus ineffective at retaining passively absorbed materials. Efforts have been made to immobilize molecules on endogenous collagen by covalent coupling to its amino-acid side chains (Tiller et al., 2001). This strategy is, however, confounded by the heterogeneity of natural collagen and by collateral damage that necessarily ensues upon immobilization. Recently, we described a strategy that circumvents these issues. Our strategy exploits the propensity of a collagen mimetic peptide (CMP) to anneal to endogenous collagen under physiological conditions. We showed previously that peptides containing (ProProGly)$_7$ moieties in their sequence are capable of binding to native type I collagen in vitro and ex vivo at room temperature and neutral pH, and can anchor molecules conjugated to them in the wound tissue (Figure 3.1) (Chattopadhyay et al., 2012). Here, we report on the conjugation of SubP to a CMP with the sequence (ProProGly)$_7$, and on the testing of this conjugate as an agent for healing wounds in mice.

3.3 Methods

3.3.1 Materials

Commercial chemicals were of reagent grade or better, and were used without further purification. Anhydrous solvents were obtained from CYCLE-TAINER® solvent delivery systems (J. T. Baker, Phillipsburg, NJ). HPLC-grade solvents were obtained in sealed bottles (Fisher Chemical, Fairlawn, NJ). In all reaction mixtures having anhydrous solvents, glassware was either oven- or flame-dried. Commercial SubP (acetate salt hydrate, Sigma–Aldrich, St. Louis, MO) and insulin (Novolin® R; rDNA origin, Novo Nordisk, Princeton, NJ) were used as controls. Polyethylene Glycol 8000 (PEG) (Fisher Bioreagents®, Fairlawn, NJ) and bacteriostatic
0.9% v/v NaCl (Hospira, Lake Forest, IL) were used to prepare 5% w/v PEG/saline solution as a vehicle.

Male mice (BKS.Cg-Dock7m+/+ Leprdb/J, Jackson Laboratories, Bar Harbor, ME) were used as the animal model. The mice were anesthetized with Isoflurane (Abbott Laboratories, Abbott Park, IL) and injected with Buprenex (buprenorphine hydrochloride, Reckitt Benckiser, Berkshire, UK) for pain management, and their wounds were cleaned with 4% w/v chlorhexidine gluconate (Purdue Products, Stanford, CT) and saline. O-ring splints (15 mm o.d. × 11 mm i.d., 2-mm thickness, Carr® silicone O-rings from McMaster (Chicago, IL) came in ready-to-use packages.

Semi-preparative HPLC was performed with a Varian Dynamax C-18 reversed-phase column. Analytical HPLC was performed using a Vydac C-18 reversed-phase column. Mass spectrometry was performed with an Applied Biosystems Voyager DE-Pro (matrix-assisted laser desorption/ionization) mass spectrometer from Life Technologies (Carlsbad, CA) in the Biophysics Instrumentation Facility at University of Wisconsin–Madison.

3.3.2 Peptide synthesis and purification

Peptides were synthesized by solid-phase peptide synthesis using a 12-channel Symphony® peptide synthesizer from Protein Technologies (Tucson, AZ) at the University of Wisconsin–Madison Biotechnology Center. SubP is an undecapeptide with the sequence ArgProLysProGlnGlnPhePheGlyLeuMetNHz. To synthesize CMP–SubP, the C-terminal Met residue was coupled to the resin after a swell cycle, and the subsequent ten amino acids were added by extended (60-min) couplings. Seven FmocProProGlyOH tripeptides were added by
normal (30-min) couplings. Fmoc-deprotection was achieved by treatment with piperidine (20\% v/v) in DMF.

CMP itself was synthesized by SPPS on Fmoc-Gly-Wang Resin (0.4–0.7 mmol/g, 100–200 mesh, Novabiochem®, EMD Chemicals, Gibbstown, NJ) by the sequential coupling of FmocProOH and FmocProProGlyOH. The **CMP–SubP** strand was initiated by coupling the terminal methionine residue to NovaPEG Rink Amide Resin (0.44 mmol/g, Novabiochem®, EMD Chemicals Gibbstown, NJ) and subsequent segment condensation using excess (5 equiv/coupling) FmocLeuOH, FmocGlyOH, FmocPheOH, FmocGln(Trt)OH, FmocProOH, FmocLys(Boc)OH, FmocArg(Pbf)OH, and FmocProProGlyOH trimers (which were synthesized as reported previously (Jenkins et al., 2005). The residues were converted to active esters by treatment with 1-hydroxybenzotriazole (HOBt, 3 equiv), O-benzotriazol-\(N,N,N',N'\)-tetramethyluronium-hexafluoro-phosphate (HBTU, 3 equiv) and \(N\)-methylmorpholine (NMM, 6 equiv). **CMP** was cleaved from the Fmoc-Gly-Wang Resin by using 95:2.5:2.5 trifluoroacetic acid/triisopropysilane/water (total volume: 2 mL) and **CMP–SubP** was cleaved from the NovaPEG Rink Amide Resin using 92.5:5:2.5 trifluoroacetic acid/thioanisole/ethanedithiol (total volume: 3 mL). The NovaPEG Rink Amide Resin requires excess cleavage solution due to the high swelling properties of the resin and was washed multiple times with TFA at the end of the cleavage. Both the peptides were precipitated from \(\tau\)-butylmethylether at 0 °C, isolated by centrifugation and purified by semi-preparative HPLC using the following linear gradients: **CMP**, 5% B to 85% B over 45 min, and **CMP–SubP**, 10% B to 90% B over 50 min; where solvent A was \(H_2O\) containing TFA (0.1\% v/v) and solvent B was \(CH_3CN\) containing TFA (0.1\% v/v). **CMP** was readily soluble in \(dH_2O\) but **CMP–SubP** required addition of \(CH_3CN\) (12\% v/v) to form a clear solution for HPLC analysis. All the peptides were judged to be >90%
pure by HPLC and MALDI-TOF mass spectrometry: (m/z) [M + H]^+ calculated for CMP 1777, found 1777; (m/z) [M + H]^+ calculated for CMP-SubP 3107, found 3108.

3.3.3 In vivo mouse model

Male mice (homozygous for Lepr^{db}, Jackson Laboratories, Bar Harbor, ME) were used between the ages of 8–12 weeks. The mice were housed in groups until the day of surgery. After surgery, mice were housed in separate cages and monitored for changes in behavior and weight gain or loss. The experimental protocol followed the guidelines issued by the Institutional Animal Care and Use Committee (IACUC) at the University of Wisconsin–Madison. The mice were provided food and water ad libitum, as well as enrichment, and housed in a temperature-controlled environment with 12-h light and dark cycles.

On the day of the surgery the mice were anaesthetized with isoflurane using an induction chamber. Buprenorphine, diluted in 0.9% w/v saline to a concentration of 0.01 mg/mL, was injected subcutaneously (0.4 mL/mouse) for pain management. Eyes were lubricated and hind nails clipped. The craniodorsal region was shaved using electric clippers, and the shaved area was scrubbed with alternating cotton swabs of chlorhexidine and sterile saline in circular strokes. Residual hair was removed. For the non-splinted wound model, identical 8-mm wounds were created on either sides of the body with a biopsy punch, and the wounding was completed using forceps and scissors to prevent the punch from lacerating the subcutaneous tissue. For the splinted-wound model, splints were bilaterally placed in a symmetric arrangement, as per Galiano et al using adhesive (Krazy Glue[®] Gel, Elmer's, Columbus, OH) and then secured to the skin using 8 interrupted sutures (5-0 nylon suture), encircling the splints with the knots. Wounds were created in the center of the splints using the 8-mm biopsy punch, and the skin was removed.
using forceps and scissors. The wounds were then treated with the test compound, and allowed to incubate for 30 min while the mouse was still under anesthesia. The wounds were then photographed, and the mice were then allowed to recover on a warming pad.

The treated mice were monitored daily for behavioral changes, and their body weights were recorded on days 1, 3, 6, 9, 12, and 16. Splints were checked daily, and any broken or untied suture was replaced according to the experimental protocol. During a 24-h period, if only one suture were compromised, it was replaced with a new suture. If, however, two or more sutures were compromised during a 24-h period, the wound was no longer considered splinted and was removed from the study.

Digital photos were taken on the last day of the experiment and image analysis was performed by calculating the wound area (mm\(^2\)) using ImageJ Software. Wound closure was defined as the reduction in area between wound edges over the course of study and was reported as a percentage of the original wound size.

3.3.4 Harvesting the wounds

Histopathology cassettes were labeled for mouse and wound identification. Note cards (1 inch\(^2\)) were fitted to the bottom of the histopathology cassettes and one edge was labeled “cranial” that would be lined up with the cranial side of the wound harvested. On the final day of the experiment, mice were euthanized using Beuthanasia\(^\circledR\)-D (0.5 mL/mouse). Using a scalpel blade and scissors, a \(\frac{3}{4}\) inch \(\times\) \(\frac{3}{4}\) inch square area of tissue is taken from the mouse, keeping the wound centered in the tissue section. Deep dissection was performed to harvest several layers of tissue deep in the wound. The square section of tissue was affixed to the note card, with the
cranial edge lined up against the labeled edge of the card. The cassettes were then closed and placed in formalin-filled jars, to be processed for histopathological processing.

3.3.5 Histopathological analyses

After euthanasia, the entire wound bed as well as the intact skin margin greater than 5 mm was excised to the retro-peritoneum. The harvested tissue was then fixed in formalin (10% v/v) for at least 24 h, and then sectioned through the center of the lesion. The center was marked with India ink prior to fixation. Routine paraffin processing was performed and the tissue samples were serially sectioned at a thickness of 5 μm, making sure that the center of the lesion was included on the slide. The slides were stained with hematoxylin, eosin, and picosirius red. A mounted digital camera (Olympus DP72, Melville, NY) was used to photograph the sections using light microscopy. Size of the wound, length of re-epithelialization, amount of fibrovascular proliferation in the dermis, and inflammatory response were measured as parameters to study wound healing on the slides containing the center of the lesion. Measurements were taken and analyzed using image-analysis software (CellScience Dimension 1.4, Olympus, Melville, NY). Size of the wound was defined as the area of the wound not covered by advancing epithelial layer and was calculated by measuring the distance between the opposite free edges of the wound. Length of re-epithelialization was defined by the length of the layer of proliferating keratinocytes covering the wounds area and was calculated by measuring the distance between the free edge of the keratinocyte layer and the base where the cells were still associated with native dermal tissue. Both sides of the lesion were measured and the final result was the sum of the two measurements. For wounds that had undergone complete re-epithelialization, a single measurement was taken from base to base.
Fibrovascular dermal proliferation was measured by examining the picosirius red-stained sections under polarized light, which highlights newly deposited dermal collagen. The wound bed was designated with the image-analysis software, and the amount of new collagen in the selected area was measured and expressed as a percentage of the total wound area. The inflammatory response was assessed using a semi-quantitative histopathological scoring system ranging from 0 to 4, where 0 indicated no inflammation, 1 indicates 0–25% of the wound area being affected, 2 indicates 25–50% of the wound area being affected, 3 indicates 50–75% of the wound area being affected, and 4 indicates >75% of the wound area being affected. The inflammatory response was also categorized as ‘acute’ when more than 75% of the cells were neutrophils; ‘chronic active’ when there was a 1:1 ratio of neutrophils and mononuclear cells; and ‘chronic’ when >75% of the inflammatory cells were mononuclear.

3.3.6 Statistical analyses

Data were analyzed with a Mann–Whitney rank sum test, and statistical significance was set to $p < 0.05$. Analyses were executed using the program GraphPad Prism, Version 5.0 (GraphPad Software, La Jolla, CA).

3.4 Results and discussion

Male mice (homozygous for Lepr db strain) become obese at 3–4 weeks of age, and their blood sugar typically elevates at 4–8 weeks of age. These genetically diabetic mice were chosen for our study because they exhibit relevant characteristics similar to those of human adult-onset type II diabetes mellitus (Coleman, 1978; Kämpfer et al., 2000), including an impaired wound-
healing response (Brem et al., 2007). These mice also exhibit delayed and reduced expression of keratinocyte growth factor (Werner et al., 1994) and peripheral neuropathy similar to diabetic adult humans (Norido et al., 1984), and the course of wound healing in these mice follows closely the clinical observations of human diabetic patients (Greenhalgh, 2003).

The collagen mimetic peptide CMP and its SubP conjugate (CMP–SubP) were synthesized by solid-phase peptide synthesis (SPPS). Previously, we reported that (ProProGly)$_7$ moieties anneal to type I collagen in vitro and ex vivo (Chattopadhyay et al., 2012). We have also shown that these peptides can be used to anchor small-molecule fluorophores in ex vivo wound tissue at room temperature, and that they are not toxic to dermal fibroblast cells. An earlier effort to localize a collagen mimetic peptide to collagen gel in vitro employed a (ProHypGly)$_n$ sequence without a pendant cytoactive factor (Wang et al., 2008b). These peptides required pre­heating at 80 °C to disrupt triple-helical structure prior to application. In contrast, our strategy is effected at physiological conditions. In designing CMP–SubP, we chose to conjugate SubP to the C-terminus of CMP. SubP is capable of inducing cellular responses through unique receptors recognizing different portions of the molecule, and both the N- and C-terminus have been found to be active in this regard (Ananthanarayanan et al., 1992; Bar-Shavit et al., 1980; Ruff et al., 1985). Studies have established that the C-terminal region of SubP displays biological activities that are mediated by the neurokinin receptor (Bury et al., 1976; Iwamoto et al., 1990; Rosell et al., 1977; Yanaihara et al., 1977). The C-terminal amide is also crucial to is biological activity, as the free acid is largely inactive in the chemotaxis of monocytes (Ruff et al., 1985) and in its ability to bind to human T cells (Payan et al., 1984). Accordingly, we decided to conjugate CMP to the N-terminus of SubP for our studies.
We chose to use an excisional wound model for our experiments. These wounds, which heal from the margins, provide the broadest assessment of the various parameters for wound healing, such as re-epithelialization, fibrovascular proliferation, contracture, and angiogenesis (Greenhalgh et al., 2001). Mice models, though convenient, are dissimilar from human skin models in that the major mechanism of wound closure is contraction; in humans, re-epithelialization and granulation tissue-formation are the major phases of wound healing (Davidson, 1998; Greenhalgh et al., 2001). The use of splints around excise wounds in db/db mice is known to allow healing by granulocyte formation and re-epithelialization, while minimizing the effects of contraction (Galiano et al., 2004). A splinted wound model also facilitates the application of topical agents directly onto the wound bed, and can avail two side-by-side wounds on the same mouse.

3.4.1 CMP-SubP in wound healing

Two splinted wounds (8-mm o.d.) were created in the craniodorsal region of each db/db mouse (n = 8 mice/16 wounds) under anesthesia and topically treated with 25 μL of a solution of CMP-SubP (1 mM) in 5% w/v PEG/saline vehicle. Insulin (5 μL, 50 I.U. in saline) was added to each of the wounds, and the mice were incubated for 30 min under anesthesia. The recovered mice were monitored over a period of 16 days. SubP has been known to act synergistically in presence of insulin or insulin-like growth factor 1 (IGF-1) to promote wound healing (Lee et al., 2002; Nakamura et al., 1997; Nishida et al., 1996; Reid et al., 1993; Yamada et al., 2004). As a control, we treated mice in a similar manner with insulin (5 μL, 50 I.U. + 25 μL of saline). Insulin, alone, has been reported to be effective in wound healing. Clinical evidence indicates that insulin increases vascularization, stimulates proliferation, enhances phagocytosis and promotes contraction in the wound (Belfield et al., 1970). Re-epithelialization and collagen
deposition were also promoted in burn-wound rat models (Madibally et al., 2003). When injected in diabetic mice wounds, insulin treatment caused a reduction in the mean hyperglycaemia levels (Weringer et al., 1982), but it has been suggested that the increased rate of wound healing may also be attributed to zinc that is used to crystallize insulin (Greenway et al., 1999). Polyethylene glycol in saline solution (PEG 8000, 5% w/v) (Brown et al., 1994; Greenhalgh et al., 1990) was used to dissolve CMP-SubP and was also tested as a control, along with saline (0.9% w/v sodium chloride). CMP (25 μL, 1 mM) and SubP in 5% w/v PEG/saline were used as controls to compare against the sustained biological activity of CMP-SubP.

Closure of excisional wounds in mice by contraction, when the wound margins are drawn towards the centre of the wound, is believed to occur via contractile activity of myofibroblasts (Cass et al., 1997). Sensory nerves influence wound myofibroblasts, and delayed wound closure in mature rats have been associated with innervations (Liu et al., 1999). Capsaicin-induced innervations of sensory nerves caused impaired wound contraction and healing (Smith et al., 2002). This effect can be reversed by administration of SubP (Khalil et al., 1996), which has been shown to enhance neuronal area and promote cellular proliferation (Buttow et al., 2003). db/db mice have been reported to have significantly lower epidermal nerve profile count, area fraction and area density compared to db/− mice (Underwood et al., 2001). Our results show that CMP-SubP treatment of the wounds exhibited full closure by Day 16 of the experiment (Figure 3.2F). In comparison wounds treated with CMP and commercial SubP individually were still open on Day 16 (Figure 3.2E and 3.2D). Insulin by itself was unable to repair the wound (Figure 3.2C), whereas saline and 5% w/v PEG/saline treated-wounds showed considerable scab formation and no discernible improvement in healing (Figure 3.2A and 3.2B). These results were supported by histopathological analysis, which indicated that all wounds treated with
CMP–SubP were closed completely (Figure 3.3A), whereas CMP and SubP showed improved contraction compared to insulin and the vehicular controls. We hypothesized that by annealing to collagen, CMP helps to sequester the new collagen secreted by the cells and allow a faster assimilation of their microenvironment. The proliferation and differentiation of mesenchymal stem-cell has been reported to be favored by the presence of CMPs (Lee et al., 2008). Measurement of the new epithelial layer formed in the course of the treatment showed a mirroring trend, with our test peptide exhibiting a mean of ~7 mm of re-epithelialization in wounds that were originally 8 mm in diameter (Figure 3.3B). The extent of re-epithelialization of CMP is less than that of SubP, indicating that wounds treated with the former peptide closed preferably due to contraction healing rather than enhanced keratinocyte proliferation. Among other factors, wound healing is impaired in diabetic mice by significantly reduced keratinocyte growth factor expression (Werner et al., 1994), whereas epithelial cell growth and DNA synthesis was reported to be stimulated by SubP in lens epithelial cells in vitro (Reid et al., 1993). Our results in vivo (Figure 3.5i) support this research, and show that anchoring of SubP in the wound tissue by using a CMP domain to anneal to endogenous collagen, improves its stimulatory activity compared to free SubP.

Fibrovascular influx and deposition of new collagen in the wounds was highlighted by staining with picrosirius red (Figure 3.5ii) and measured as a percentage of the total area. Our results indicate that collagen deposition was down-regulated in the presence of SubP (Figure 3.4). In comparison to the saline control, CMP- and insulin-treatment showed comparable collagen formation. This finding is in accord with previous reports of SubP causing a decrease in collagen biosynthesis, concomitant to a down-regulation of pro-α1 (I) collagen mRNA and an
increase of collagen biodegradation, when incubated with human lung fibroblast cells (Ramos et al., 2007).

SubP has been shown to stimulate DNA synthesis in human skin fibroblasts (Nilsson et al., 1985), and to be a potent effector of human fibroblast migration *in vitro*, as mediated by the NK-1 receptor that binds to the C-terminus of the peptide (Kähler et al., 1993b; Parenti et al., 1996). The C-terminus is also responsible for the chemotaxis of human monocytes into the wound (Ruff et al., 1985). This pro-inflammatory activity of **SubP** as seen in treatment with free **SubP** (Figure 3.6) is higher than that with **CMP–SubP**. The observed inflammation was largely in the acute stage and composed of polymorphonuclear leucocytes (PMNLs). Previous work indicated that phagocytic activity by the PMNLs and macrophages in this phase is stimulated by the tetrapeptide at the N-terminus of **SubP** (Bar-Shavit et al., 1980). The migratory activity of the PMNLs also depends on the N-terminal sequence, and probably occurs via a non-receptor-mediated mechanism, with the participation of basic groups in the N-terminal region (Wiedermann et al., 1989). In **CMP–SubP**, the N-terminus is blocked by covalent conjugation with the anchoring peptide, and hence its pro-inflammatory activity might be diminished compared to its free analogue. The unblocked C-terminus is, however, still capable of mediating fibroblast and monocyte migration into the wounds.

3.4.2 Wound Closure in presence of insulin

As discussed above, **SubP** is known to act synergistically with insulin or IGF-1 to promote epithelial cell growth and significantly increase wound closure *in vitro* and in corneal wound models. As prerequisites for our current study, we decided to test the need for insulin in our skin wound model. We created unsplinted wounds on the craniodorsal region of diabetic
mice (3 mice/group) and treated them with 15μL of CMP-SubP (20μmol/mL in saline). One of these groups was also treated with 5μL of insulin (50 I.U. in saline). The third group was treated with both CMP-SubP and insulin, but the delivery vehicle for both the compounds was 5% w/v PEG/saline instead of saline. The wounds were monitored for 12 days, and then photographed and subjected to histopathological analysis.

On inspecting the wounds visually, there was significant reduction in the size of the wounds treated with CMP-SubP in the presence of insulin compared to the group that was treated only with the peptide (Figure 3.7). In the absence of insulin, there was also considerable scabbing and the wound had an unhealthy appearance. This finding was consistent with histopathological scoring, which indicated an increased trend towards wound closure, as well as re-epithelialization, in the presence of insulin (Figure 3.8A). Collagen deposition in the absence of insulin was markedly higher, increasing the possibility of scar formation (Figure 3.8B). Depression of inflammatory response over time, as observed earlier, was absent upon omission of insulin. On comparing the above two groups with a similar group (5% w/v PEG/saline as the delivery vehicle), we observed greater wound closure with the change in delivery medium (Figure 3.9A and 3.9B). The wounds treated with the peptide in saline (without insulin) actually appeared to have become worse by gross measurement (Figure 3.9A), as is also apparent in Figure 3.7. The same trend was observed in the histopathological analysis, and the wounds treated with 5% w/v PEG/saline as the vehicle showed smaller epithelial gap between the edges of the wounds. The results indicate that CMP-SubP is more accessible to the wound tissue when it is uniformly dissolved in the PEG solution; and this vehicle provides an environment that promotes cell proliferation and migration compared to saline solution.
3.5 Conclusions

Substance P can be administered topically for wound healing studies. Its role as a mediator in wound healing mechanisms is however enhanced, even in the reported range of dosage by anchoring it to the wound bed with collagen mimetic peptides that are believed to form triple helices with native collagen type I. CMP–SubP conjugate was shown to be more effective when treated simultaneously with small quantities of insulin on Day 0. The application of insulin was also topical and hence does not elevate the symptoms and effects of diabetes in the mouse model. We observed complete closure of 8-mm o.d. cutaneous wounds with increased levels of epithelialization. Collagen formation was depressed in the presence of Substance P, and that finding could benefit by minimizing the occurrence of scar tissue upon wound healing. Hence, with improved epithelialization and down-regulated collagen deposition, this strategy would be useful for the treatment of smaller and surface wounds, with a bias towards wound regeneration over wound repair. The strategy also circumvents the need for repeated administration as well as conventional intrusive techniques like subcutaneous injections.
Figure 3.1. Representation of a collagen mimetic peptide–Substance P conjugate (CMP–SubP) annealing to a damaged collagen triple helix.
damaged collagen triple helix

(ProProGly)\textsubscript{7}-ArgProLysProGlnGlnPhePheGlyLeuMetNH\textsubscript{2}

immobilized Substance P

CMP-SubP
Figure 3.2. Photographs depicting the effect of SubP-immobilization on splinted mouse wounds. Images are from Day 0 (immediately post-treatment) or Day 16 after removal of the splints but before euthanasia. Wounds were treated with (A) saline; (B) PEG (5% w/v) in saline; (C) insulin (50 I.U.) in saline; (D) SubP (25 nmol) in PEG/saline; (E) CMP (25 nmol) in PEG/saline; (F) CMP–SubP (25 nmol) in PEG/saline. Saline-treated wounds showed extensive scabbing (>85% of the total wound area). Wounds treated with free SubP had more scabs than those treated with CMP–SubP.
Figure 3.3. Bar graph showing the effect of SubP-immobilization on the size and re-epithelialization of splinted mouse wounds. Data are from Day 16 post-treatment. (A) The mean size of the CMP–SubP treated wounds was zero (all the wounds were closed), and the result was significantly different from that of all controls ($p<0.05$). (B) Re-epithelialization in wounds treated with free CMP was less than those treated with either SubP or CMP–SubP, indicating that wound closure was primarily due to contraction in these wounds. CMP–SubP treatment showed significantly more extensive epithelial layer formation compared to both saline and PEG/saline controls ($p<0.05$). Values are the mean ± SE ($n=16$).
Figure 3.4. Bar graph showing the effect of SubP-immobilization on collagen deposition in splinted mouse wounds. Data are from Day 16 post-treatment. Collagen deposition was down-regulated in wounds treated with both free and conjugated SubP. Values are the mean ± SE (n = 16) and refer to collagen deposition as a percentage of the total area of the wound.
Figure 3.5. Histological images depicting the effect of **SubP**-immobilization on healing pattern of splinted mouse wounds. Data are from Day 16 post-treatment. Left: Wounds stained with hemotoxylin and eosin. Right: Wounds stained with picosirius red and imaged under polarized light. Wounds were treated with (A) saline; (B) PEG (5% w/v) in saline; (C) insulin (50 I.U.) in saline; (D) **SubP** (25 nmol) in PEG/saline; (E) **CMP** (25 nmol) in PEG/saline; (F) **CMP–SubP** (25 nmol) in PEG/saline. Lesions were present in all control wounds (edges indicated by ‘*’ symbols), whereas treatment with **CMP–SubP** led to complete closure, minimal or no scab formation, and uniform granulation tissue formation.
stain: hematoxylin + eosin
illumination: visible light

stain: picrosirius red
illumination: polarized light
Figure 3.6. Bar graph showing the effect of SubP-immobilization on inflammation in splinted mouse wounds. Data are from Day 16 post-treatment. Inflammation was scored on a scale of 0–4, and was lower in wounds treated with CMP–SubP. Values are the median ± SE (n = 16).
Inflammation Score (0-4)

Saline | Insulin/Saline | PEG/Saline | SubP | CMP | CMP-SubP

0 | 1 | 2 | 3 | 4 |
Figure 3.7. Photographs depicting the additive effect of insulin and SubP-immobilization on non-splinted mouse wounds. Images are from Day 0 (immediately post-treatment) or Day 12 before euthanasia. Wounds were treated with (A) CMP–SubP in saline; (B) CMP–SubP + insulin (50 I.U.) in saline. In the absence of insulin, wounds showed extensive scab formation and appeared to become more damaged over a period of 12 days.
Figure 3.8. Bar graphs showing the additive effect of insulin during **SubP**-immobilization on non-splinted mouse wounds. Data are from Day 12 post-treatment. (A) Wound size and re-epithelialization. (B) Collagen deposition and inflammation (0–4 scale). Additional insulin decreased wound size, collagen deposition, and inflammation, and increased re-epithelialization. Values are the mean ± SE (n = 6).
Figure 3.9. Bar graphs showing the effect of SubP-immobilization in saline (with and without insulin) and in 5% w/v PEG/saline (with insulin) medium on non-splinted mouse wounds. Data are from Day 12 post-treatment. (A) Wound closure, which refers to the reduction of the area between wound edges after 12 days. (B) Wound size, which refers to histopathological measurement of the largest diameter after 12 days. Values are the mean ± SE (n = 6).
3.6 Acknowledgements

We are grateful to Patricia Kierski, Diego Calderon, Dana Tackes, Kevin Johnson, and Zachary Joseph for help with the wound surgery and animal care. We are also grateful to Prof. Nicholas Abbott and Dr. Michael Schurr for contributive discussions. This work was supported by grants R01 AR044276 and RC2 AR058971 (NIH). MALDI-TOF mass spectrometry was performed at the University of Wisconsin–Madison Biophysics Instrumentation Facility, which was established with Grants BIR-9512577 (NSF) and S10 RR13790 (NIH).
CHAPTER 4*

Immobilizing a TGF-β receptor ligand in the collagen matrix of cutaneous wounds modulates wound healing

* This chapter is in preparation for publication as:

4.1 Abstract

Transforming growth factor-β (TGF-β) comprises a set of structurally related low molecular weight polypeptides, defined by their ability to regulate a large number of cellular processes including proliferation, differentiation, motility, adhesion, and apoptosis. TGF-β has been the focus of considerable research due to its important roles in almost every phase of wound healing—it stimulates chemotaxis, angiogenesis, and deposition of collagen in the extracellular matrix. TGF-β activity is initiated by the formation of a heterotetrameric complex of the growth factor with the extracellular domains of its receptors, initiating a signaling cascade. We sought to take advantage of a synthetic peptide ligand for TGF-β receptors (TβrI) that is capable of amplifying the signaling activity by preorganizing the extracellular domains of the receptors, thereby poising them for activation by endogenous TGF-β. Such preorganization promotes avid binding of TGF-β to the receptor complex. Here, we report on an improved mode for immobilizing the synthetic peptide ligands in a wound bed and display them multivalently. This mode is based on the ability of a collagen mimetic peptide (CMP) to bind to damaged collagen triple helices in the wound bed. Using an excisional wound model in diabetic mice, we show that a one-time topical application of TGF-β receptor ligand–CMP conjugate increases local collagen deposition in the extracellular matrix along with an enhanced influx of inflammatory cells compared to the unconjugated peptide ligand and vehicular controls. We also demonstrate improved wound closure and re-epithelialization using a splinted-wound model in mice. These data affirm the utility of collagen mimetic peptides in the delivery and immobilization of growth factors in wound beds, thereby effecting a controlled modulation of the wound-healing process.
4.2 Introduction

Transforming growth factor-beta (TGF-β) and related factors play an important role in the development, homeostasis, and repair of virtually all tissues in living organisms (Massagué, 1998). It is a homodimer of relative molecular mass 25kDa (Assoian et al., 1983). The monomeric form of the natural TGF-β homodimer is biosynthesized by proteolysis of a larger 391-residue precursor polypeptide (Derynck et al., 1985). TGF-β is primarily produced by the degranulating platelets, monocytes, and fibroblasts. Once the mature TGF-β is released extracellularly, it participates in the stimulation of cellular activities, angiogenesis, and extracellular matrix (ECM) deposition via a unique receptor signaling that is initiated when the growth factor binds and mediates the assembly and activation of a cell-surface receptor complex (Hart et al., 2002; Wrana et al., 1992). The relatively large amounts of TGF-β found in platelets, along with platelet-derived growth factor (PDGF), led to the suggestion that TGF-β may play a role in wound healing (Sporn et al., 1983). Intraperitoneal injections of TGF-β in rats led to increased fibroblast proliferation, collagen deposition and a sterile infiltrate of inflammatory cells (Sporn et al., 1983).

The TGF-β receptor is made up of two separate transmembrane glycoproteins, TβRI and TβRII, which are characterized by a cysteine-rich extracellular domain, a single hydrophobic transmembrane domain, and a C-terminal cytoplasmic serine/threonine kinase domain (Schiller et al., 2004). Native TGF-β binds with high affinity (K_d~5–30 pM) to the TβRII dimer to form a signaling complex (Massagué, 1998). Upon binding to TGF-β, TβRII recruits the TβRI into an activated heterotetrameric receptor complex (Figure 1A). The regulatory GS region of TβRI is phosphorylated by the cytosolic domain of TβRII, which in turn activates the adjacent serine/threonine kinase domain. This causes the phosphorylation of the downstream effectors, the Smad
proteins—Smad2 or Smad3, in the presence of another protein SARA (Smad Anchor for Receptor Activation). The activated Smad2/3 associates with Smad4 and translocates into the nucleus to regulate gene expression. The activation of this signaling cascade thereafter is responsible for the stimulation of further cellular activity, and any method to regulate this signaling step will provide a handle to modulate TGF-β-mediated cell responses in the wound tissue.

Ground breaking work by Kiessling and co-workers (Li et al., 2010) identified peptide ligands that are capable of binding to the extracellular domain of both TBRI (TBRI-ED) and TBRII (TBRII-ED) with high affinity \(K_d \approx 10^{-5} \text{ M} \), but do not interfere with TGF-β binding. The two receptors have small extracellular domains and large surface areas buried in the heterotetrameric complex with TGF-β (Groppe et al., 2008). Nonetheless, the receptors possess a novel binding site for the identified peptide ligands that is distinct from the TGF-β binding site, and therefore does not impede the activity of the growth factor. In addition, a multivalent display of these peptide ligands on a PEG-based dendrimer enhanced their functional affinities (Li et al., 2010). Further work showed that preorganization of the TGF-β receptors by these peptide ligands bound to a synthetic surface, augmented avid TGF-β binding, since they were poised for activation by even small amounts of TGF-β, thus lowering the local threshold concentration for signal. Such peptide ligand-functionalized surfaces can amplify cell-signaling by endogenous TGF-β without the need to add exogenous TGF-β \(K_d < 5 \text{ pM} \) (Li et al., 2011).

We sought to see if a similar approach can be used in an in vivo model to amplify TGF-β signaling, and thereby modulate the various processes of wound healing that are affected directly or indirectly by the TGF-β signaling pathway. Amongst the variety of synthetic and natural scaffolds that have been explored for delivery of biologically active moieties in the body, type I
and type II collagen can be isolated easily from animal tissues and shows high biocompatibility. TGF-β administered into full-thickness wounds in rabbits by encapsulation in a collagen-sponge scaffold led to greater inflammatory response, and to faster re-epithelialization and contraction rates (Pandit et al., 1999). Similarly, the injection and topical application of TGF-β into wounds has also been studied extensively (Ammann et al., 1990; Beck et al., 1993; Ksander et al., 1990; Ksander et al., 1993; Mustoe et al., 1987) for the ability to enhance healing by increasing tensile strength, promoting fibroblast proliferation and collagen matrix deposition. Still, all of these approaches required the administration of exogenous TGF-β. Our strategy involves using the damaged collagen-bed as a surface for immobilizing the peptide receptor ligand identified by Kiessling and co-workers and thereby preorganizing the TGF-β receptors (Figure 1B). We believe that our method will enhance the sensitivity of the cells displaying these receptors on their surface to the circulating endogenous TGF-β already present in the wounds (TGF-β is at a concentration of ~1 pM in human serum (Slevin et al., 2000)).

This mode exploits the propensity of a collagen mimetic peptide (CMP) to anneal to endogenous collagen under physiological conditions and thereby act as an effective delivery system. We have successfully shown that peptides containing (ProProGly)7 moieties in their sequence are capable of binding to native type I collagen in vitro and ex vivo at room temperature and physiologically relevant pH, and can anchor molecules conjugated to them in the wound tissue (Chattopadhyay et al., 2012). Here, we report on the conjugation of the TGF-β receptor ligand (TβRI) to CMP with the sequence (ProProGly)7, and we tested the effect of this conjugate on cellular proliferation, migration, and collagen deposition mediated by TGF-β in different stages of wound healing.
4.3 Results and discussion

Work by Kiessling and co-workers identified two peptides, of which we chose to use Tprl (LTGKNFPMFHRN) as our effector peptide to sensitize the cells surface receptors to TGF-β signaling. This peptide binds specifically to both TpRI-ED and TpRII-ED with moderately high affinity ($K_d \sim 10^{-5}$ M) (Li et al., 2010). The binding site is distinct from that employed for binding with TGF-β, and this indicates that both receptors TpRI-ED and TpRII-ED share a novel binding spot that serves as target for modulation of TGF-β signaling. The functional affinity of the peptide ligands is increased by \sim100-fold when they are displayed multivalently, and our strategy to immobilize Tprl on the surface of native collagen of wounds in vivo holds promise for sensitizing the cell surface receptors to endogenous TGF-β released in the initial stages of wound healing.

Mouse models of wound healing play a key role in helping us understand the underlying mechanisms involved in wound healing, and have a critical part in the study and establishment of new therapeutic strategies. It has been established in earlier works by Michaels et al. that of the ten different diabetic murine models, db/db mice exhibit severe impairments of wound healing, and excisional wounds in these mice show a statistically significant delay in wound closure, decreased granulation tissue formation, decreased vascularization in the wound bed, and diminished cellular proliferation (Michaels et al., 2007). Male mice (homozygous for Leprdb strain) become obese at three to four weeks of age and blood sugar typically elevates at four to eight weeks of age. We chose these genetically diabetic mice for our study because they exhibit characteristics similar to adult human onset type II diabetes mellitus (Coleman, 1978; Kämpfer et al., 2000) and as a result showed impaired wound healing response due to the db/db genotype (Brem et al., 2007)—an ideal model to study wound healing since \sim90% of adult human patients
have type II diabetes. These mice also show delayed and reduced expression of keratinocyte growth factor (Werner et al., 1994) and peripheral neuropathy similar to diabetic adult humans (Norido et al., 1984). The course of wound healing in these mice closely follows the clinical observations of human diabetic patients (Greenhalgh, 2003). Previous work has shown that subcutaneous implantation of polyvinyl alcohol sponges injected with TGF-β in diabetic rats leads to an increased collagen deposition, indicating the efficacy of the growth factor in accelerating healing under conditions of defective wound repair (Broadley et al., 1989).

The collagen mimetic peptide CMP, the peptide receptor ligand Tβrl, and the receptor ligand conjugated to CMP (Tβrl–CMP) were synthesized by solid-phase peptide synthesis (SPPS). We have previously reported that (ProProGly)₇ moieties successfully anneal to collagen type I in vitro and ex vivo (Chattopadhyay et al., 2012). These peptides can be used to deliver and anchor small fluorophore molecules in ex vivo wound tissue at room temperature and are not toxic to the dermal fibroblast cell line. Earlier efforts to use collagen mimetic peptides as delivery vehicles for wound healing factors involved the use of (ProHypGly)ₙ analogues and a charged template (Wang et al., 2008b). These peptides preferred to maintain a triple helical form at room temperature and required pre-heating at 80 °C prior to application. Our strategy circumvents these issues and adapts the treatment to more clinically relevant conditions. In the original phage display study, the peptide LTGKNFPMFHRN was presented as a fusion to the N-terminus of the PIII coat protein (Li et al., 2010). In the design of Tβrl–CMP we mimicked this display and chose to covalently conjugate the peptide receptor ligand to the N-terminus of CMP.

We chose to use an excisional wound model for our experiments. This wound model heals from the wound margins and provides the broadest assessment of the various parameters for wound healing like re-epithelialization, fibrovascular proliferation, contracture, and
angiogenesis (Greenhalgh et al., 2001). This model in diabetic mice also provides for larger dorsal surfaces that are useful for the easy application of topical agents directly into the wound bed, as well as the availability of two wounds side-by-side on the same mouse.

4.3.1 Tβrl–CMP in wound healing

Two splinted wounds (8 mm o.d.) were created in the craniodorsal region of each db/db mouse (n = 5 mice/10 wounds) under anesthesia and topically treated with 25 μL of Tβrl–CMP (20 mM) solution in 5% w/v PEG/saline vehicle. Insulin (5 μL, 50 I.U. in saline) was added to each of the wounds and incubated for 30 min under anesthesia. The mice were then allowed to recover and monitored over a period of 12 days. As a control, we treated a second group of mice in a similar manner with insulin (5 μL, 50 I.U. + 25 μL of saline). Clinical evidence indicate that insulin increases vascularization, stimulates proliferation, enhances phagocytosis, and promotes contraction in the wound (Belfield et al., 1970) and is therefore effective in wound healing. Insulin treatment also promoted re-epithelialization and collagen deposition in burn-wound models (Madibally et al., 2003). When injected in diabetic mice wounds, insulin solutions caused a reduction in the mean hyperglycaemia levels (Weringer et al., 1982), but it has been suggested that the increased rate of wound healing may also be attributed to the zinc which is used to crystallize insulin (Greenway et al., 1999). Polyethylene glycol 8000 (PEG, 5% w/v in saline) (Brown et al., 1994; Greenhalgh et al., 1990) was used to dissolve Tβrl–CMP and was also tested as a control, along with saline (0.9% w/v sodium chloride). CMP (25 μL, 20 mM) and Tβrl (25 μL, 20 mM) in 5% w/v PEG/saline were applied as controls to compare against the sustained biological activity of Tβrl–CMP.
Fibrovascular influx and deposition of new collagen in the wounds were visualized with picosirius red and reported as a percentage of the total area. The picosirius red stain illuminated areas of new collagen deposited, as well as previously present dermal collagen. Due to more extensive cross-linking and maturation, the older collagen appears dense and brighter, compared to the fibrillar and lighter form of newly formed collagen. Upon release from the degranulating platelets, TGF-β1 chemotactically attracts fibroblasts into the wound site (Abe et al., 2001; Ashcroft et al., 1999; Postlethwaite et al., 1987) and stimulates their proliferation (Lal et al., 2003). As part of a positive feedback mechanism, fibroblasts then release more TGF-β in response to the TGF-β signaling, as well as promote collagen synthesis. On treatment of diabetic excisional wounds with our conjugated TGF-β peptide receptor ligand, we observed a significant increase in the amount of collagen deposited in the wound bed, compared to that in control wounds treated with the delivery vehicle 5% w/v PEG/saline, the anchoring peptide CMP and insulin (Figure 2). This corroborates with work done previously where topical application of TGF-β in animal models enhanced the fibroblast production of collagen and fibronectin significantly (Lynch et al., 1989; Roberts et al., 1988) and stimulated granulation tissue formation in several wound healing models (Roberts et al., 1986; Roberts, 1995). Collagen production was affected negatively when TGF-β was blocked with antibodies (Roberts et al., 2001). As expected, the soluble form of TβRI, when introduced into the wound, did not show any significant enhancement in collagen formation or maturation over the control wounds. The normal wound healing process is associated with a transient accumulation of fibroblasts that express elevated levels of TβRI and TβRII, but the highest cellular density was observed in the deepest regions of the granulation tissue (Schmid et al., 1998). TβRI tethered to the wound bed via collagen mimetic peptides are poised to preorganize these receptors, and to enhance the
cellular sensitivity to TGF-β signaling. This resulted in formation of new collagen, without the
need for exogenous application of soluble TGF-β. Earlier work has shown that tethering TGF-β1
to a PEG-based polymer scaffold actually causes a significant increase in matrix production and
collagen deposition (Mann et al., 2001). Such a treatment also counteracts the attenuation of
ECM production which is otherwise observed in presence of biomaterials containing cell-
adhesive ligands (Mann et al., 1999). Our test peptide TβrI–CMP can thus be surmised to
behave in a similar manner and promote cellular adhesion, while strengthening the wound bed
itself by improved collagen synthesis and consequent ECM production. The soluble form of the
peptide receptor ligand, however, cannot participate in such preorganization and hence the
response to its treatment is the same as that of control treatments.

A similar response was also observed when analyzing the wounds for inflammatory
response. Upon cutaneous injury, endogenous TGF-β is rapidly elevated in a narrow window of
time after the injury (Kane et al., 1991; Wang et al., 2006) and reaches a peak level three days
post 6-mm full-thickness wounding in transgenic mice. This coincides with the peak of the
inflammation during early stages of wound healing (Wang et al., 2006). Subcutaneous injection
of TGF-β results in a histological pattern of inflammatory cell recruitment (neutrophils,
macrophages), fibroblast proliferation, and vascular growth, similar to the process of normal
inflammation and repair in cutaneous wounds (Roberts et al., 1986). In the early stages, the
growth factor provides an extremely chemotactic ligand for human peripheral blood monocytes,
(Wahl et al., 1987) which is a key phenomenon in the initiation of an inflammatory response.
Through a positive feedback mechanism, the recruited monocytes and macrophages produce
more TGF-β perpetuating their activity, and also produce mitogenic and chemotactic substances
that act on other cells. Our analysis of the wounds in diabetic mice after 12 days showed a
significantly enhanced inflammatory influx in the wounds treated with T\text{\textbeta}r\text{I}-CMP over the vehicular control, the collagen mimetic peptide, and the soluble ligand (Figure 3). It is also competitive with insulin treatment, which is shown to be effective in healing cutaneous injuries (Madibally \textit{et al.}, 2003). The macrophages, once activated, downregulate their receptors for TGF-\beta and hence their sensitivity for stimulation (Wahl \textit{et al.}, 1987). The peripheral blood monocytes also become susceptible to deactivation by TGF-\beta (Tsunawaki \textit{et al.}, 1988). This self-regulates the inflammatory stage by inhibiting the proteolytic environment created by the inflammatory cells and easing the healing process into the proliferative phase (Edwards \textit{et al.}, 1987). We observe concurrent behavior in our treatments with the conjugated peptide receptor ligand, where the inflammatory activity after day 16 is lowered and becomes comparable to control wounds.

Re-epithelialization of the wound bed is the process by which keratinocytes proliferate and migrate from wound edges to create a barrier over the wound. The role of TGF-\beta in this process is not completely understood. Studies \textit{in vitro} showed that TGF-\beta inhibits keratinocyte proliferation and simultaneously enhances their migration (Badiavas \textit{et al.}, 2001; Jeong \textit{et al.}, 2004). \textit{In vivo} studies have also given inconclusive results: transgenic mice that over-express the growth factor showed enhanced epithelialization in partial-thickness wounds, (Tredget \textit{et al.}, 2005) whereas using anti-TGF\beta antibodies in rabbits resulted in impaired epithelialization. On the other hand, mice null for Smad3 showed accelerated keratinocyte proliferation and epithelialization compared to wild-type mice (Ashcroft \textit{et al.}, 1999; Ashcroft \textit{et al.}, 2000). In our experiment, we noticed a trend towards increased epithelialization of the wound bed when the cells are sensitized to endogenous TGF-\beta by preorganizing the T\text{\textbeta}RI and T\text{\textbeta}RII on the cell surface by using receptor ligands tethered to the collagen matrix, compared to the control
treatments (Figure 4). This strategy takes advantage of the fact that additional TGF-β is not introduced into the wound — the cells simply respond more quickly to the endogenously produced growth factor, which modulated the proliferative and migratory properties of the keratinocytes, in a manner similar to TGF-β-treatment as reported previously.

We did not notice any significant difference in the rate of wound closure in the test wounds. This was partly due to scab formation on the wounds, removal of which disturbed the newly formed epidermis and made wound size measurements inconclusive (Figure 5). We have earlier demonstrated that use of a splinted-model for wound healing aids in more effective analysis of wound closure in murine models and more close resembles wound closure in humans. Mouse models, though inexpensive and easy to handle, diverge from human-skin models as the major mechanism of wound closure is contraction; in humans, re-epithelialization and granulation tissue formation are the major phases of wound healing (Davidson, 1998; Greenhalgh et al., 2001). Galiano et al. demonstrated that the use of splints around excise wounds in \textit{db/db} mice allows healing to occur by granulocyte formation and re-epithelialization, while minimizing the effects of contraction compared to un-splinted wound models (Galiano et al., 2004).

Accordingly, we applied and sutured O-rings around the wound margins to act as splints and downregulate contracture in the diabetic mouse-model. We also increased the sample size to eight mice per group, with two wounds each, to provide for better analysis, and used saline (0.9% sodium chloride) as an additional control to compare activity of the ligand in the two vehicles: saline and 5% w/v PEG/saline. The test wounds were treated with 25 \(\mu\text{L}\) of \(\text{TβrI-CMP}\) (20 mM in 5% w/v PEG/saline), while the controls \(\text{CMP}\) and soluble \(\text{TβrI}\) were also applied at the same concentration (in 5% w/v PEG/saline). The mice were housed in separate cages and
monitored over the next 16 days. On histopathological analysis post euthanasia on Day 16, the wounds treated with Tβr1-CMP were all closed completely, except for one wound (Figure 6). The mean value for the wound size was significantly lower than the wounds treated with either saline or 5% w/v PEG/saline (Figure 7A). Surprisingly, soluble Tβr1-treatment also showed slightly enhanced wound closure, though it was not significantly different from any of the controls, and was comparable to the treatment with CMP.

On comparing the extent of re-epithelialization, we noticed a clear tendency of improved keratinocyte proliferation in the wound beds treated with Tβr1-CMP, over the control wounds treated with the vehicles or the collagen mimetic peptide CMP (Figure 7B). It has been reported that TGF-β promotes epithelial cell attachment and migration in vivo (Hebda, 1988; Hebda, 1989) and stimulates the expression of keratinocyte integrins during re-epithelialization (Gailit et al., 1994). Keratinocyte-migration takes place across a substrate, typically the dermis. The deposition of a substantial granulation tissue layer in the longer time period of the splinted-wound experiments (16 days) provided the requisite surface for the migration of keratinocytes and increased the length of new epithelial layer formed (Figure 7B).

4.3.2 Dose response

We decided to test the potency of the TGF-β receptor ligand on ECM formation by treating the wounds with a range of doses of the conjugated Tβr1-CMP. Identical 6 mm o.d. wounds were created on the backs of db/db (5 mice/10 wounds per group), and were then incubated with 25 μL solutions of Tβr1-CMP using 5-fold serial dilutions of concentrations between 50 mM and 80 μM for 30 min. The mice were then recovered and the wounds analyzed after a period of 12 days. The amount of new collagen formed in the wound bed was identified
with picosirius red stain and expressed as a percentage of marked area in the wound bed (to a depth of 0.75 mm from the healed surface). The extent to which collagen was deposited appeared to be comparable in the wounds treated with 0.08, 0.4, 2.0, and 10.0 mM solutions, but increased visibly in the wounds treated with 50 mM solution (Figure 8A). Although the numbers were not statistically different from each other, the difference was noticeable on the histopathological slides (Figure 4.9). On comparing the extent of re-epithelialization in the wounds treated with different doses of Tβrl-CMP, we did not see a marked difference in the treatments, although a trend for higher response resulted on treatment with the higher doses (Figure 4.8B). Inflammatory response indicated the increased presence of mononuclear cells in wounds treated with higher doses, compared to lower doses of 0.04 and 0.8 mM, where there still were discernible amounts of neutrophils and polymorphonuclear cells.

4.4 Materials and methods

Commercial chemicals were of reagent grade or better, and were used without further purification. Anhydrous solvents were obtained from CYCLE-TAINER® solvent delivery systems (J. T. Baker, Phillipsburg, NJ). HPLC-grade solvents were obtained in sealed bottles (Fisher Chemical, Fairlawn, NJ). In all reactions involving anhydrous solvents, glassware was either oven- or flame-dried. Commercially available insulin (Novolin® R; rDNA origin, Novo Nordisk, Princeton, NJ) was used as a control. Polyethylene Glycol 8000 (PEG) (Fisher Bioreagents®, Fairlawn, NJ) and Bacteriostatic 0.9% Sodium Chloride (Hospira, Lake Forest, IL) were used to prepare 5% w/v PEG/saline solution as a delivery medium for the treatments. Male mice (BKS.Cg-Dock7m/Leprdb/J, Jackson Laboratories, Bar Harbor, ME) were used as the animal model. The mice were anesthetized with Isoflurane (Abbott Laboratories, Abbott Park, IL), injected with Buprenex (buprenorphine hydrochloride, Reckitt Benckiser, Berkshire, UK).
for pain management and the wounds were cleaned with 4% chlorhexidine gluconate (Purdue Products, L. P., Stanford, CT) and saline. The O-ring splints (15 mm o.d. x 11 mm i.d., 2mm thickness, McMaster Carr® silicone O-rings, Chicago, IL) came in ready-to-use packages.

Semi-preparative HPLC was performed with a Varian Dynamax C-18 reversed phase column. Analytical HPLC was performed using a Vydac C-18 reversed phase column. Mass spectrometry was performed with an Applied Biosystems Voyager DE-Pro (matrix-assisted laser desorption/ionization) mass spectrometer from Life Technologies in the Biophysics Instrumentation Facility at University of Wisconsin–Madison.

4.4.1 Peptide synthesis and purification

Peptides were synthesized by solid-phase peptide synthesis using a 12 channel Symphony® peptide synthesizer from Protein Technologies, (Tucson, AZ) at the University of Wisconsin–Madison Biotechnology Center. The first proline residue in TPrl-CMP was coupled to the resin after a swell cycle, and the next 7 residues were subjected to normal couplings (30 min). The subsequent 12 amino acids were subjected to extended couplings (60 min). Fmoc-deprotection was achieved by treatment with piperidine (20% v/v) in DMF. CMP was synthesized by SPPS on Fmoc-Gly-Wang Resin (0.4–0.7 mmol/g, 100–200 mesh, Novabiochem®, EMD Chemicals, Gibbstown, NJ) by the sequential coupling of FmocProOH and FmocProProGlyOH. The TPrl-CMP strand was initiated by coupling the subterminal Proline residue to Fmoc-Gly-Wang Resin and subsequent segment condensation using excess (5 equiv/coupling) FmocProOH, FmocProProGlyOH trimers (synthesized as reported previously (Jenkins et al., 2005)), FmocAsn(Trt)OH, FmocArg(Pbf)OH, FmocHis(Trt)OH, FmocPheOH, FmocMetOH, FmocLys(Boc)OH, FmocGlyOH, FmocThr(tBu)OH, and FmocLeuOH. The soluble receptor ligand TPrl was either bought from Biomatik (Wilmigton, DE) or synthesized at
the Peptide Synthesis Facility on Fmoc-Asn(Trt)-Wang Resin (0.54 mmol/g, 100-200 mesh, Novabiochem®, EMD Chemicals, Gibbstown, NJ). The residues were converted to active esters by treatment with 1-hydroxybenzotriazole (HOBt, 3 equiv), O-benzotriazole-N,N,N',N'-tetramethyl-uronium-hexafluoro-phosphate (HBTU, 3 equiv) and N-methylmorpholine (NMM, 6 equiv). CMP was cleaved from the Fmoc-Gly-Wang Resin by using 95:2.5:2.5 trifluoroacetic acid/triisopropylsilane/water (total volume: 2 mL) and Tβrl–CMP was cleaved from the Fmoc-Gly-Wang Resin using 92.5:5:2.5 trifluoroacetic acid/thioanisole/ethanedithiol (total volume: 2 mL). Both of the peptides were precipitated from t-butylmethylether at 0 °C, isolated by centrifugation and purified by semi-preparative HPLC using the following linear gradients: CMP, 5% B to 85% B over 45 min) and Tβrl–CMP, 10% B to 90% B over 50 min where solvent A was H2O containing TFA (0.1% v/v) and solvent B was CH3CN containing TFA (0.1% v/v). CMP was readily soluble in dH2O but Tβrl–CMP required addition of CH3CN (20% v/v) to form a clear solution for HPLC analysis. All of the peptides were judged to be >90% pure by HPLC and MALDI-TOF mass spectrometry: (m/z) [M + H]+ calculated for CMP 1777, found 1777; (m/z) [M + H]+ calculated for Tβrl–CMP 3221, found 3221.

4.4.2 In vivo mice model

Male mice (homozygous for Leprdb, Jackson Laboratories, Bar Harbor, ME) between the ages of 8–12 weeks were used. The mice were housed in groups until the day of surgery and then housed individually post-surgery in separate cages. The experimental protocol followed was according to the guidelines issued by the Institutional Animal Care and Use Committee (IACUC) at the University of Wisconsin–Madison. The mice were provided food and water ad libitum, as well as enrichment, and housed in a temperature-controlled environment with 12 h light and dark cycles.
On the day of the surgery, the mice were anaesthetized with isoflurane using an induction chamber. Buprenorphine, diluted in 0.9% saline to a concentration of 0.01 mg/mL, was injected subcutaneously (0.4 mL/mouse) for pain management. Eyes were lubricated and hind nails clipped. The craniodorsal region was shaved using electric clippers and the shaved area was scrubbed with alternating cotton swabs of chlorhexidine and sterile saline in circular strokes. Residual hair was removed. For the non-splinted wound model, identical 8-mm wounds were created on each side of the body with a biopsy punch, and the wounding was completed using forceps and scissors to prevent the punch from lacerating the subcutaneous tissue. The wounds were then treated with the test compound and the controls, and then allowed to incubate for 30 min while the mouse was still under anesthesia. The wounds were photographed and the mice were then recovered in their cages. For the dose-response experiments, un-splinted wounds were created with a 6 mm biopsy punch and then treated with 25 μL of TPrl-CMP in 5-fold increase of concentration, followed by incubation for 30 min under anesthesia.

For the splinted-wound model, splints were bilaterally placed in a symmetric arrangement, as per Galiano et al. using adhesive and then secured to the skin using 8 interrupted sutures using 5-0 nylon suture, encircling the splints with the knots. Wounds were created in the centre of the splints using the 8-mm biopsy punch, and the skin was removed using forceps and scissors. The wounds were then treated with the test compound and the controls and allowed to incubate for 30 min, while the mouse was still under anesthesia. The wounds were photographed and the mice were then recovered on a warming pad.

Mice were monitored daily for behavioral changes and body weights recorded on days 1, 3, 6, 9, 12, and 16. The splints were checked daily and any broken or untied suture was replaced according to the experimental protocol. During a 24-h period, if only one suture was
compromised, it was replaced by a new suture. If two or more sutures were compromised during a 24-h period, the wound was no longer considered splinted and was removed from the study.

Digital photos were taken on the last day of the experiment and image analysis was performed by calculating the wound area (mm2), using ImageJ Software (NIH). Wound closure was defined as the reduction in area between wound edges over the course of the study and was reported as a percentage of the original wound size.

4.4.3 Harvesting the wounds

Histopathology cassettes were labeled for mouse and wound identification. Note cards (1 inch sq.) were fitted to the bottom of the histopathology cassettes and one edge was labeled “cranial” that would be lined up with the cranial side of the wound harvested. On the final day of the experiment, mice were euthanized using Beuthanasia®-D (0.5 mL/mouse). Using a scalpel blade and scissors, a $\frac{3}{4}$ inch x $\frac{3}{4}$ inch square area of tissue is taken from the mouse, keeping the wound centered in the tissue section. Deep dissection was performed to harvest several layers of tissue deep in the wound. The square section of tissue was affixed to the note card, with the cranial edge lined up against the labeled edge of the card. The cassettes were then closed and placed in formalin-filled jars, to be processed for histopathological processing.

4.4.4 Histopathological analyses

After euthanasia, the entire wound bed as well as the intact skin margin greater than 5 mm was excised to the retro-peritoneum. The harvested tissue was then fixed in 10% v/v formalin for at least 24 h, and then sectioned through the center of the lesion. The center was marked with India ink prior to fixation. Routine paraffin processing was performed and the tissue samples were serially sectioned at a thickness of 5 μm, ensuring that the center of the lesion was
included on the slide. The slides were then stained with hematoxylin, eosin and picosirius red. A mounted digital camera (Olympus DP72, Melville, NY) was used to photograph the sections using light microscopy. Size of the wound, length of re-epithelialization, amount of fibrovascular proliferation in the dermis, and inflammatory response were measured as parameters to study wound healing on the slides containing the centre of the lesion. Measurements were taken and analyzed using image-analysis software (CellScience Dimension 1.4, Olympus, Melville, NY).

Size of the wound was defined as the area of the wound not covered by advancing epithelial layer and was calculated by measuring the distance between the opposite free edges of the wound. Length of re-epithelialization was defined by the length of the layer of proliferating keratinocytes covering the wound area and was calculated by measuring the distance between the free edge of the keratinocyte layer and the base where the cells were still associated with native dermal tissue. Both sides of the lesion were measured and the final result was the sum of the two measurements. For wounds that had undergone complete re-epithelialization, a single measurement was taken from base to base.

Fibrovascular dermal proliferation was measured by examining the picosirius red-stained sections under polarized light, which highlighted the newly deposited dermal collagen. Using the image-analysis software, the wound bed was selected, amount of new collagen in the selected area was automatically measured and the figure expressed as a percentage of the total wound area. The inflammatory response was assessed using a semi-quantitative histopathological scoring system ranging from 0 to 4, where 0 indicated no inflammation, 1 indicates 0–25% of the wound area being affected, 2 indicates 25–50% of the wound area being affected, 3 indicates 50–75% of the wound area being affected, and 4 indicates >75% of the wound area being affected. The inflammatory response was also categorized as ‘acute’, when more than 75% of the
cells were neutrophils; 'chronic active'—when there was a 1:1 ratio of neutrophils and mononuclear cells; and 'chronic'—when more than 75% of the inflammatory cells were mononuclear.

4.4.5 Statistical analyses

All data were analyzed using a Mann–Whitney rank sum test, and statistical significance was set to \(p < 0.05 \). Statistical analyses were executed using the GraphPad Prism Version 5.0 (GraphPad Software, La Jolla, CA).

4.5 Conclusions

Our results demonstrate that the \(\text{TβrI-CMP} \) conjugate can be immobilized in the wound bed due to the propensity of the collagen mimetic peptide domain to anneal to damaged endogenous collagen type I. Thus immobilized, the receptor ligand peptides can amplify the TGF-\(\beta \) signal without the administration of any additional TGF-\(\beta \). Our method upregulates collagen formation in an otherwise impaired healing model like the diabetic mice that show diminished collagen deposition under normal conditions.

The closure of severe wounds where viable tissue has been destroyed by trauma involves deposition of new collagen tissue matrix. This amount varies depending on the severity of the damage. Fibroblasts generate the forces of contraction, and collagen controls the forces of wound closure and tensile strength. Amplified TGF-\(\beta \) activity in the initial stages of the wound healing process will help in quickly building up the tensile strength in the wounds and close the wounds.
faster, due to stimulation of fibroblast proliferation and activity, as well as keratinocyte migration over the surface of the wounds. This type of healing may involve some amount of scarring, but could prove very effective in recovering from badly damaged wounds as is observed in 3rd-or 4th-degree burn wounds and traumatic mechanical damage, which would otherwise lead to lifelong impairment in the patients. Moreover, dose response studies indicate that the amount of collagen deposition can be regulated by lowering the concentration of TβRI-CMP without substantial changes in the rate of epithelialization or wound closure.
Figure 4.1: Graphical representation of the TGF-β-receptor complex formation and subsequent activation of the Smad2/3 proteins in cell cytoplasm by the kinase domain of the complex. The phosphorylated Smad2/3 then associates with the Smad4 and translocates into the nucleus to bind with DNA-binding partners and regulate gene expression. (A) In the native state, TβRI and TβRII form non-covalent homodimers on the cell surface that bind to TGF-β with high avidity ($K_d \sim 5-30$ pM). (B) Preorganization of the TGF-β signaling complex on the collagen matrix via conjugation with collagen mimetic peptide $(PPG)_7$ that can anneal with native collagen in the wound bed. Such preorganization of the extracellular domains of the receptors should cause avid interaction with endogenous TGF-β.
Figure 4.2. Bar graph showing the effect of Tβr1-immobilization (0.5 μmol in 5% w/v PEG/saline) on collagen deposition in non-splinted mouse wounds. Data are from Day 12 post-treatment. Fibrovascular influx was scored on a scale of 0–4, and was significantly higher ($p < 0.05$) in wounds treated with Tβr1-CMP in comparison to all the control-treated wounds (*). Values are the median ± SE ($n = 10$).
Figure 4.3. Bar graph showing the effect of Tβrl-immobilization (0.5 μmol in 5% w/v PEG/saline) on inflammation in non-splinted mouse wounds. Data are from Day 12 post-treatment. Inflammation was scored on a scale of 0–4, and was significantly higher ($p < 0.05$) in wounds treated with Tβrl–CMP in comparison to control wounds treated with the vehicle, soluble Tβrl, and CMP (*). Values are the median ± SE ($n = 10$).
Figure 4.4. Bar graph showing the effect of TβrI-immobilization (0.5 µmol in 5% w/v PEG/saline) on re-epithelialization of non-splinted mouse wounds. Data are from Day 12 post-treatment. The extent of re-epithelialization with TβrI-CMP -treatment was higher than that of all the control-treatments. Values are the mean ± SE (n = 10).
Figure 4.5. Bar graph showing the effect of Tβr1-immobilization (0.5 μmol in 5% w/v PEG/saline) on closure of non-splinted mouse wounds. Data are from Day 12 post-treatment. There was no significant difference between the sizes of the wounds, which was calculated as a percentage of the original wound size on Day 0. Values are the mean ± SE (n = 10).
Figure 4.6. Photographs depicting the effect of Tβr1-immobilization on splinted mouse wounds. Images are from Day 0 (immediately post-treatment) or Day 16 after removal of the splints but before euthanasia. Wounds were treated with (A) saline; (B) PEG (5% w/v) in saline; (C) Soluble Tβr1 (0.5 μmol) in 5% w/v PEG/saline; (D) CMP (0.5 μmol) in 5% w/v PEG/saline; (E) Tβr1–CMP (0.5 μmol) in 5% w/v PEG/saline. All wounds treated with Tβr1–CMP except for one showed complete closure (n = 16).
Figure 4.7. Bar graph showing the effect of TβrI-immobilization (0.5 μmol in 5% w/v PEG/saline) on size and re-epithelialization of splinted mouse wounds. Data are from Day 16 post-treatment. (A) The mean size of the TβrI-CMP-treated wounds was significantly different (*) from that of all the controls (p < 0.05). (B) TβrI-CMP treatment showed significantly more extensive (*) epithelial layer formation compared to both saline and PEG/saline controls (p < 0.05). Values are the mean ± SE (n = 16).
Figure 4.8. Bar graphs showing dose response to increasing concentrations of Tβr1–CMP solutions in saline (25 μL) in 6 mm non-splinted mouse wounds. Data are from Day 12 post-treatment. (A) New collagen deposition (calculated as percentage of a demarcated area of the wound at a depth of 0.75 μm from the healed surface). (B) Re-epithelialization. Collagen deposition was up-regulated at higher concentrations of Tβr1–CMP. Values are the mean ± SE (n = 10).
A

Collagen Deposition (%)

[Tβri-CMP] (mM)

B

Re-Epithelialization (mm)

[Tβri-CMP] (mM)
Figure 4.9. Histological images depicting the effect of Tβrl-immobilization in different doses on collagen deposition and size in non-splinted mouse wounds. Data are from Day 12 post-treatment. Left: Wounds stained with picosirius red and imaged under polarized light. Right: Wounds stained with hematoxylin and eosin. Images represent wounds treated with Tβrl-CMP at concentrations of (A) 50 mM in saline; (B) 10 mM in saline; (C) 2 mM in saline; (D) 0.4 mM in saline; (E) 0.08 mM in saline. At this time point, lesions were still present in all the wounds, and there was more collagen deposition in the wounds treated with higher concentrations of Tβrl-CMP.
4.6 Acknowledgments

We are grateful to Patricia Kierski, Diego Calderon, Dana Taeke, Kevin Johnson, and Zachary Joseph for help with the wound surgery and animal care. We are also grateful to Dr. Lingyin Li and Prof. Nicholas Abbott for constructive discussions, and Dr. Langdon Martin, Dr. Kevin Desai, and Chelcie Eller for critical reading of the manuscript. This work was supported by grants R01 AR044276 and RC2 AR058971 (NIH). MALDI-TOF spectrometry was performed at the University of Wisconsin–Madison Biophysics Instrumentation Facility, which was established with Grants BIR-9512577 (NSF) and S10 RR13790 (NIH).
CHAPTER 5

Future Directions
5.1 To identify and design the covalent attachment of growth factors and other molecules to the collagen mimetic peptides

In Chapter 3 and Chapter 4, we demonstrated the feasibility of attaching short peptide molecules with established biological activities to a collagen mimetic peptide capable of binding to endogenous collagen and modulating the wound-healing process. Now, we can extend this strategy to larger growth factors that have been proven to influence the wound healing process as well as regulate cellular activity in a systemic manner. For example, diabetic foot ulcers, a major complication in patients with diabetes mellitus, is observed in 15–20% of the affected patients, and is the cause for ~85% of all lower leg amputations. These ulcers are a major burden on the health-care industry, and there are no effective treatment plans for such slow-healing wounds. Both vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) are potent stimuli for angiogenesis, a critical step of wound healing that is impaired in diabetic patients. A pharmacological promotion of angiogenesis would also promote diabetic foot ulcer-healing. The collagen mimetic peptides can be used to locally deliver VEGF or FGF with high specificity in the impaired wound tissue, and modulate the formation of new blood vessels in the area.

Since the growth factors often need to be transported across the cell membrane, this strategy would require the use of a cleavable linker molecule between the collagen mimetic peptide and the bioactive molecules. The linker should be cleavable under physiological conditions in a non-intrusive manner, and non-toxic with minimal chemical byproducts. Linkers that are affected by slight changes in pH conditions or on exposure to infrared light might prove to be useful in this regard. The linker region would also ensure the complete availability of the bioactive peptide/protein molecule to the cells and their receptors by increasing their separation
from the anchoring collagen base. Such linkers would also be useful for attaching the collagen mimetic peptides covalently to anti-microbial peptides. Many of these anti-microbial peptides have short sequences rich in hydrophobic residues and act by disrupting the bacterial cell membrane. Site-specific delivery of these peptides could increase their effectiveness and help in managing the microbial baggage of wound tissues.

The same strategy would also be valid for the delivery of small-molecule drugs that target organs and tissues rich in fibrillar collagen. The collagen mimetic peptides could be attached to bio-compatible fluorophores and be used to image badly damaged wound tissue in the deeper sections of the body as well as cancerous tissue, and thereby ensure a well-directed treatment and expedited healing. In conclusion, these collagen mimetic peptides show potential to be a safe and effective delivery system for myriad different wound-healing strategies.

5.2 Multivalent display of collagen-mimetic peptides on a peptide backbone for therapeutic purposes

In Chapter 2, we demonstrated the ability of short collagen mimetic peptides based on flpFlpGly and ProProGly units to form heterotrimeric triple helices with endogenous collagen type I. In the last decade there has been some progress in the development of interesting collagen peptide-based assemblies by including other structural components covalently linked to the collagen mimetic peptides. Stabilized collagen triple helices were composed using very short sequences of collagen mimetic peptides, that would otherwise be monomeric [(ProProGly)_5], via linking them to dendrimers (Kinberger et al., 2002). The strategy can also help in constructing hydrogels using dendrimer-linked collagen mimetic peptides that can act as thermo-responsive
drug carriers. Various covalently knotted collagen mimetic peptides have been including a dendrimers in which terminal groups were modified with the collagen mimetic peptide (Gly-Pro-Nleu)n [Nleu: N-isobuty1glycine] (Kinberger et al., 2002; Kinberger et al., 2006).

Such studies could be extended to our model collagen mimetic peptides to design peptide–polymer conjugates useful for wound-healing studies. The synthetic target would be achieved by covalently linking such peptides to linear polymers and designing a peptide–polymer “brush” that could display the biological activity of the peptides on the surface. Appropriate block co-polymers have been created by using the ring-opening metathesis polymerization (ROMP) (Pontrello et al., 2005). We could use this strategy to synthesize block co-polymers that act as the backbone of a peptide–polymer “brush”, and then attach covalently a large number of collagen mimetic strands (Scheme 5.2.1).

We could use the above strategy to design and synthesize peptide–polymer conjugates with (flpFlpGly)n units that are displayed multivalently on the polymer surface and are thereby available for annealing to native type I collagen in the traumatized tissue of a wound bed. The tethered (flpFlpGly)n units could then ‘solder’ the frayed tissue together and expedite the rate of wound closure. This strategy might be particularly useful for the treatment of large wounds, complementing extant tissue-grafting methods.

In initial studies, we could functionalize the peptide–polymer conjugates with small fluorophores and characterize their ability to bind and congeal native collagen in vitro. We could also use gold nanoparticles to functionalize these peptide–polymer conjugates, fix them on tissue sections and visualize their binding using transmission electron microscopy.
We could also choose to display \((\text{ProProGly})_7\) units in the synthesis of these peptide–polymer conjugates. Work by other groups has indicated that clustering the collagen mimetic peptide on the surface of dendrimers induced the formation of collagen-like triple helices, even when the peptides were of relatively short sequences. When tethered to dendrimers, the collagen mimetic peptides exhibited more highly triple-helical structures than did the free peptides (Higashi et al., 2000; Kinberger et al., 2006; Kojima et al., 2009). The triple-helix formation could also be controlled by modulating the length of the conjugated peptides and the temperature of the solution. Generally, triple-helix formation is promoted at lower temperatures. We could identify the melting temperature for these surface-tethered triple helices and attempt to construct a hydrogel by cooling an aqueous solution of the peptide–polymer conjugate to a temperature lower than the \(T_m\). Such a hydrogel would resemble closely the extracellular matrix in composition, and could be used as a potential cellular matrix for controlled drug release. Previous studies have shown that conjugating ProHypGly-based collagen mimetic peptides with pre-formed PEG-based hydrogels can be used to encapsulate chondrocytes and enhance tissue production (Lee et al., 2006), while triblock copolymers containing ProHypGly units are capable of assembling into spherulites (Martin et al., 2003).

5.3 Design and synthesis of a collagen ‘duplex’

An important off-shoot of the wound-healing aspect of this thesis work is to establish (or disavow) the idea of collagen “strand invasion” by collagen mimetic peptides in wounded tissue. Testing the theory in an \textit{ex vivo} or \textit{in vivo} model is difficult. We could, however, approach this
goal *in vitro* by the rational design of a collagen ‘duplex’ that could act as ‘nest’ for model collagen mimetic peptides.

The strategy could involve growing two peptide chains simultaneously from the same resin bead, and then covalently linking the chains on their free ends using a disulfide linkage (Figure 5.2.1A). Test collagen mimetic peptides could be incubated with the double-stranded template, and the thermodynamics of a spontaneous triple-helix formation could be studied *in vitro*. Our initial design of such a template involved linking one end of the ‘duplex’ via the formation of a thioether bond (Figure 5.3.1B). The glycine residues at either end would provide the required flexibility for spontaneous formation of a disulfide bond at the other end. Based on previous work done in our lab (Gottlieb, D. and Raines, R. T., unpublished results), the synthesis of a thioether bond on solid phase was not successful (Figure 5.3.1C).

Our efforts to modify the strategy included replacing the thioether linkage with an amine linkage (Figure 5.3.2A) using a second lysine residue (Figure 5.3.2B). This strategy was not successful in building the two strands simultaneously on a solid phase. When we used Fmoc-6-aminohexanoic acid (Fmoc-aha) to form the amine linkage (Figure 5.3.2C), and cleaved the double-stranded peptide from resin under standard cleavage conditions, the terminal cysteine residues oxidized spontaneously. The mass spectroscopy trace appears to indicate polymerization via intermolecular disulfide-bond formation (Figure 5.3.3).

Future efforts to synthesize this template could include using a low-loading resin (like NovaPEG Rink Amide Resin) and FmocProProGlyOH units, and synthesizing the double-stranded peptide template on a solid phase without using automated synthesis. The first coupling of FmocLys(Mmt)OH can be followed by selective deprotection of the ε-amino group,
subsequent coupling of a β-alanine residue that could serve as the basis for synthesizing the second strand concomitantly. In order to prevent unwanted polymerization of the cysteine thiols, the final oxidation step should be performed in very dilute solutions using mild oxidizing agents, such as 2, 2'-dithiodipyridine, 5% DMSO, or exposure to air over a controlled time interval.
Scheme 5.2.1. Synthesis of CMP–polymer conjugate
Figure 5.3.1. Design of a collagen ‘duplex’ template. (A) The template could act as a scaffold to study triple helix formation in vitro. (B) Duplex strands linked by thioether and disulfide bonds at the C- and N-terminus respectively. (C) Solid-phase synthetic scheme for thioether synthesis.
A. Collagen “duplex”

Collagen Triple Helix

B.

C.

1. 1% TFA / 5% TIS / DCM
2. 3-Bromopropylamine. HBr
Figure 5.3.2. Alternative design for a collagen ‘duplex’ template. (A) Duplex strands linked by amino and disulfide bonds at the C- and N-terminus respectively. (B) Solid phase synthetic scheme for di-lysine coupling. (C) Solid-phase synthetic scheme for coupling of Fmoc-6-aminohexanoic acid to lysine.
A.

B.

C.
Figure 5.3.3. MALDI–TOF mass-spectra for the polymeric products of the synthetic scheme outlined in Figure 5.3.2C
Appendix 1: For Chapter 2

A.1 Collagen mimetic peptides annealing to in vivo diabetic wounds

The db/db mouse exhibits clinically relevant characteristics like obesity, insulin resistance, and severe hyperglycemia of human onset diabetes, with a concomitant delay in wound healing. These mice also show typical complications associated with diabetic patients such as peripheral neuropathy, microvascular lesions, thickening of the basement membrane, and immunodeficiency. As a result the db/db mice are used extensively used for studies on dermal repair.

The db/db mouse is a well-established model of hyperphagia with an inherent predisposition to severe obesity. The levels of subcutaneous and visceral fat layers in db/db mice are significantly higher compared to the wild-type as seen in Figure A.1.1. In a typical skin cross-section the extensive granulation tissue layer overlays the adipose cell layer (Figure A.1.2). In db/db mice the adipose layer is more extensive. Earlier research by different groups has shown the feasibility of delivering stromal cells and growth factors into dorsal wounds of db/db mice using collagen-based biomaterials (Kondo et al., 2011 [Epub ahead of print; Sept 22]; Maeda et al., 2001; Nambu et al., 2011). Our efforts to target wound healing using collagen mimetic peptides is based on the ability of such peptides to bind to endogenous collagen type I present in the wound bed. This criterion required us to ensure that the extensive adipose layer in db/db mice will not provide an impediment to our studies.
A.1.1 Experimental methods

Collagen mimetic peptide with fluoroproline units \([Ac-(flpFlpFly)_{7}-(GlySer)_{3}-LysOH]\) (CMP 1) was synthesized by coupling FmocFlpFlpGlyOH, FmocGlyOH, and FmocSerOH on FmocLys(Boc)-Wang resin using standard SPPS procedures as described earlier. CMP 1 was conjugated to 5-carboxyfluorescein, NHS ester as per the protocol described earlier to afford fluorescently tagged \(^{F}\text{CMP 1}\).

Identical 8-mm wounds were created in the dorsal region of \(db/db\) mice (8–10 weeks old). The test wounds were treated with fluorophore-tagged collagen mimetic peptide \(^{F}\text{CMP 1}, 25 \mu\text{L}, 20 \text{mM}\), and the control wounds were treated with free fluorophore 5-carboxyfluorescein reacted with ethylamine. The wounds were incubated for 30 min while the mice were under the influence of anesthesia, and then washed with 1x PBS. The mice were euthanized and the wounds were harvested following the specified protocols described earlier. The wounds were imaged using a dissecting fluorescent microscope.

A.1.2 Results and discussion

\(^{F}\text{CMP 1}\) annealed to cutaneous wounds in \(db/db\) mice post washing, and the fluorescence was limited to the wound bed (Figure A.1.3). The wounds treated with the free dye did not show any fluorescence. The collagen mimetic peptides designed can thus be used effectively for wound healing studies.
Figure A.1.1. Comparison of 10-week-old db/db and normal mice. (A) Exposure of subcutaneous and visceral fat showing more fat in the db/db mouse compared to the wild-type mouse. (B) Sections of epididymal fat of db/db and wild-type mice, showing large size of db/db adipocytes compared with wild-type despite identical food intake.

[Adapted from (Wang et al., 2008c)]
Figure A.1.2. Graphical representation of the cross-section of a wound bed in skin

[Adapted from Wounds © 2004 Health Management Publications]
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure A.1.3. Photographs of the annealing of $^\text{FCMP} 1$ to db/db mouse collagen in vivo.

Fluorescently labeled CMP 1 and 5-FAM were applied to 8-mm cutaneous dorsal wounds on mice, washed, and imaged. A. Wound treated 5-FAM. B. Wound treated with $^\text{FCMP} 1$. The outline of the wound-edge is shown in (A) and (B).
Appendix 2: For Chapter 3

A.2 Dose response of CMP–SubP

We tested the potency of Substance P conjugated to collagen mimetic peptides in wound healing by treating the wounds with increasing doses of the conjugated CMP–SubP. Identical wounds with an outer diameter of 6 mm were created on the backs of db/db mice (5 mice/10 wounds per group), and incubated with 25 μL solutions of CMP–SubP in 5-fold increase in concentrations between 80 μM to 50 mM for 30 min. The mice were then recovered and the wounds analyzed after a period of 12 days.

A.2.1 Results and discussion

Length of re-epithelialization was defined by the length of the layer of proliferating keratinocytes covering the wound area and was calculated by measuring the distance between the free edge of the keratinocyte layer and the base where the cells were still associated with native dermal tissue. Both sides of the lesion were measured and the final result was the sum of the two measurements. The extent of re-epithelialization in wounds treated with 0.08, 0.4 and 2 mM of CMP–SubP solution were comparable and did not show any notable differences (Figure A.2.1). However there was a marked decrease in epithelial cover in wounds treated with high doses of CMP–SubP, and the wounds remained open longer when a high concentration of the conjugate was used.

The amount of new collagen formed in the wound bed was identified with picosirius red stain and expressed as a percentage of total area of the wound bed. The extent to which collagen was deposited appeared to be comparable in the wounds treated with 50 and 10 mM solutions, and peaked on administration of a 2 mM solution of the conjugate (Figure A.2.2). The response
was affected with solutions of lower concentrations. A similar trend was observed in the inflammatory response which indicated that concentrations of ~2 mM elicited the maximum influx of polymorphonuclear and mononuclear cells into the wound tissue in 12 days (Figure A.2.3).

Based on the results obtained we decided to use an optimized concentration of 1 mM CMP-SubP for our experiments involving a splinted-wound model in \textit{db/db} mice. At this concentration, wound closure and epithelialization is substantial without compromising on the extent of collagen deposition and inflammatory response.
Figure A.2.1. Bar graph representing extent of re-epithelialization in response to increasing concentrations of CMP–SubP solutions in 6 mm non-splinted wounds. Wounds were treated with 0.08, 0.4, 2, 10, and 50 mM solutions (25 μL) in 5% w/v PEG/saline. Data are from Day 12 post-treatment. There were no significant differences in the mean length of the new epithelial layer formed in wounds treated with 0.08, 0.4, and 2 mM CMP–SubP. Values are the mean ± SE (n = 10).
Figure A.2.2. Bar graph representing collagen deposition in response to increasing concentrations of CMP-SubP solutions in 6 mm non-splinted wounds. Wounds were treated with 0.08, 0.4, 2, 10, and 50 mM solutions (25 μL) in 5% w/v PEG/saline. Data are from Day 12 post-treatment. New collagen deposition was maximal at 2 mM concentration of CMP-SubP. Values are the mean ± SE (n = 10).
Figure A.2.3. Bar graph representing inflammatory influx in response to increasing concentrations of CMP–SubP solutions in 6 mm non-splinted wounds. Wounds were treated with 0.08, 0.4, 2, 10, and 50 mM solutions (25 μL) in 5% w/v PEG/saline. Data are from Day 12 post-treatment. The influx of inflammatory cells peaked on treatment with 2 mM CMP–SubP solution. Data represents median ± SE (n = 10).
Appendix 3: For Chapter 4

A.3.1 The effects of topical insulin administration in wounds treated with Tβrl–CMP

Un-splinted wounds in the craniodorsal region of diabetic mice (3 mice/group) were treated them with 15 μL of Tβrl–CMP (20 mM in saline). One of these groups was also treated with 5 μL insulin (50 I.U in saline). The wounds were monitored over a period of 12 days and then visualized under a camera as well by histopathological analysis.

A.3.1.1 Results and discussion

On inspecting the wounds visually, there was no significant difference in the extent of closure of wounds treated with Tβrl–CMP, with or without the presence of insulin (Figure A.3.1A). This was supported by histopathological scoring, which indicated a reduced wound-size in absence of insulin (Figure A.3.1B). The mean length of new epithelial layer formed (Figure A.3.1C) and collagen synthesized (Figure A.3.1D) are comparable in both the groups. A combination of Tβrl–CMP and insulin also led to a depression in inflammatory response in the wounds (Figure A.3.1E).

Based on the analyzed results, we decided to cease the use of topical insulin in studies involving the splinted-wound model.
Figure A.3.1. Bar graph showing the additive effect of insulin (50 I.U) during Tβrl–CMP-immobilization on non-splinted mouse wounds. Data are from Day 12 post-treatment. (A) Wound closure, which refers to reduction in area between wound edges as a percentage of the original area. (B) Wound size, which refers to histopathological measurement of wound of the largest diameter. (C) Length of new epithelial layer, measured as the length of advancing keratinocyte layers on either edges of the wound bed. (D) Collagen deposition measured as a percentage of a de-marked area of the wound. (E) Inflammation score. Data represents mean ± SE (n = 6).
A.3.2 Extent of collagen deposition in wounds treated with Tβrl–CMP 16 days post-treatment

In experiments similar to the ones described previously, we made an attempt to analyze wounds treated with Tβrl–CMP and observed over a longer period of time i.e. 16 days. Tβrl–CMP (25 µL, 20 mM) was topically applied to identical 8 mm-diameter wounds created on either side of the cranio-dorsal region in five db/db mice (10 wounds). Insulin (5 µL, 50 I.U) was added to each of the wounds. Control wounds were treated with the delivery vehicle 5% PEG/saline, insulin, soluble unconjugated peptide Tβrl (25 µL, 20 mM), and the collagen mimetic peptide CMP [(ProProGly); 25 µL, 20 mM]. The wounds were incubated for 30 min while the mice were under anesthesia, and then the mice were recovered and observed over the next 16 days.

An identical experiment using splinted wounds in db/db mice was also carried out over a period of 16 days. The test wounds (8 mice/ 16 wounds) were treated with Tβrl–CMP (25 µL, 20 mM), while the control wounds were treated with saline, 5% PEG/saline, unconjugated Tβrl (25 µL, 20 mM), and the collagen mimetic peptide CMP [(ProProGly); 25 µL, 20 mM].

A.3.2.1 Results and discussions

In the un-splinted model, the levels of new collagen deposition in the wounds treated with the test conjugate and the control solutions were comparable (Figure A.3.2.1). In our previous study we had observed a significantly higher deposition of fresh collagen after 12 days when wounds were treated with Tβrl–CMP at the same concentration. On analysis of the splinted wounds after 16 days, we observed a similar trend of comparable levels of collagen
deposition in a de-marked area of all the wounds (to the depth of 0.75 μm depth from the healed surface) (Figure A.3.2.2).

In light of our current results from wounds analyzed after 16 days, it appears that a single topical administration of Tfβ1–CMP on day 0 promotes enhanced levels of collagen synthesis and deposition in the wound bed at an earlier time point of the healing process. This elevated response is however tempered in the later period of the healing period, such that the total amount of collagen in the wounds by the time of complete closure is comparable to that in wounds treated with control solutions. Such a response pattern has the potential to impart mechanical strength to the wound matrix via early collagen deposition and formation of the extracellular matrix, while tempering the collagen deposition in subsequent periods, and thereby avoid the possibility of extensive scarring.
Figure A.3.2.1. Bar graph showing the effect of TβrI-CMP-immobilization on collagen deposition of non-splinted mouse wounds. Data are from Day 16 post-treatment. Collagen deposition was comparable in all the wounds. Values are the median ± SE (n = 10).
Figure A.3.2.2. Bar graph showing the effect of TβrI-CMP–immobilization on collagen deposition of splinted mouse wounds. Data are from Day 16 post-treatment. Collagen deposition was comparable in all the wounds. Values are the mean ± SE (n = 16).
A.3.3 Inflammatory response in wounds treated with Tβrl–CMP 16 days post-treatment

The inflammatory response in wounds treated with Tβrl–CMP (25 μL, 20 mM) at an advanced time point in the wound healing process was also analyzed. After 16 days post-surgery both non-splinted and splinted-wound models as described above were scored for the levels of inflammatory cell influx into the affected tissue.

A.3.3.1 Results and discussion

Analysis of non-splinted wounds 12 days post-treatment had indicated that Tβrl–CMP elicited a significantly ($p < 0.05$) increased level of inflammatory response in the wound bed compared to treatment with 5% PEG/saline, unconjugated Tβrl, and CMP solutions. After 16 days the inflammatory activity in the tissues was reduced and was comparable to the vehicular control as well as the control peptides (Figure A.3.3.1).

The pattern observed in the splinted-wound model, the inflammatory response-pattern observed was identical and all the treated wounds had comparable levels of polymorphonuclear and mononuclear cells (Figure A.3.3.2)
Figure A.3.3.1. Bar graph showing the effect of Tβ̂rl–CMP–immobilization on inflammatory influx of non-splinted mouse wounds. Data are from Day 16 post-treatment. Values are the median ± SE (n = 10).
Figure A.3.3.2. Bar graph showing the effect of TβrI-CMP -immobilization on inflammatory influx of splinted mouse wounds. Data are from Day 16 post-treatment. Values are the median ± SE (n = 16).
A.3.4 Inflammatory reaction and wound size in response to increasing concentrations of Tβr1–CMP

We analyzed the potency of TGF-β receptor ligand conjugated to collagen mimetic peptides in wound healing by treating the wounds with increasing doses (five-fold) of conjugated Tβr1–CMP. Identical wounds with an outer diameter of 6 mm were created on the backs of db/db mice (5 mice/10 wounds per group), and incubated with 25 μL solutions of Tβr1–CMP in five-fold increase in concentrations between 80 μM to 50 mM for 30 min. The mice were then recovered and the wounds analyzed for inflammatory response and wound size after a period of 12 days.

A.3.4.1 Results and discussion

The inflammatory response was assessed using a semi-quantitative histopathological scoring system ranging from 0 to 4, where 0 indicated no inflammation, 1 indicates 0–25% of the wound area being affected, 2 indicates 25–50% of the wound area being affected, 3 indicates 50–75% of the wound area being affected, and 4 indicates >75% of the wound area being affected. The inflammatory response was also categorized as ‘acute’, when more than 75% of the cells were neutrophils; ‘chronic active’– when there was a 1:1 ratio of neutrophils and mononuclear cells; and ‘chronic’– when more than 75% of the inflammatory cells were mononuclear.

On analyzing the data the overall inflammatory score for the different treatments did not show a specific trend. However on classifying the wounds as ‘acute’, ‘chronic active’ and ‘chronic’ based on the criteria delineated, there was clear trend of increasing percentage of ‘chronic active’ wounds when treated with a higher concentration of Tβr1–CMP (Figure
A.3.4.1). This indicates that at higher concentrations, T\beta rl-CMP promotes the advancement of the inflammatory phase from the 'acute' to the 'chronic active' stage, with an influx of monocytes, macrophages and fibroblasts. This would lead to an earlier resolution of the inflammatory phase, overlapping with the initial proliferative phase of wound healing.

The wound size was measured as the largest separation between the wound edges 12 days post-treatment. On analysis, there was no observable difference in the size of the wounds subjected to varying concentrations of T\beta rl-CMP (Figure A.3.4.2).
Figure A.3.4.1. Bar graph representing inflammatory reaction in the wounds in response to increasing concentrations of TPri-CMP in non-splinted 6 mm mouse wounds. Wounds were treated with 0.08, 0.4, 2, 10, and 50 mM solutions (25 μL) in 5% w/v PEG/saline. Data are from Day 12 post-treatment. Values are the median ± SE ($n = 10$). The number of ‘chronic active’ wounds was measured as a percentage of the total number of wounds receiving treatment [▲]. The inflammatory score for a wound treated with 20 mM TPri-CMP in a separate experiment is also indicated in the same graph [▲].
Figure A.3.4.2. Bar graph representing wound size in response to increasing concentrations of TβrI-CMP in non-splinted 6 mm mouse wounds. Wounds were treated with 0.08, 0.4, 2, 10, and 50 mM solutions (25 µL) in 5% w/v PEG/saline. Data are from Day 12 post-treatment. Values are the mean ± SE (n = 10).
REFERENCES

Allan, J. A.; Hembry, R. M.; Angal, S.; Reynolds, J. J.; Murphy, G. Binding of latent and high Mr active forms of stromelysin to collagen is mediated by the C-terminal domain; J. Cell Sci. 1991, 99, 789-795.

Barnes, P. J.; Brown, M. J.; Dollery, C. T.; Fuller, R. W.; Heavey, D. J.; Ind, P. W. Histamine is released from skin by substance P but does not act as the final vasodilator in the axon reflex; *Br. J. Pharmacol.* **1986**, *88*, 741-745.

Bechetoille, N.; Dezutter-Dambuyant, C.; Damour, O.; André, V.; Orly, I.; Perrier, E. Effects of solar ultraviolet radiation on engineered human skin equivalent containing both Langerhans cells and dermal dendritic cells; *Tissue Eng.* **2007**, *13*, 2667-2679.

Cascone, M. G.; Sim, B.; Sandra, D. Blends of synthetic and natural polymers as drug delivery systems for growth hormone; *Biomaterials* 1995, *16*, 569-574.

Demling, R. H.; DeSanti, L. R. N.; Orgill, D. P.; Structure, properties and evidence based clinical experience in burns; www.burnsurgery.org.

Dunnick, C. A.; Gibran, N. S.; Heimbach, D. M. Substance P has a role in neurogenic mediation of human burn wound healing; *J. Burn Care Rehab.* **1996**, *17*, 390-396.

Fiedler, L. R.; Schönherr, E.; Waddington, R.; Niland, S.; Seidler, D. G.; Aeschlimann, D.; Eble, J. A. Decorin regulates endothelial cell motility on collagen I through activation of insulin-like growth factor I receptor and modulation of \(\alpha 2\beta 1\) integrin activity; *J. Biol. Chem.* **2008**, *283*, 17406-17415.

Fonseca, J. M.; Alsina, A. M.; Francesca, R. Coating liposomes with collagen (Mr 50000) increases uptake into liver; Biochim. Biophys. Acta - Biomembranes 1996, 1279, 259-265.

Fujisato, T.; Sajiki, T.; Liu, Q.; Ikada, Y. Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold; Biomaterials 1996, 17, 155-162.

Gilbert, T. W.; Sellaro, T. L.; Badylak, S. F. Decellularization of tissues and organs; Biomaterials 2006, 27, 3675-3683.

Greenway, S. E.; Filler, L. E.; Greenway, F. L. Topical insulin in wound healing: a randomised, double-blind, placebocontrolled trial; J. Wound Care 1999, 8, 526-528.

Hennessy, K. M.; Pollot, B. E.; Clem, W. C.; Phipps, M. C.; Sawyer, A. A.; Culpepper, B. K.; Bellis, S. L. The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces; *Biomaterials* 2009, 30, 1898-1909.

Holzer, P. Local effector functions of capsaicin-sensitive sensory nerve endings: Involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides; *Neuroscience* 1988, 24, 739-768.

Jeong, H.-W.; Kim, I.-S. TGF-β1 enhances βig-h3-mediated keratinocyte cell migration through the α3β1 integrin and PI3K; *J. Cell. Biochem.* 2004, 92, 770-780.

Khew, S. T.; Yang, Q. J.; Tong, Y. W. Enzymatically crosslinked collagen-mimetic dendrimers that promote integrin-targeted cell adhesion; *Biomaterials* **2008**, *29*, 3034-3045.

Orwin, E. J.; Hubel, A. In vitro culture characteristics of corneal epithelial, endothelial, and keratocyte cells in a native collagen matrix *Tissue Eng.* 2000, 6, 304-319.

Powell, H. M.; Boyce, S. T. EDC cross-linking improves skin substitute strength and stability; Biomaterials 2006, 27, 5821-5827.

Powell, H. M.; Boyce, S. T. Wound closure with EDC cross-linked cultured skin substitutes grafted to athymic mice; Biomaterials 2007, 28, 1084-1092.

Ramos, C.; Montano, M.; Cisneros, J.; Sommer, B.; Delgado, J.; Gonzalez-Avila, G. Substance P up-regulates matrix metalloproteinase-1 and down-regulates collagen in human lung fibroblast; Exp. Lung Res. 2007, 33, 151-167.

Roberts, A. B.; Piek, E.; Böttinger, E. P.; Ashcroft, G.; Mitchell, J. B.; Flanders, K. C. Is Smad3 a major player in signal transduction pathways leading to fibrogenesis?; Chest 2001, 120, S43-S47.

Shoulders, M. D.; Guzei, I. A.; Raines, R. T. 4-Chloroprolines: Synthesis, conformational analysis, and effect on the collagen triple helix; *Biopolymers* 2008, 89, 443-454.

Wachol-Drewek, Z.; Pfeiffer, M.; Scholl, E. Comparative investigation of drug delivery of collagen implants saturated in antibiotic solutions and a sponge containing gentamicin; Biomaterials 1996, 17, 1733-1738.

Wang, A. Y.; Foss, C. A.; Leong, S.; Mo, X.; Pomper, M. G.; Yu, S. M. Spatio-temporal modification of collagen scaffolds mediated by triple helical propensity; *Biomacromolecules* 2008a, 9, 1755-1763.

Whitaker, K.; Barrow, P.; Feree, K. A case study using chronicure to treat a stage IV chronic wound; Ostomy Wound Manage. 1992, 38, 36-44.

Woolfson, D. N. Building fibrous biomaterials from α-helical and collagen-like coiled-coil peptides; Peptide Sci. 2010, 94, 118-127.

Yannas, I.; Burke, J.; Orgill, D.; Skrabut, E. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin; Science 1982, 215, 174-176.

Ziche, M.; Morbidelli, L.; Pacini, M.; Geppetti, P.; Alessandri, G.; Maggi, C. A. Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells; Microvascular Res. 1990, 40, 264-278.