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ABSTRACT 

 

NEW TOOLS FOR CHEMICAL BIOLOGY  

FROM MAIN GROUP ELEMENTS 

 
 

Matthew Ronald Aronoff 
 

Under the supervision of Professor Ronald T. Raines 

at the University of Wisconsin–Madison 

 

 
A tremendous amount of knowledge of biological processes has been gained from our 

grasp of the central dogma of molecular biology. Comprehending the information flow in a 

biological process allows us to administer the appropriately intervene in order to implement 

change. However, in many components of biology the flow of information is not clearly 

understood. Additionally, many lesser-understood processes in biology do not follow the central 

dogma. These types of biological processes often include post-translational modifications, 

lipidations, and glycosylations. The study of such events in biology is further complicated as 

they often occur transiently and are very difficult if not impossible to study using traditional 

methods. Accordingly, new approaches and new disciplines such as Chemical Biology answer 

the challenge to elaborate on these more challenging biological events. This thesis will focus on 

novel chemical methods that have been designed to serve multiple roles in the study of biology.  

The contents of this thesis are divided into three major parts. PART 1 focuses on 

chemical advancements that are orthogonal to processes in biology. In CHAPTER 2 of PART 1 I 
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utilize a stabilized diazo group as a chemical reporter to probe the mammalian cellular 

glycocalyx. In CHAPTER 3 I explore the unique characteristics of the diazo group to uncover 

1,3-dipolar cycloadditions that occur orthogonally to an azido group. In CHAPTER 4, I then 

employ the azido group to react with novel phosphinothioesters in the traceless-Staudinger 

reaction. In combination with protein engineering these reagents will generate ubiquitin chains of 

precise length and connectivity.  

PART 2 focuses on new chemical technologies that facilitate the advancement of boronic 

acids in biological study. Benzoxaborole is the most promising boronic acid for biological 

application, and in CHAPTER 2 I describe a novel protecting group for benzoxoaborole that 

greatly expands the synthetic scope of these valuable compounds. In CHAPTER 3 I demonstrate 

a new method for the selective detection of boronic acids that facilitates handling and 

identification of these compounds during synthetic transformations and purifications.  

Finally, PART 3 provides details regarding possible future directions for the novel 

technologies explored within this thesis. 
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1.1.1 Introduction to the Staudinger Reaction and its Variations 

 The Staudinger reaction between an azide and a phosphine has provided one of the 

greatest chemical tools for the field of chemical biology. This reaction—also referred to as the 

Staudinger reduction—has found widespread application in organic synthesis since its initial 

report by Staudinger and Meyer in 1919.1 There are examples of Staudinger reductions employed 

for biological investigations,2 but the true value of Staudinger chemistry lies with key 

intermediates generated during this seemingly simple process and the versatile transformations 

that can be accomplished through the modulation of key substituents on the phosphine reagent.  

 Insight into the mechanism of the Staudinger reaction has generated the opportunity to 

perform several new transformations, each operating through the interception of key 

intermediates.3,4 The overall reaction sequence and subsequent variations are outlined in Figure 

1.1.1. The phosphine and azide undergo an imination reaction to form a phosphazide, the first 

important intermediate. From the phosphazide the reaction can be diverted along pathway B to 

ultimately generate a diazo group (vide infra). Unperturbed, the phosphazide will decompose 

through a loss of N2(g) in pathway A, and generate an iminophosphorane, another important 

intermediate. The iminophosphorane is a nucleophilic aza-ylide; however, in aqueous conditions 

absent of electrophiles the iminophosphorane can protonate and hydrolyze to the resulting amine 

and phosphine oxide, which is an overall reduction of the azide. If an electrophile is present, 

especially an intramolecular carbonyl electrophile, the iminophosphorane nitrogen attacks this 

group through an aza-Wittig process that initiates the Staudinger Ligation (pathway C). This is 

the first example of diverting reactivity to produce an amide bond.   

 If the intramolecular trapping moiety is sufficiently electrophilic, reactivity is diverted 

earlier. Here, the phosphazide nitrogen can deviate the Staudinger reaction to another 
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transformation as outlined with pathway B. In this pathway, the electrophilic trap substituted on 

the phosphine prevents N2(g) extrusion and phosphazide decomposition. Instead, an acyl 

triazenophosphonium salt is created. In aqueous conditions, this intermediate is hydrolyzed 

quickly to an isolable acyl triazene with a pendant phosphine oxide. With the addition of heat or 

aqueous base, the acyl triazene can be decomposed to generate a diazo group, and this overall 

process is named azide deimidogenation (loss of NH). 

 These two alternate pathways of the Staudinger reaction and the accompanying chemical 

transformations form the foundation for the first part of this thesis. Chapters 1 and 2 focus on the 

diazo group as an emerging tool for the field of chemical biology. In Chapter 3, the Staudinger 

ligation—an amide-forming tool for the conjugation of biomolecules containing an azide and a 

phosphinothioester—is investigated with the goal of applying novel uncharged phosphines that 

are water-soluble.  

 

1.1.2. Diazo Compounds  

 Diazo compounds represent some of the most versatile reagents in synthetic organic 

chemistry, but their application in chemical biology has been investigated only recently. The 

diazo group provides a useful alternative to the widely utilized azide functional group, as it 

possesses unique reactivity in addition to some useful redundancy with the azide. Protonation of 

a diazo group generates a diazonium salt, which is effective for alkylation chemistry.5 The diazo 

group is capable of generating carbenes either through photochemical, thermal, or mechanical 

processes, in addition to carbenoids formed from transition metal interactions.6 Furthermore, the 

diazo group can mediate alkene and alkyne additions as well as C–H, O–H, and N–H insertions.7-

9 Diazo groups are also capable of rapid 1,3-dipolar cycloadditions with a broad range of 
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dipolarophiles.10,11 This reactivity is most applicable for chemical biology and is the focus within 

this thesis.  

The diazo group first appeared in the late 19th century,12-15 yet relatively few methods 

exist for the preparation of these compounds. These methods include a Regitz diazo-transfer to 

an activated C–H,16,17 diazotization of an amine,18 hydrazine decomposition,19 and oxidation.20,21 

Diazo groups can also be prepared from the fragmentation of triazenes,22,23 which is the process 

utilized in the method developed by the Raines group.24 This mild preparation of diazo groups 

has enabled the development of the diazo compound as a reagent for chemical biology. It can be 

performed in aqueous buffer,25 and has excellent functional group tolerance as a result of the 

excellent specificity between azides and phosphines.  

 

1.1.3. 1,3-Dipolar Cycloadditions with Diazo Groups 

 Whereas the Staudinger ligation initiated the field of bioorthogonal chemistry by utilizing 

abiotic functional groups, the cycloaddition reaction has become the primary tool for chemical 

biology. The success of the cycloaddition reaction is a result of two related transformations—the 

Cu(I) catalyzed azide–alkyne cycloaddition (CuAAC),26,27 or “copper-click” reaction,28 and the 

strain-promoted azide–alkyne cycloaddition (SPAAC), or “Cu-free click” reaction (Figure 

1.1.2).29-31 These two reactions nearly comprise the field of bioorthogonal chemistry, and they 

have enabled an enormous number of biological investigations and synthetic pursuits.32,33 It is 

significant that all three reactions—the Staudinger ligation, the copper-click, and the strain-

promoted click—all require an azide reactant. The azido group is nearly ideal for chemical 

biology. It is synthetically accessible, small, abiotic, and inert to biological functional groups 

with few exceptions. Nevertheless, the dominance of this functional group is also a downside, as 



	
  

	
  
	
  

5	
  

the azido group is not amenable to multiple reactions in a single assay. There is a growing need 

for alternative transformations that can occur orthogonally to reactions of an azide.   

The diazo group represents a useful alternative to the azido group within the field of 

chemical biology. The diazo group is capable of alkylations and esterifications of biomolecules 

including nucleic acids, peptides, and proteins; these reactions occur with34-41 and without the 

addition of a catalyst.42-44 Additionally, the reactivity of the diazo group in the 1,3-dipolar 

cycloaddition reaction has been utilized since the discovery of this functional group, starting with 

von Pechmann’s synthesis of pyrazole from acetylene and diazomethane in 1894.14 

In a 1,3-dipolar cycloaddition reaction, the diazo group has several benefits that surpass 

the azido group as a dipole. These benefits include faster reaction rates with commonly applied 

reactants, as well as a “tunability” of the diazo group that is not possible with most azides.45 The 

diazo group reacts with a dipolarophile, such as an alkene or alkyne, by a concerted pericyclic 

reaction that involves 4 electrons of the diazo-dipole and 2 π electrons from the dipolarophile to 

produce a cyclic 5-membered product. 1,3-Dipolar cycloadditions can be examined with frontier 

molecular orbital (FMO) theory (Figure 1.1.3). The mode and efficiency of the reaction is 

determined by (relative) orbital energies. This analysis typically includes the highest occupied 

molecular orbital of one reactant (HOMO) and the lowest unoccupied molecular orbital (LUMO) 

of the other. The Huisgen cyclization46 is applied in the field of chemical biology with the 

SPAAC reaction. Diazo groups are typically electron-rich with a high energy HOMO, and so, 

unlike the azido group, the diazo group reacts predominantly with electron-poor dipolarophiles 

with a low-energy LUMO in a Type I dipolar cycloaddition (Figure 1.1.3). As the azido group is 

somewhat ambiphilic—and can react by either Type I or Type 2 cycloadditions—this 

ambiphilicity provides a mode of selectivity for the diazo group.  
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There are only a few examples in which diazo groups have been applied as dipoles in 

SPAAC reactions with octynes,47-50 yet this reactivity creates tremendous opportunity for the 

diazo group in the field of chemical biology. Because the diazo group can be generated directly 

from a parent azide and will react with substrates already used in bioorthogonal applications, the 

diazo group fits almost seamlessly within current chemical biology technology.  

 

1.1.4. Diazo Groups as Chemical Reporters 

The chemical reporter strategy employs the reaction between two unique functional 

groups not commonly found in nature to provide enzyme-like specificity within a biological 

context for the purpose of studying transient or post-translational events. Many of the diazo-

containing molecules prepared in the Raines laboratory through azide-deimidogenation possess 

an inherent stability not found with alkyl-diazo compounds. Additionally, these stabilized diazo 

groups react more rapidly with cyclooctynes than do their parent azido groups. We were curious 

to know whether the diazo group would be tolerated in a biological setting, as the diazo group 

can confer another degree of chemoselectivity with current bioorthogonal reactions. In Chapter 

1, I describe the application of a diazo-appended N-acetyl mannosamine derivative as a chemical 

reporter for sialic acid metabolism, a demanding metabolic process that consists of several 

enzymatic transformations (Figure 1.1.4). The diazo-derivative is prepared easily from the parent 

azide using the Raines method;24 compared to the azide, the diazo compound allows for more 

rapid cycloadditions with a dibenzyl-aza-bicyclooctyne (DIBAC) in water. I also demonstrate 

that the diazo compound allows for multicomponent imaging alongside another chemical 

reporter—a terminal alkyne—while overlapping reactivity with the azide leads to detrimental 

cross-reactions. This insight makes it feasible to conduct future investigations that rely on 
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multicomponent imaging, as the diazo group is the simplest functional group for use alongside 

alkyne chemical reporters. 

 

1.1.5. Diazo Group Selective Cycloadditions 

Selective cycloadditions highlight the chemical differences between azido and diazo 

groups. It has been shown that the reaction between dimethyl acetylenedicarboxylate (DMAD) 

and diazoacetyl azide undergoes a cycloaddition only with the diazo group51 (Figure 1.1.5A). 

Although these reactants cannot be applied in a biological context, this chemoselectivity 

illustrates the significance of the differing electronics of the diazo group and the carbonyl-azide. 

For SPAAC reactions in chemical biology, most of the efforts to improve reactivity focus on 

tuning the dipolarophile (cyclooctynes). The dipoles can be tuned to an even greater extent, 

although, for the azide, it is only possible with aryl derivatives. In one example, removing 

electron density from the azide with an ortho-nitro substitution improves the inverse electron 

demand (IED) reaction with an electron-rich cyclooctyne (bicyclo[6.1.0]non-4-yne,	
   BCN), 

whereas on the same molecule, an ambiphilic alkyl azide reacts predominately with an electron-

poor cyclooctyne (DIBAC) through a normal electron demand (NED) cycloaddition52 (Figure 

1.1.5B). Although this example is not completely selective, it does demonstrate how dipole 

tuning can persuade selectivity in a cycloaddition process.  

In Chapter 2, I explore selective reactivity by cycloaddition between the diazo group and 

the azide. I demonstrate that by removing strain from the dipolarophile and focusing on 

electronic tuning, alkenes and alkynes react preferentially with the diazo group instead of an 

alkyl azido group. These reactions can be performed at ambient temperature and in aqueous 

cosolvent with complete selectivity, and the reaction rates meet or exceed the fastest SPAAC 



	
  

	
  
	
  

8	
  

reactions. I evaluate the involved reactants, which provides insight into the observed rate 

enhancement of the diazo group in water as well as its selectivity. I also consider the 

implications of this type of diazo-selective cycloaddition reaction for biological investigations.  

 

1.1.6. The Traceless Staudinger Ligation 

The Staudinger ligation has enabled a new era for bioconjugation and protein synthesis. 

The key deviation from the standard Staudinger reaction is the O!N acyl transfer that traps the 

iminophosphorane. Staudinger first observed this aza-Wittig reaction 100 years ago, when 

imines were formed by the nucleophilic addition of an iminophosphorane to ketones and 

aldehydes.53 Much more recently, the first application of the Staudinger ligation installed an 

electrophilic intramolecular ester as a trap for the aza-ylide in a biologically relevant context to 

label azide-bearing glycans on a cell surface.54  

The first modification to the original Staudinger ligation addresses the tri-aryl phosphine 

oxide that remains on the ligation product. While the residual phosphine oxide does not limit the 

utility of the ligation for many applications,55,56 it does prohibit use of this ligation reaction when 

a native amide bond is desired. To address this, both the Raines group and the Bertozzi group 

developed traceless variations that cleave away the phosphine oxide during the hydrolysis of the 

amidophosphonium salt.57,58  

The Raines group has explored the traceless variation further by elaborating on the 

reaction mechanism and kinetics of the ligation as well as some steric and electronic effects.57,59-

61 One notable observation is that electron-donating substituents on the diphenyl phosphine, such 

as para-methoxy groups, lead to improved ligations at non-glycyl residues.62 The traceless 

Staudinger ligation reaction has enabled numerous applications including the site-specific 
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immobilization of azide-bearing peptides and proteins,63 stereoselective N-glycoslyation of 

amino acids,64 and peptide coupling on solid supports for the orthogonal assembly of a functional 

RNase.65  

Major obstacles complicate performing the Raines traceless Staudinger ligation in water, 

including solubility of the reagent, the competing hydrolysis, and the oxidation of the 

iminophosphorane (Figure 1.1.1). First, as the original diphenylphosphine reagent is not soluble 

outside of organic conditions, a more-soluble derivative is needed to perform the ligation in 

aqueous conditions. Second, hydrolysis of the iminophosphorane halts the ligation reaction and 

generates an amine, and in water this reduction represents a substantial side reaction. Lastly, 

diphenyl phosphines are more sensitive to oxidation and deactivation than the 

triphenylphosphine derivatives.  

 

1.1.7. Protein and Peptide Synthesis with the Staudinger Ligation 

The chemical total synthesis of proteins represents a substantial effort for the fields of 

chemistry and biochemistry.66 It is possible to prepare a functional protein from two synthesized 

pieces with native chemical ligation (NCL).67 Solid-phase peptide synthesis is limited by peptide 

length (≤40 residues) and ligations such as NCL facilitate a greater range of targets. Still, the 

residual cysteine required for the NCL reaction prevents some applications; and as cysteine is 

one of the least abundant residues, this process often requires the introduction of at least one 

substitution in the wild-type sequence. Following ligation, an additional desulfurization step is 

often required to remove the thiol moiety. Although NCL is a powerful tool, the chemical tools 

for peptide ligation and protein synthesis are constantly improving and evolving. The traceless 

Staudinger reaction represents one alternative to NCL for protein synthesis.  
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In order to ligate two proteins chemoselectively with an isopeptide bond, I have pursued 

yet another improvement to the traceless Staudinger ligation. Previous water-soluble derivatives 

possess a carboxylate moiety or pendant dimethyl-amino substituents.68 These substitutions 

install either positive or negative charges on each aryl ring of the reagents. Although the 

introduction of charge likely contributes to the water solubility, it can interact detrimentally with 

protein side chains. Coulombic effects can facilitate the reaction, as a negatively charged water-

soluble derivative does not perform as well as one that is positively charged.68 Electronic effects 

(σp = +0.36) resulting from the amide-substituent of the anionic phosphinothiol can hinder the 

reaction,62,69 which confounds this result. Ultimately, due to solubility limitations for the 

diphenylphosphinothiols, the effects of charge and electronics in aqueous conditions have not 

been investigated previously.  

In Chapter 3 of Part 1 I describe uncharged water-soluble phosphinothiols that will be 

applied to form isopeptide linked ubiquitin–ubiquitin dimers. These phosphinothiols utilize 

polyethylene glycol-like (PEG-like) side chains for water-solubility (Figure 1.1.6), and these 

substituents also facilitate their preparation. Intramolecular non-covalent interactions from the 

ether oxygens may also contribute to their stability and efficiency. Lastly, structural isomers are 

used to compare the electronic effects of substituents on the reactivity of the phosphine in 

aqueous conditions. 
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Figure 1.1.1 Progression of the Staudinger reaction 
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Figure 1.1.1 Progression of the Staudinger reaction generates two key intermediates that are 

individually utilized to generate a diazo group (pathway A) and to perform a ligation (pathway 

B). A. The phosphine and azide react to generate an iminophosphorane that is trapped to make an 

acyltriazenophosphonium salt. Hydrolysis of the salt creates a stable acyl triazene that can be 

fragmented to the diazo group. B. Trapping the Staudinger reaction at the iminophosphorane 

intermediate—following the decomposition and release of N2(g)— generates an 

amidophosphonium salt that is hydrolyzed to form an amide-containing ligation product. 

  



	
  

	
  
	
  

14	
  

Figure 1.1.2 Cycloaddition reactions commonly applied for chemical biology 
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Figure 1.1.2 Cycloaddition reactions commonly applied for chemical biology: (A) the Cu(I) 

catalyzed azide–alkyne cycloaddition (CuAAC), and (B) the strain-promoted azide–alkyne 

cycloaddition (SPAAC). 
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Figure 1.1.3 Categories of cycloaddition reactions 
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Figure 1.1.3 Categories of cycloaddition reactions: Type I nucleophilic reactions are considered 

normal electron demand (NED) cycloadditions and favor interactions between the HOMO of the 

dipole to the LUMO of the dipolarophile. Type II amiphilic dipolar cycloadditions involve 

similar energy gaps between HOMO and LUMOs for both dipole and dipolarophile resulting in 

two-way interactions as observed with azido groups. Type III reactions proceed through inverse 

electron demand (IED) and orbital overlap involves a low energy LUMO of the dipole 

interacting with the HOMO of the dipolarophile.  
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Figure 1.1.4 Overall scheme for the internalization and incorporation of diazo-group 

appended nonnatural mannosamine derivatives as chemical reporters 
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Figure 1.1.4 Overall scheme for the internalization and incorporation of diazo-group appended 

nonnatural mannosamine derivatives as chemical reporters. 
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Figure 1.1.5 Competition reactions between diazo and azido groups 
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Figure 1.1.5 Competition reactions between diazo and azido groups. A. Reaction of an α-diazo 

carbonyl azide with dimethylacetylene dicarboxylate preferentially undergoes a cycloaddition 

with the electron-rich diazo group and not the electronically deactivated azido group.51 B. 

Preferential reactivity based on electron demand is observed when the azide is tuned for electron-

deficiency to perform IED cycloadditions.52 
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Figure 1.1.6 Traceless Staudinger ligation for peptide couplings 
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Figure 1.1.6 Traceless Staudinger ligation for peptide couplings and the various water-soluble 

derivatives including substitutions at the meta (m) and para (p) positions of the aryl groups. 
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PART 1 

CHAPTER 2 
 
 

Diazo Groups Endure Metabolism and Enable 
Chemoselectivity in Cellulo* 

	
  
 
 
*This chapter has been published in part, under the same title. Reference: Andersen, K.A.#, 

Aronoff, M.R.#, McGrath, N.A., Raines, R.T. Diazo Groups Endure Metabolism and Enable 

Chemoselectivity in Cellulo. J. Am. Chem. Soc. 137, 2412–2415 (2015). 

(#these authors contributed equally) 

 
Contributions: I performed all chemical synthesis and analysis. K.A.A. completed cell culture 

and analysis. I co-conceived the experiments and wrote the manuscript together with K.A.A. 

N.A.M. originally prepared Ac4ManDiaz. 
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Abstract 

We introduce a stabilized diazo group as a reporter for chemical biology. ManDiaz, which is a 

diazo derivative of N-acetylmannosamine, is found to endure cellular metabolism and label the 

surface of a mammalian cell. There its diazo group can undergo a 1,3-dipolar cycloaddition with 

a strained alkyne, providing a signal comparable to that from the azido congener, ManNAz. The 

chemoselectivity of diazo and alkynyl groups enables dual labeling of cells that is not possible 

with azido and alkynyl groups. Thus, the diazo group, which is approximately half the size of an 

azido group, provides unique opportunities for orthogonal labeling of cellular components.	
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1.2.1 Introduction 

Appreciation70-72 of the broad utility of the Huisgen azide−alkyne 1,3-dipolar 

cycloaddition73 has had a profound impact on chemical biology.74-77 The diazo group shares this 

reactivity with the azido group while conferring additional versatility. For example, 

cycloaddition with a diazo compound can be tuned to be much faster or much slower than that 

with its azide analogue.50,78 Diazo compounds offer other useful modes of reactivity, including 

the O-alkylation of carboxylic acids in water to form esters.79 Indeed, the utility of diazo 

compounds in chemical synthesis was established long ago80-83 and likely exceeds that of 

azides.84-89 Nevertheless, rightful concern about their toxicity and high, even explosive, 

reactivity90-92 has deterred the application of diazo compounds in chemical biology. While recent 

work has demonstrated their utility in biomolecular transformations in vitro,50,78 we are unaware 

of any application of diazo compounds in cellulo or in vivo. 

A diazo group has attributes of an ideal reporter for chemical biologists. Smaller than an 

azido group (Figure 1.1.1A), a diazo group has the same number of atoms as a methyl group 

(RCH3 versus RCHN2) or a methylene group (R1R2CH2 versus R1R2CN2). Moreover, a diazo 

compound can be prepared readily from its parent azide by simple deimidogenation, that is, loss 

of “NH” (Figure 1.1.1B).24,94 This deimidogenation reaction allows access to diazo compounds 

in aqueous solution via abstraction of an α-proton from an incipient acyl triazene with a mild 

base such as bicarbonate. The requisite acidity of that α-proton requires conjugation of the anion 

with, for example, an amidic carbonyl group.* We hypothesized that such mitigation of 

reactivity could allow diazo compounds to endure physiological conditions.  

We sought to assess the resilience of a diazo group in a meaningful context. To do so, we 

chose metabolic trafficking, which is more demanding than the mere demonstration of 
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chemoselective reactivity in a biomolecular milieu. The labeling of cell-surface glycans is an 

ideal theater for this test because of the high tolerance demanded by cellular biosynthetic 

machinery,95-98 the rigid constraint on size,99 and the precedent  for this labeling established by 

Reutter, Bertozzi, and others with derivatives of N-acetylmannosamine (ManNAc) (Figure 

1.1.2).54,100,101 

 

1.2.2 Results & Discussion 

We began by examining the in vitro reactivity of a relevant diazo compound with strained 

functionalizable alkynes. Three cyclooctynes were reacted with a representative azide (1, R = 

Bn) and diazo compound (2, R = Bn). In acetonitrile, the reactions with the diazo compound 

were as fast or faster than those with the azide (Figure 1.1.1C). Notably, the addition of water 

augmented both the rates and their differential, likely as a result of stabilization of the especially 

polar transition state for cycloaddition with the diazo compound.78,102,103 On the basis of these 

data, we chose DIBAC as an optimal functionalizable alkyne for our experiments. 

Next, we sought to confirm the chemoselectivity of the diazo group in a biological 

context. First, we stirred a solution of N-benzyl-2-diazoacetamide (2, R = Bn) and glutathione for 

24 h and did not observe a reaction (Figure 1.1.3). Then we linked a diazoacetamide to biotin to 

probe for nonspecific labeling in cellulo. CHO K1 cells treated with the diazo−biotin conjugate 

or its parent azide showed no labeling on an immunoblot, in contrast to an analogous acrylate 

(Figure 1.1.4A). Likewise, nonspecific labeling with the diazo group was not detectable with 

flow cytometry or confocal microscopy at 24 h (Figure 1.1.4B,C). 

Next, we asked whether a diazo compound would be accepted by an endogenous 

biosynthetic pathway alongside extant biomolecules. To answer this question, we synthesized the 
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stabilized diazo compound Ac4ManDiaz (Figure 1.1.2) by deimidogenation of Ac4ManNAz. The 

four acetyl groups enhance cell permeability and are hydrolyzed by intracellular esterases.104 We 

added Ac4ManDiaz or Ac4ManNAz to medium containing live CHO K1 cells. After 2 days, any 

extracellular diazo or azido groups were reacted with a DIBAC−biotin conjugate and labeled 

with avidin−Alexa Fluor 488, which is green. Super-resolution images of cells exposed to 

Ac4ManDiaz and Ac4ManNAz were indistinguishable (Figure 1.1.5A). Quantification with flow 

cytometry revealed that labeling with Ac4ManDiaz was slightly less efficient (Figure 1.1.5B), 

despite its higher reaction rate (Figure 1.1.1C). The differential labeling is likely related to the 

instability of a diazo group at low pH. Most peracylated sugars are taken up by passive diffusion 

across the outer membrane, but some are taken up by endocytosis.104 The low pH of 

endosomes105  likely leads to C-protonation and hydrolysis of the ensuing diazonium salt.79 

Finally, we showed that Ac4ManDiaz is metabolized and displayed on the surface of three other 

cell types, though at different rates (Figure 1.1.5C). 

To confirm that Ac4ManDiaz was trafficked into sialic acid in the same manner as 

Ac4ManNAz, we grew CHO K1 cells in each peracylated sugar at 250 µM for 3 days and labeled 

them with DIBAC−biotin as described above. We then treated the cells with either 

neuraminidase (sialidase) or peptide-N glycosidase F (PNGase F). Both the azido and diazo 

sugars showed high levels of labeling with DIBAC−biotin in the absence of enzyme, with diazo 

labeling being (86 ± 3)% of the azido labeling. Exogenous addition of either enzyme decreased 

the labeling levels sharply (Figure 1.1.6), indicating that labeling was due to incorporation of the 

sugars.106 In addition, using the pendant biotin of the DIBAC conjugate, we isolated the cellular 

metabolites generated from the azido and diazo precursors and observed the expected sialic acid 

conjugates by mass spectrometry (Figure 1.1.7). 
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To ascertain the optimal conditions for labeling of CHO K1 cells that had metabolized 

Ac4ManDiaz, we exposed these cells to 0−20 µM DIBAC−biotin for 60 min or 10 µM 

DIBAC−biotin for 0−120 min. Although labeling continued to increase with increasing levels of 

DIBAC−biotin, concentrations in excess of 10 µM or times beyond 60 min began to elicit 

cytotoxicity (Figures 1.1.8 and 1.1.9). Accordingly, we chose labeling at 10 µM for 60 min as a 

compromise between high labeling efficiency and cell viability. Notably, the cytotoxic activities 

of Ac4ManDiaz and Ac4ManNAz were similar (LD50 ∼ 1 mM; Figure 1.1.10). 

Next, we sought to perform chemoselective dual labeling on the cell surface.107-110 Unlike 

azide 1  (R = Bn), diazo compound 2 (R = Bn) is a poor substrate for Cu(I)-catalyzed 

cycloaddition with a terminal alkyne in aqueous solution (data not shown). Hence, we reasoned 

that a cell surface displaying both diazo and terminal alkynyl groups could provide opportunities 

for orthogonal reactivity. To test this hypothesis, we allowed cells to metabolize Ac4ManDiaz, 

Ac4ManKyne, or both. We then probed for diazo groups by using strain-promoted cycloaddition 

with DIBAC−biotin and labeling with avidin−Alexa Fluor 594 (microscopy) or avidin−Alexa 

Fluor 647 (flow cytometry), which are red; we probed for alkynyl groups by using Cu(I)-

catalyzed cycloaddition with picolyl azide−Alexa Fluor 488,111,112  which is green. Both 

microscopy and flow cytometry indicated that the two cycloaddition reactions could be 

performed in either order without interfering cross-reactivity (Figure 1.1.11). In marked contrast, 

performing the same experiment with Ac4ManNAz and Ac4ManKyne resulted in diminished 

cell-surface labeling, especially when Cu(I)-catalyzed cycloaddition was performed first. We 

suspect that the labeling was diminished by the crosslinking of cell-surface azido and alkynyl 

groups, as these two functional groups are not orthogonal in the presence of Cu(I). The evident 

clumping of cells displaying both azido and alkynyl groups also suggests that the glycocalyx of 
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two cells can be in such close proximity that their sialic acid residues react to form covalent 

cross-links. The data in Figure 1.1.11 indicate that diazo compounds, unlike azides, are 

orthogonal to terminal alkynes in a cellular context, and this orthogonality enables novel dual 

labeling experiments. 

To provide another example of the chemoselectivity of the diazo group, we performed 

dual labeling with Ac4ManDiaz and Ac4GalKyne, which is a peracetylated galactosamine 

functionalized with an alkyne. Metabolism positions the galactosamine moiety in the core of 

mucin-type O-linked glycoproteins.113 Again, we probed for diazo groups by using strain-

promoted cycloaddition with DIBAC− biotin and subsequent labeling with avidin−Alexa Fluor 

594 (microscopy) or avidin−Alexa Fluor 647 (flow cytometry), and we probed for alkynyl 

groups by using Cu(I)-catalyzed cycloaddition with picolyl azide−Alexa Fluor 488.111,112 Both 

microscopy and flow cytometry data showed an orthogonal labeling pattern that colocalized at 

the cell surface (Figure 1.1.12A,C). Because of the lower abundance of the alkynyl sugar (Figure 

1.1.12B), the deleterious cross-reactivity with the Ac4ManNAz metabolite was even more 

apparent in this experiment. Labeling of the alkyne was diminished substantially in the presence 

of the azido sugar (Figure 1.1.12D). In contrast, labeling of the alkyne was not affected by the 

presence of the diazo group. These data highlight the importance of orthogonal labeling methods 

for the simultaneous analysis of more than one metabolite and how diazo and alkynyl groups can 

provide the requisite chemoselectivity. 

We conclude that stabilized diazo groups can rival azido groups as probes in chemical 

biology. The diazo group is smaller than an azido group and has overlapping but distinct 

reactivity. Remarkably, an α-diazo amide is able to survive complex metabolic transformations 

in a mammalian cell. Although other systems exist for dual labeling,107-109 we conclude that none 
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provide the small size, metabolic stability, and chemoselective reactivity of the diazo group. Our 

findings encourage the development of new biocompatible reactions for stabilized diazo 

compounds that could further manifest their potential. 

 

1.2.3 Materials & Methods 

1.2.3.1 Materials 

Silica gel (40 µm) was from SiliCycle (Québec City, Canada). All reagent-grade materials were 

from Sigma–Aldrich (St. Louis, MO) and were used without further purification, except for D-

mannosamine·HCl, which was from CarboSynth (San Diego, CA). Alexa Fluor® reagents, and 

cell culture medium and supplements were from Invitrogen (Carlsbad, CA). Instrumentation. 1H, 

13C NMR spectra for all compounds were acquired at ambient temperature on Bruker 

Spectrometers in the National Magnetic Resonance Facility at Madison (NMRFAM) at the 

University of Wisconsin–Madison operating at 400, 500, or 750 MHz for 1H and 126 or 189 

MHz for 13C. Chemical shift data are reported in units of δ (ppm) relative to residual solvent or 

TMS. Electrospray ionization (ESI) mass spectrometry was performed with a Micromass LCT at 

the Mass Spectrometry Facility in the Department of Chemistry at the University of Wisconsin–

Madison. Super-resolution structured illumination microscopy (SR-SIM) was performed with an 

Elyra PS.1 super-resolution system from Zeiss (Oberkochen, Germany). Confocal microscopy 

was carried out with an Eclipse TE2000-U laser scanning confocal microscope from Nikon 

(Tokyo, Japan), equipped with an AxioCam digital camera from Zeiss. Flow cytometry was 

performed at the University of Wisconsin–Madison Carbone Cancer Center Flow Cytometry 

Facility with a FACS Calibur instrument from BD Biosciences (San Jose, CA). Cytometry data 

were analyzed by using the program FlowJo 8.7 from Treestar (Ashland, Oregon). Absorbance 

measurements were made with an infinite M1000 plate reader from Tecan (Männedorf, 
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Switzerland). Immunoblots were imaged on an ImageQuant LAS4000 from GE Healthcare Bio-

Sciences (Pittsburgh, PA). Image quantification was performed with the program ImageJ. 

 

1.2.3.2 Statistics 

Calculations were performed with GraphPad Prism version 6 software from GraphPad Software 

(La Jolla, CA). 

 

1.2.3.3 Computational Methods 

Calculations were performed using Gaussian software (Wallingford, CT). Structures were first 

constructed and calculated for geometry optimization at routine HF/6-31G basis set. Optimized 

structures were then subjected to full natural bond order (NBO) computations. Output files were 

exported to PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC. Solvent-

accessible surface areas were discretely approximated using the “get_area” selection command 

of PyMOL for each of the NBO output for the acetamide, diazoacetamide, and the 

azidoacetamide model compounds. 

Solvent-Accessible Surface Area 

acetamide  85.698 Å2 

diazoacetamide 101.109 Å2 

azidoacetamide 117.310 Å2 

 

1.2.3.4 Caution 

*Caution! The deimidogenation procedure cannot be used to produce an unstabilized diazo 

compound (e.g., a primary diazoalkane). Such unstabilized diazo compounds are dangerous, and 

their use should never be attempted in the context of chemical biology.  
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Diazo compounds can be unstable and thus dangerous. The diazo-containing compounds 

in our work are, however, stabilized by their conjugation with an acetamido group and do not 

pose the same dangers as do primary diazoalkanes such as diazomethane. Milligram quantities of 

diazo compound 2 (R=Bn) were subjected to (1) impact tests, (2) vigorous grinding with a 

mortar and pestle, and (3) heating to >150 °C, as described previously.114 None of these 

procedures led to an explosion. Moreover, diazoacetamide compounds used in this work have 

been stored as solids at –20 °C for >1 year with no apparent decomposition or deterioration. 

Nevertheless, caution should be invoked upon handling any diazo compound. 

 

1.2.3.5 Synthesis 

The phrase “concentrated under reduced pressure” refers to the removal of solvents and other 

volatile materials using a rotary evaporator at water aspirator pressure (<20 torr) while 

maintaining the water-bath temperature below 40 °C. Residual solvent was removed from 

samples at high vacuum (<0.1 torr). 

 

Ac4ManAc and Ac4ManNAz were synthesized as reported previously,115 as was 

Ac4ManKyne.116 N-Benzyl-2-azidoacetamide (1, R=Bn) and N-benzyl-2-diazoacetamide (2, 

R=Bn) were prepared as reported previously.24,78,93 The 1H and 13C NMR spectra of diazo 

compound 2 (R=Bn) were recorded in acetonitrile. 1H NMR (400 MHz, CD3CN) δ 7.38–7.21 

(m, 6H), 6.53 (s, 1H), 5.02 (s, 1H), 4.37 (d, J = 6.1 Hz, 2H). 13C NMR (101 MHz, CD3CN) δ 

166.48, 140.63, 129.50, 128.31, 128.04, 47.47, 43.96. Starting materials for the synthesis of 

biotinylated compounds (2-(acryloyloxy)ethanaminium trifluoroacetate117 and diazoacetamide–

NHS ester118,119 were also prepared as reported previously. NMR spectroscopy and mass 

spectrometry data matched those in the literature. 
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Tetra-O-acetyl-N-2-diazoacetyl mannosamine (ManDiaz). Tetra-O-acetyl-N-2-azidoacetyl 

mannosamine (Ac4ManNAz)2 (285 mg, 0.662 mmol) was dissolved in 90:10 THF/H2O (5 mL). 

N-Succinimidyl 3-(diphenylphosphino)propionate3 (247 mg, 0.695 mmol) was added, and the 

resulting solution was stirred for 5 h. A saturated solution of NaHCO3(aq) (4 mL) was added, 

and the resulting solution was stirred for an additional 6 h. The reaction mixture was diluted with 

brine (20 mL) and extracted with dichloromethane (4 × 30 mL), dried over Na2SO4(s), and 

concentrated under reduced pressure to a yellowish solid. The residue was purified by 

chromatography on silica gel (30:70 EtOAc/hexanes) to provide ManDiaz as a yellow solid 

(236 mg, 86%) (~1:1 mixture of α/β anomers). 1H NMR (750 MHz, CD3Cl) δ 6.03 (s, 1H), 5.98 

(d, J = 9.3 Hz, 1H), 5.86 (s, 1H), 5.73 (d, J = 9.1 Hz, 1H), 5.33 (dd, J = 10.3, 4.5 Hz, 1H), 5.17 (t, 

J = 10.3 Hz, 1H), 5.11 (t, J = 9.8 Hz, 1H), 5.06 (dd, J = 10.0, 3.9 Hz, 1H), 5.00 (s, 1H), 4.96 (s, 

1H), 4.88–4.81 (m, 1H), 4.71 (s, 1H), 4.29 (td, J = 12.1, 5.5 Hz, 2H), 4.09–4.01 (m, 3H), 3.81 

(ddd, J = 8.4, 5.3, 2.3 Hz, 1H), 2.18 (s, 3H), 2.12 (s, 3H), 2.09 (s, 6H), 2.06 (s, 6H), 2.03 (s, 6H). 

13C NMR (189 MHz, CDCl3) δ 170.64, 170.60, 170.18, 170.10, 169.77, 169.75, 168.45, 168.22, 

91.93, 90.82, 73.45, 71.47, 70.16, 69.02, 65.71, 65.44, 62.34, 62.11, 49.77, 47.58, 45.78, 42.22, 

20.87, 20.80, 20.77, 20.75, 20.73, 20.66, 20.64. HRMS (ESI) calc’d. for C16H21N3O10 [M + H]+ 

416.1300, found 416.1310. 
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N-Benzyl-2-diazoacetamide (2). N-Benzyl-2-azidoacetamide (1) and N-benzyl-2-

diazoacetamide (2) were prepared as reported previously.4 

1H NMR (400 MHz, CD3CN) δ 7.38–7.21 (m, 6H), 6.53 (s, 1H), 5.02 (s, 1H), 4.37 (d, J = 6.1 Hz, 

2H). 13C NMR (101 MHz, CD3CN) δ 166.48, 140.63, 129.50, 128.31, 128.04, 47.47, 43.96. 

 

 

DIBAC–biotin. DIBAC (0.022 g, 0.078 mmol) was dissolved in 1 mL of anhydrous DMF. 

Triethylamine (0.022 mL, 0.159 mmol) and biotin–NHS (0.03 g, 0.084 mmol) were added, and 

the resulting solution was stirred for 7 h. The reaction mixture was then concentrated under 

reduced pressure. The residue was dissolved in dichloromethane (5 mL), washed with brine (2 × 

5 mL), dried over Na2SO4(s), and concentrated under reduced pressure. The residue was purified 
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by chromatography on silica gel (90:10, DCM/MeOH) to give the DIBAC–biotin conjugate. 

(0.039 g, 97%). 1H NMR (750 MHz, DMSO-d6) δ 7.63 (d, J = 7.6 Hz, 1H), 7.59 (td, J = 7.8, 6.1, 

3.8 Hz, 2H), 7.51–7.49 (m, 1H), 7.48–7.44 (m, 2H), 7.39 (td, J = 7.5, 1.4 Hz, 1H), 7.35 (t, J = 

7.5 Hz, 1H), 7.30 (d, J = 7.5 Hz, 1H), 6.40–6.38 (s, 1H), 6.35 (s, 1H), 5.04 (d, J = 14.2 Hz, 1H), 

4.30 (t, J = 6.4 Hz, 1H), 4.10 (dt, J = 5.2, 2.4 Hz, 1H), 3.63 (d, J = 14.2 Hz, 1H), 3.1 –3.02 (m, 

2H), 2.94–2.88 (m, 1H), 2.81 (dd, J = 12.5, 5.2 Hz, 1H), 2.57 (d, J = 12.5 Hz, 1H), 2.44–2.38 (m, 

1H), 1.91 (t, J = 7.6 Hz, 2H), 1.85–1.79 (m, 1H), 1.55 (m, 1H), 1.44–1.33 (m, 3H), 1.26–1.15 (m, 

2H).13C NMR (126 MHz, DMSO) δ 171.91, 170.22, 162.75, 151.45, 148.44, 132.45, 129.59, 

129.00, 128.28, 128.13, 127.80, 126.88, 125.27, 122.50, 121.44, 114.34, 108.12, 61.03, 59.21, 

55.44, 54.87, 35.03, 34.94, 34.31, 28.19, 28.02, 27.99, 25.16. HRMS (ESI) calc’d. for 

C28H30N4O3S [M + H]+ 503.2112, found 503.2105. 

 

 

 

 

2-Aminoethyl Acrylate–biotin Conjugate (AEB). 2-(Acryloyloxy)ethanaminium 

trifluoroacetate6 (0.041 g, 0.176 mmol) was dissolved in 1.5 mL of anhydrous DMF and 

followed by the addition triethylamine (0.051 mL, 0.44 mmol). Biotin–NHS was added (0.05 g, 
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0.146 mmol), and the resulting solution was stirred at overnight. The reaction mixture was 

concentrated by rotary evaporation, and the residue was purified by chromatography on silica gel 

(DCM/MeOH 9:1) to give the acrylate–biotin conjugate. (0.049 g, 98%). 1H NMR (500 MHz, 

MeOD) δ 6.37 (dd, J = 17.3, 1.5 Hz, 1H), 6.14 (dd, J = 17.3, 10.5 Hz, 1H), 5.86 (dd, J = 10.5, 

1.5 Hz, 1H), 4.45 (dd, J = 7.8, 4.9 Hz, 1H), 4.26 (dd, J = 7.9, 4.5 Hz, 1H), 4.17 (t, J = 5.4 Hz, 

2H), 3.43 (tt, J = 5.5, 3.1 Hz, 2H), 3.14 (d, J = 6.9 Hz, 1H), 2.88 (dd, J = 12.8, 5.0 Hz, 1H), 

2.69–2.62 (m, 2H), 2.17 (t, J = 8.1 Hz, 1H), 1.74–1.50 (m, 4H), 1.43–1.35 (m, 2H). 13C NMR 

(126 MHz, MeOD) δ 177.62, 168.82, 167.38, 133.11, 130.65, 65.41, 64.61, 62.88, 58.26, 42.31, 

40.69, 37.94, 30.98, 30.74, 28.10. HRMS (ESI) calc’d. for C15H23N3O4S [M + H]+ 342.1483, 

found 342.1486. 

 

 

Azidoacetamide–biotin Conjugate (AB). Biotin ethylenediamine hydrobromide (0.040 g, 

0.109 mmol) was dissolved in 1 mL of anhydrous DMF followed by triethylamine (0.030 mL, 

0.22 mmol). The azidoacetamide–NHS ester (0.023 g, 0.114 mmol) was added, and the resulting 

solution was stirred overnight. The reaction mixture was concentrated under reduced pressure, 

and the residue was purified by chromatography on silica gel (DCM/MeOH 9:1) to give the 

azide–biotin conjugate. (0.033 g, 81%). 1H NMR (500 MHz, MeOD) δ 4.46 (dd, J = 7.8, 4.8 Hz, 
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1H), 4.28 (dd, J = 7.9, 4.5 Hz, 1H), 3.87 (s, 2H), 3.28 (m, 5H), 2.90 (dd, J = 12.7, 5.0 Hz, 1H), 

2.67 (d, J = 12.7 Hz, 1H), 2.17 (td, J = 7.3, 2.3 Hz, 2H), 1.77–1.49 (m, 4H), 1.41 (m, 2H). 13C 

NMR (126 MHz, MeOD) δ 177.78, 171.78, 167.41, 64.61, 62.90, 58.25, 54.29, 42.31, 41.54, 

41.06, 38.05, 31.03, 30.74, 28.02. HRMS (ESI) calc’d. for C14H23N7O3S [M + H]+ 370.1656, 

found 370.1658.  

 

 

Diazoacetamide–biotin Conjugate (DB). Biotin ethylenediamine hydrobromide (0.025 g, 

0.068 mmol) was dissolved in 0.7 mL of anhydrous DMF. The resulting solution was cooled to 

0 °C and stirred for 15 min before the addition of triethylamine (0.020 mL, 0.143 mmol). After 

stirring at 0 °C for 15 min, the diazo–NHS ester6 (0.014 g, 0.0715 mmol) was added, and the 

resulting mixture was stirred at 0 °C for 30 min before warming to room temperature and stirring 

for an additional 16 h. The reaction mixture was then concentrated under reduced pressure, and 

the residue was purified by chromatography on silice gel (DCM/MeOH 9:1) to give the diazo–

biotin conjugate (0.020 g, 83%). 1H NMR (500 MHz, MeOD) δ 5.10 (s, 1H), 4.46 (dd, J = 7.8, 

4.9 Hz, 1H), 4.27 (dd, J = 7.8, 4.4 Hz, 1H), 3.33–3.28 (m, 1H), 3.24 (m 1H), 2.89 (dd, J = 12.7, 

5.0 Hz, 1H), 2.81 (d, J = 16.4 Hz, 1H), 2.70–2.64 (d, J = 12.7 Hz 1H), 2.63 (s, 2H), 2.17 (td, J = 

7.3, 1.7 Hz, 2H), 1.75–1.50 (m, 4H), 1.45–1.35 (m, 2H). 13C NMR (126 MHz, MeOD) δ 
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177.66, 170.20, 167.40, 64.61, 62.90, 58.25, 42.33, 41.65, 38.05, 31.00, 30.74, 28.04, 27.69, 

27.54. HRMS (ESI) calc’d. for C14H22N6O3S [M + Na]+ 377.1367, found 377.1370.  

 

 

1,3,4,6-Tetra-O-acetyl-N-4-pentynoylgalactosamine (GalKyne) was prepared from 2-amino-

2-deoxy-D-galactopyranose·HCl by using the procedure reported for 1,3,4,6-tetra-O-acetyl-N-4-

pentynoylmannosamine (ManKyne).3 α/β Anomers ~10:1, α anomer: 1H NMR (500 MHz, 

CDCl3) δ 6.23 (d, J = 3.5 Hz, 1H), 5.75–5.66 (d, J = 8.5 Hz 1H), 5.43 (dd, J = 3.4, 1.3 Hz, 1H), 

5.23 (dd, J = 11.6, 3.2 Hz, 1H), 4.82–4.71 (m, 1H), 4.29–4.21 (m, 1H), 4.15–4.04 (m, 2H), 2.50 

(td, J = 7.2, 6.4, 2.6 Hz, 2H), 2.36 (tt, J = 7.2, 3.0 Hz, 2H), 2.18 (s, 6H), 2.04 (s, 3H), 2.03 (s, 

3H).13C NMR (126 MHz, CDCl3) δ 171.23, 171.21, 170.53, 170.36, 168.94, 91.37, 82.68, 

69.69, 68.64, 67.91, 66.75, 61.38, 46.88, 35.31, 21.12, 20.94, 20.83, 20.79, 14.87. HRMS (ESI) 

calc’d. for C19H25NO10 [M+H]+ 428.1552, found 428.1541. 
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1.2.3.6 Reaction Rate Constants 

NMR spectroscopy was used to determine rate constants for cycloaddition reactions, as 

described previously.78 Briefly, an equimolar solution of reactants in CD3CN were mixed in an 

NMR tube (final concentration: 0.02 M). The tube was inverted once and inserted into a 

spectrometer, and scanning was initiated 60 s after the initial mixing. A 16-scan NMR spectrum 

was acquired every 77 s, and integrations were used to calculate concentrations from the known 

initial concentrations. The second-order rate constant was then determined from the slope of a 

plot of [octyne]–1 vs time. All NMR kinetics experiments were conducted in triplicate, and the 

reported rate constants are the mean (± SE) in Table 4.S1. 

 

1.2.3.7 Assay for the Reactivity of a Diazo Compound with Glutathione 

 

 

 

N-Benzyl-2-diazoacetamide (2) (1 equiv, 0.066 mmol, 1.16 mg) and reduced glutathione 

(1 equiv, 0.066 mmol, 2.0 mg) were dissolved in 10 mM sodium phosphate buffer, pH 7.3 

(deuterated)/MeOD 1:1 (0.33 mL, pH 7.3). The resulting solution was stirred for 24 h, then 

analyzed by 1H NMR spectroscopy. 

Diazo compound 2: 1H NMR (500 MHz, 10 mM sodium phosphate buffer, pH 7.3 

(deuterated)/MeOD 1:1) δ 7.37–7.26 (m, 5H), 4.39 (s, 2H). 

GSH: 1H NMR (500 MHz, 10 mM sodium phosphate buffer, pH 7.3 (deuterated)/MeOD 1:1) δ 
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4.53 (dd, J = 7.2, 5.1 Hz, 1H), 3.79 (s, 2H), 3.71 (t, J = 6.3 Hz, 1H), 2.91 (qd, J = 14.1, 6.2 Hz, 

2H), 2.54 (t, J = 7.5 Hz, 2H), 2.14 (q, J = 7.6 Hz, 2H). 

 

1.2.3.8 General Cell Culture  

Cell lines were obtained from American Type Culture Collection (Manassas, VA) and were 

maintained according to the recommended procedures. Cells were grown in a cell-culture 

incubator at 37 °C under CO2(g) (5% v/v) in flat-bottomed culture flasks. Cell medium was 

supplemented with GIBCO fetal bovine serum (FBS) (10% v/v), penicillin (100 units/mL), and 

streptomycin (100 µg/mL) in an appropriate cellular medium: Chinese hamster ovary (CHO K1), 

F12K nutrient medium; HeLa, DMEM; HEK293T, DMEM; and Jurkat, RPMI 1640. Cells were 

counted with a hemocytometer to determine their seeding density in 12-well plates from Corning 

Costar (Lowell, MA) or 8-well chambered glass slides from Ibidi (Madison, WI). 

 

1.2.3.9 Biotin Conjugates to Probe Chemoselectivity 

Microscopy. CHO K1 cells were seeded at a density of 50,000 cells/dish in 35-mm µ-dish 

microscopy imaging dishes from Ibidi. Cells were incubated with 1 mM acrylic ester–biotin, 25 

µM biotin–diazo, 25 µM biotin–azide, or DMSO in standard medium for 24–48 h. On the day of 

an experiment, cells were rinsed twice with wash buffer (DPBS containing 1% v/v FBS) and 

incubated with avidin–Alexa Fluor488® 
(20 µg/mL) for 20 min at 4 °C. After treatments, cell 

nuclei were stained with Hoechst 33342 (2 µg/mL) for 5 min at 37 °C. Cells were then washed 

twice with wash buffer, and examined using a scanning confocal microscope. 

Flow Cytometry. CHO K1 cells were seeded at a density of 50,000 cells/well in 12-well 

plates. Cells were incubated with 1 mM acrylic ester–biotin, 25 µM biotin–diazo, or 25 µM 

biotin–azide for 24–48 h. The medium was then removed, and the cells were washed twice with 
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wash buffer (DPBS containing 1% v/v FBS) and incubated with avidin–Alexa Fluor488® 

(20 µg/mL) for 20 min at 4 °C. After these treatments, cells were rinsed twice with wash buffer 

and released from the plate with 250 µL of trypsin/EDTA (0.25% w/v). Cells were resuspended 

in an additional 500 µL of medium and incubated on ice until analyzed by flow cytometry. The 

fluorescence intensity of at least 20,000 events was then measured by flow cytometry. Alexa 

Fluor488® was excited with a 488 nm solid- state laser, and the emission was measured through 

a 530/30 bandpass filter. 

Immunoblotting. CHO K1 cells were seeded at a density of 50,000 cells/well in 12-well 

plates. Cells were incubated in 1 mM acrylic ester–biotin, 25 µM biotin–diazo, 25 µM biotin–

azide, or DMSO for 24–48 h. After these treatments, cells were rinsed twice with DPBS and 

released from the plate with 250 µL of trypsin/EDTA (0.25% w/v). Cells were washed twice, 

pelleted by centrifugation, and resuspended in DPBS. SDS–PAGE sample buffer was added to 

cell suspensions, and samples were boiled for 5 min, subjected to brief centrifugation, and 

analyzed by SDS–PAGE on a 12% w/v gel before being transferred to a PVDF membrane. 

Membranes were analyzed for the presence of azido or diazo sugars by immunoblotting with α-

biotin (1:1000) from Cell Signaling Technology (Danvers, MA). To control for loading levels, 

membranes were analyzed for β-actin by immunoblotting with α–β-actin (1:1000) from Cell 

Signaling Technology. 

 

1.2.3.10 Metabolism of Ac4ManDiaz and Ac4ManNAz by CHO K1 Cells 

Microscopy. CHO K1 cells were seeded at a density of 100,000 cells/dish in 35-mm µ-dish 

microscopy imaging dishes from Ibidi, and grown in the presence of Ac4ManDiaz or 

Ac4ManNAz (25 µM) in standard medium for 2 d. On the day of the experiment, the cells were 

rinsed twice with wash buffer (DPBS containing 1% v/v FBS) and treated with DIBAC–biotin 
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(10 µM) in standard medium for 1 h at 37 °C. Cells were again washed twice, and incubated with 

avidin–Alexa Fluor488® (20 µg/mL) for 20 min at 4 °C. Cell nuclei were stained with Hoechst 

33342 (2 µg/mL) from Invitrogen for 5 min at 37 °C. Cells were again washed twice, and 

incubated on ice in standard medium until ready to be imaged by super-resolution microscopy. 

Cytometry. CHO K1 cells were seeded at a density of 50,000 cells/well in 12-well plates, and 

grown in the presence of Ac4ManDiaz (0–50 µM) for 2 days in standard medium. The cells were 

then rinsed twice with wash buffer (DPBS containing 1% v/v FBS) and treated with DIBAC–

biotin (10 µM) in standard medium for 1 h at 37 °C. Cells were again washed twice, and 

incubated with avidin–Alexa Fluor488® (20 µg/mL) for 20 min at 4 °C. Cells were again washed 

twice and released from the dish by treatment with trypsin/EDTA (0.25% w/v) for 5 min at 37 

°C. Cells were resuspended in standard medium, and incubated on ice. The fluorescence intensity 

of 20,000 events was then measured by flow cytometry. Alexa Fluor488® was excited with a 

488 nm solid-state laser, and the emission was measured through a 530/30 bandpass filter. 

 

1.2.3.11 Metabolism of Ac4ManDiaz by Multiple Cell Types  

CHO K1, HeLa, HEK293T, and Jurkat cells were seeded at a density of 50,000 cells/well in 12-

well plates, and grown in the presence of Ac4ManDiaz (0–50 µM) for 2 days in standard 

medium. Cells were then rinsed twice with wash buffer (DPBS containing 1% v/v FBS) and 

treated with DIBAC–biotin (10 µM) in standard medium for 1 h at 37 °C. Jurkat cells were 

washed by centrifugation at 1000g for 5 min; all other cell types are adherent. Cells were again 

washed twice, and incubated with avidin–Alexa Fluor488® (20 µg/mL) for 20 min at 4 °C. Cells 

were washed twice with wash buffer, and adherent cells were released from the dish by 

incubation with trypsin/EDTA (0.25% w/v) for 5 min at 37 °C. Cells were resuspended in 

standard medium, and incubated on ice until analysis. The fluorescence intensity of 20,000 
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events was then measured by flow cytometry. Alexa Fluor488® was excited with a 488 nm solid-

state laser, and the emission was measured through a 530/30 bandpass filter. 

 

1.2.3.12 Neuraminidase and Peptide-N-Glycosidase F treatment of CHO K1 cells  

CHO K1 cells were treated with Ac4ManNAc, Ac4ManNAz, or Ac4ManDiaz (250 µM) for 3 d. 

Cells were lifted from the plate with trypsin/EDTA (0.25% w/v), collected by centrifugation, and 

washed twice with DPBS. Cells were treated with DIBAC–biotin (20 µM) for 2 h at 37 °C. G7 

reaction buffer (New England Biolabs) was added, and the suspension was divided into three 

samples. Neuraminidase (acetyl-neuraminyl hydrolase) from New England Biolabs (Ipswich, 

MA) was added to one sample; peptide-N-glycosidase F (PNGase F) from New England Biolabs 

was added to another sample, and PBS was added to the remaining sample. Samples were 

incubated at 37 °C overnight. SDS–PAGE sample buffer was added, and samples were boiled for 

5 min, subjected to brief centrifugation, and analyzed by SDS–PAGE on a 12% w/v gel before 

being transferrred to a PVDF membrane. Membranes were analyzed for the presence of azido or 

diazo sugars by immunoblotting with α-biotin (1:1000) from Cell Signaling Technology. To 

control for loading levels, membranes were analyzed for β-actin by immunoblotting with α–β-

actin (1:1000) from Cell Signaling Technology. 

 

1.2.3.13 Mass Analysis of Sialic acids from Biological Samples 

Sialic acids were isolated for analysis by using a method reported by Hackenberger and 

coworkers.106 CHO K1 cells were seeded into 6-well plates and treated with Ac4ManDiaz or 

Ac4ManNAz (250 µM) for 3 d. Cells were released from the dish by incubation with 

trypsin/EDTA (0.25% w/v) for 5 min at 37 °C. Cells were washed twice in DPBS. The cells 

were resuspended in 200 µL of H2O, and 500 µL of 3 M acetic acid was added. The resulting 
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suspension was incubated at 90 °C for 90 min before being cooled to 0 °C for 15 min and 

neutralized by the addition of 650 µL of 3% v/v NH3 for 30 min at room temperature. Samples 

were lyophilized, and resuspended in 500 µL of EtOH/H2O 4:1. Samples were mixed with a 

vortex mixer and subjected to centrifugation at 10,000g for 2 min. The supernatant was 

lyophilized. The residue was suspended in 300 µL of EtOH/MeOH 2:1, and the resulting 

suspension was mixed with a vortex mixer and subjected to centrifugation at 10,000g for 2 min. 

The supernatant was lyophilized. The residue was dissolved in PBS, and enriched for biotin–

linked sugars by purification over SoftLinkTM Soft Release Avidin Resin from Promega. The 

biotin–linked sugars were eluted from the resin with 3 M acetic acid, and the eluent was 

concentrated by lyophilization. Enriched isolates were dissolved in 100 µL of MeOH, and 25 µL 

was injected directly onto a Shimadzu 2010A single quadrupole mass analyzer LCMS in single-

ion monitoring mode with a scanning width of 0.9 m/z so as to observe the sialic acid conjugates 

in the presence of excess DIBAC–biotin. 

 

1.2.3.14 Optimal Labeling of CHO K1 Cells with Ac4ManDiaz 

1.2.3.14.1 Increasing Amounts of DIBAC–Biotin. CHO K1 cells were seeded at a density of 

50,000 cells/well in 12-well plates, and grown in the presence of Ac4ManDiaz (25 µM) for 2 

days in standard medium. The cells were then rinsed twice with wash buffer (DPBS containing 

1% v/v FBS) and treated with DIBAC–biotin (0–20 µM) in standard medium for 1 h at 37 °C. 

Cells were again washed twice, and incubated with avidin–Alexa Fluor488® (20 µg/mL) for 20 

min at 4 °C. Cells were washed twice with wash buffer, and released from the dish by incubation 

with trypsin/EDTA (0.25% w/v) for 5 min at 37 °C. Cells were resuspended in standard medium, 

and incubated on ice. The fluorescence intensity of 20,000 events was then measured by flow 



	
  

	
  
	
  

46	
  

cytometry. The fluorescence intensity of 20,000 events was then measured by flow cytometry. 

Alexa Fluor488® was excited with a 488 nm solid-state laser, and the emission was measured 

through a 530/30 bandpass filter. 

1.2.3.14.2 Increasing Incubation Times with DIBAC–Biotin. CHO K1 cells were seeded at a 

density of 50,000 cells/well in 12-well plates, and grown in the presence of Ac4ManDiaz (25 

µM) for 2 days in standard medium. The cells were then rinsed twice with wash buffer (DPBS 

containing 1% v/v FBS) and treated with DIBAC–biotin (10 µM) in standard medium for 0–120 

min at 37 °C. Cells were again washed twice, and incubated with avidin–Alexa Fluor488® (20 

µg/mL) for 20 min at 4 °C. Cells were washed twice with wash buffer, and released from the 

dish by incubation with trypsin/EDTA (0.25% w/v) for 5 min at 37 °C. Cells were resuspended 

in standard medium, and incubated on ice. The fluorescence intensity of 20,000 events was then 

measured by flow cytometry. The fluorescence intensity of 20,000 events was then measured by 

flow cytometry. Alexa Fluor488® was excited with a 488 nm solid-state laser, and the emission 

was measured through a 530/30 bandpass filter. 
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1.2.3.15 Cytotoxicity of Ac4ManDiaz and Ac4ManNAz for CHO K1 Cells.  

The cytotoxicity of the Ac4ManDiaz and Ac4ManNAz was determined using the CellTiter 96® 

AQueous One Solution Cell Proliferation Assay (MTS) from Promega (Madison, WI). Briefly, 

CHO K1 cells were plated at a concentration of 5000 cells/well in a clear 96-well plate. Cells 

were allowed to adhere for 4 h. The medium was removed, and varying concentrations of either 

Ac4ManDiaz or Ac4ManNAz in medium was added. Cells were incubated at 37 °C for 24 h. The 

medium was removed, and cells were washed with DPBS. The MTS reagent was added at a ratio 

of 1:5, and cells were incubated at 37 °C for 2 h before measuring the absorbance at 490 nm. 

Reported data are the average of three measurements for each concentration, and the entire 

experiment was repeated in triplicate. The percentage of viable cells was determined by 

normalizing to a PBS control (100% viable), and a H2O2 control (0% viable). Values for LD50 

were calculated by fitting the curves by nonlinear regression analysis. 

 

1.2.3.16 Dual-Color Labeling of Mannosamine in the Glycocalyx.  

Microscopy. CHO K1 cells were seeded at a density of 100,000 cells/dish in 35-mm µ-dish 

microscopy imaging dishes from Ibidi, and grown in the presence of a peracetylated sugar (25 

µM) in standard medium for 2 d. On the day of an experiment, cells were rinsed twice with wash 

buffer (DPBS containing 1% v/v FBS). 

Alkyne treatment. Cells were treated with medium containing DIBAC–biotin (10 µM) for 

1 h at 37 °C. Cells were rinsed twice with wash buffer (DPBS containing 1% v/v FBS), 

and incubated with avidin–Alexa Fluor594® (20 µg/mL) for 20 min at 4 °C. 

Azide treatment. Cells were treated with medium containing picolyl azide–Alexa 

Fluor647® (5 µM), CuSO4 (50 µM), THPTA (250 µM), and sodium ascorbate (2.5 mM) 
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for 5 min at room temperature.6 

In one experiment, cells were treated with azide and then alkyne; in another experiment, cells 

were treated with alkyne and then azide. After treatments, cell nuclei were stained with Hoechst 

33342 (2 µg/mL) for 5 min at 37 °C. Cells were then washed twice with wash buffer, and 

examined using a scanning confocal microscope. 

Cytometry. Two days prior to an experiment, CHO K1 cells were seeded in 12-well plates at 

1 × 105 cells/well, and a sugar was added to a final concentration of 25 µM. On the day of an 

experiment, cells were rinsed twice with wash buffer (DPBS containing 1% v/v FBS). 

Alkyne treatment. Cells were treated with medium containing DIBAC–biotin (10 µM) for 

1 h at 37 °C. Cells were rinsed twice with wash buffer (DPBS containing 1% v/v FBS), 

and incubated with avidin–Alexa Fluor647® (20 µg/mL) for 20 min at 4 °C. 

Azide treatment. Cells were treated with medium containing picolyl azide–Alexa 

Fluor647® (5 µM), CuSO4 (50 µM), THPTA (250 µM), and sodium ascorbate (2.5 mM) 

for 5 min at room temperature.112 

In one experiment, cells were treated with azide and then alkyne; in another experiment, cells 

were treated with alkyne and then azide. After these treatments, cells were rinsed twice with 

wash buffer (DPBS containing 1% v/v FBS) and released from the plate with 250 µL of 

trypsin/EDTA (0.25% w/v). Cells were resuspended in an additional 500 µL of medium and 

incubated on ice until analyzed by flow cytometry. The fluorescence intensity of at least 20,000 

events was measured by flow cytometry. Alexa Fluor488® was excited with a 488 nm solid-state 

laser, and the emission was measured through a 530/30 bandpass filter. Alexa Fluor647® was 

excited with a 633 nm solid-state laser and the emission was collected with a 661/16 bandpass 
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filter. 

1.2.3.17 Dual-Color Labeling of Mannosamine and Galactosamine in the Glycocalyx. 

Microscopy. CHO K1 cells were seeded at a density of 100,000 cells/dish in 35-mm µ-dish 

microscopy imaging dishes from Ibidi, and grown in the presence of a peracetylated sugar 

(25 µM) in standard medium for 2 d. On the day of an experiment, cells were rinsed twice with 

wash buffer (DPBS containing 1% v/v FBS). 

Alkyne treatment. Cells were treated with medium containing DIBAC–biotin (10 µM) for 

1 h at 37 °C. Cells were rinsed twice with wash buffer (DPBS containing 1% v/v FBS), 

and incubated with avidin–Alexa Fluor594® 
(20 µg/mL) for 20 min at 4 °C. 

Azide treatment. Cells were treated with medium containing picolyl azide–Alexa 

Fluor647® 
(5 µM), CuSO4 (50 µM), THPTA (250 µM), and sodium ascorbate (2.5 mM) 

for 5 min at room temperature.112 

After treatments, cell nuclei were stained with Hoechst 33342 (2 µg/mL) for 5 min at 37 °C. 

Cells were then washed twice with wash buffer, and examined using a scanning confocal 

microscope. 

Cytometry. Two days prior to an experiment, CHO K1 cells were seeded in 12-well plates 

at 1 × 105 cells/well, and a sugar was added to a final concentration of 25 µM. On the day 

of an experiment, cells were rinsed twice with wash buffer (DPBS containing 1% v/v 

FBS). 

Alkyne treatment. Cells were treated with medium containing DIBAC–biotin (10 µM) for 

1 h at 37 °C. Cells were rinsed twice with wash buffer (DPBS containing 1% v/v FBS), 
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and incubated with avidin–Alexa Fluor647® 
(20 µg/mL) for 20 min at 4 °C. 

Azide treatment. Cells were treated with medium containing picolyl azide–Alexa 

Fluor647® 
(5 µM), CuSO4 (50

 
µM), THPTA (250 µM), and sodium ascorbate (2.5 mM) 

for 5 min at room temperature.112 

Cells were treated with alkyne for 60 min and then azide for 5 min. After these treatments, 

cells were rinsed twice with wash buffer (DPBS containing 1% v/v FBS) and released from the 

plate with 250 µL of trypsin/EDTA (0.25% w/v). Cells were resuspended in an additional 500 µL 

of medium and incubated on ice until analyzed by flow cytometry. The fluorescence intensity of 

at least 20,000 events was measured by flow cytometry. Alexa Fluor488® 
was excited with a 488 

nm solid-state laser, and the emission was measured through a 530/30 bandpass filter. Alexa 

Fluor647® 
was excited with a 633 nm solid-state laser, and the emission was collected with a 

661/16 bandpass filter. 
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Table 1.2.S1 Rate constants (M–1s–1) for the reaction of Diazo 1 and Azide 2 with strained 

cyclooctynes 

 
 
 
 
 
 
 
 
 
 
 
 

Table 1.2.S1. Rate constants (M–1s–1) for the reaction of Diazo 1 and Azide 2 with strained 

cyclooctynes 

 
 BCNa DIBONEa DIBACa DIBACb 

Diazo 1 0.08 ± 0.02 0.34 ± 0.01 0.45 ± 0.09 2.6 ± 0.2 

Azide 2 0.11 ± 0.02 0.14 ± 0.04 0.23 ±0.06 0.40 ± 0.09 

aIn CD3CN. bIn 1:1 CD3CN/H2O. 
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Figure 1.2.1 Space-filling models of diazo and azido derivatives of acetamide 
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Figure 1.2.1 (A) Space-filling models of diazo and azido derivatives of acetamide. A diazo 

group and azido group add 15.4 and 31.6 Å of solvent-accessible surface area, respectively 

(Table 4.S1). (B) Scheme for the deimidogenation of an azide to form a diazo compound. (C) 

Bar graph of the rate constants for the reaction of an azide (1) and diazo compound (2) with 

strained cyclooctynes in CD3CN or *CD3CN/H2O 1:1 as determined by 1H NMR spectroscopy. 
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Figure 1.2.2 Variations of N-acetylmannosamine used in this study that are trafficked into 

sialic acid 
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Figure 1.2.2 Variations of N-acetylmannosamine used in this study that are trafficked into sialic 

acid. 
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Figure 1.2.3 1H NMR spectra 
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Figure 1.2.3 1H NMR spectra (500 MHz, 10 mM sodium phosphate buffer, pH 7.3 

(deuterated)/MeOD 1:1) of N-benzyl-2-diazoacetamide (2) (bottom, red), reduced glutathione 

(middle, green), and an equimolar mixture (0.20 M each) after a 24-h incubation in 10 mM 

sodium phosphate buffer, pH 7.3 (deuterated)/MeOD 1:1 (top, blue). There was no apparent 

reaction between the glutathione and diazo compound 2.  
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Figure 1.2.4 Chemoselectivity of diazo and azido groups 
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Figure 1.2.4 Chemoselectivity of diazo and azido groups. (A) Immunoblot of biotin signal of 

cell lysates grown in either DMSO (D), acrylic ester–biotin (AEB; 1 mM), azido–biotin (AB; 25 

µM), or diazo–biotin (DB; 25 µM) for 24 or 48 h. (B) Flow cytometry analysis of cells grown as 

in panel A for 24 h, p < 0.0001. (C) Microscopy of fixed and permeabilized cells grown as in 

panel A for 24 h. Cells were stained with avidin–Alexa Fluor488® and Hoechst 33342. Scale 

bars correspond to 25 µm. 
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Figure 1.2.5 Trafficking of diazo and azido sugars in mammalian cells 
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Figure 1.2.5 Trafficking of diazo and azido sugars in mammalian cells. (A) Super-resolution 

images of CHO K1 cells grown in medium containing Ac4ManDiaz or Ac4ManNAz (25 µM) for 

2 d, washed, treated with DIBAC–biotin (10 µM) for 60 min and then avidin–Alexa Fluor488® 

and Hoechst 33342, and fixed. Scale bars: 10 µm. (B) Histogram of CHO K1 cells grown in 

medium containing Ac4ManNAc, Ac4ManDiaz, or Ac4ManNAz (25 µM) as in panel A. (C) 

Graph of the concentration-dependent fluorescence of Jurkat, CHO K1, HEK293T, and HeLa 

cells grown in medium containing Ac4ManDiaz (0–50 µM) as in panel A. Data in panels B and 

C were acquired by flow cytometry. 
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Figure 1.2.6 Metabolic incorporation of Ac4ManDiaz into sialic acid 
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Figure 1.2.6 Metabolic incorporation of Ac4ManDiaz into sialic acid. Immunoblot analysis of 

cell lysates treated with DIBAC–biotin, after growth in the presence of Ac4ManNAc, 

Ac4ManNAz, or Ac4ManDiaz (250 µM) for 3 d, and (A) incubation in either PNGase F or 

buffer, and (B) incubation in either neuraminidase or buffer. Quantification was normalized to 

actin to control for loading, p < 0.05. Quantification of the azido and diazo untreated lanes from 

all experiments showed that expression of a diazo group from Ac4ManDiaz is (86 ± 3)% of the 

azido group from Ac4ManNAz. 
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Figure 1.2.7 Detection of sialic acid derivatives generated in cellulo from Ac4ManDiaz and 

Ac4ManNAz 
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Figure 1.2.7 Detection of sialic acid derivatives generated in cellulo from Ac4ManDiaz and 

Ac4ManNAz. Positive and negative ions were observed in independent LC-LRMS (ESI) 

analyses after cycloaddition with DIBAC–biotin and product isolation. 
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Figure 1.2.8 Histogram of CHO K1 cells grown in medium containing Ac4ManDiaz 
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Figure 1.2.8 Histogram of CHO K1 cells grown in medium containing Ac4ManDiaz (25 µM) 

and treated with increasing amounts of DIBAC–biotin and avidin–Alexa Fluor488®. Data were 

acquired by flow cytometry. At 20 µM, DIBAC–biotin begins to cause cytotoxicity.  
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Figure 1.2.9 Histogram of CHO K1 cells grown in medium containing Ac4ManDiaz 
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Figure 1.2.9 Histogram of CHO K1 cells grown in medium containing Ac4ManDiaz (25 µM) 

and treated with 10 µM DIBAC–biotin for increasing time, then avidin–Alexa Fluor488®. Data 

were acquired by flow cytometry. At times >60 min, DIBAC–biotin begins to cause cytotoxicity.  
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Figure 1.2.10 Graph of the cytotoxicity of Ac4ManDiaz and Ac4ManNAz (10 µM–10 mM) 

for CHO K1 cells 
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Figure 1.2.10 Graph of the cytotoxicity of Ac4ManDiaz and Ac4ManNAz (10 µM–10 mM) for 

CHO K1 cells. LD50 values are (0.7 ± 0.1) mM for Ac4ManDiaz and (1.4 ± 0.1) mM for 

Ac4ManNAz. 
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Figure 1.2.11 Dual labeling of mammalian cells with diazo and alkynyl sugars 
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Figure 1.2.11 Dual labeling of mammalian cells with diazo and alkynyl sugars. (A) Images of 

CHO K1 cells grown in medium containing derivatives of N-acetylmannosamine for 2 d, then 

labeled by cycloaddition with an alkyne (red) and azide (green), and visualized with confocal 

microscopy. Scale bars: 10 µm. (B) Plots demonstrating the dual labeling of cells that had 

metabolized Ac4ManDiaz and Ac4ManKyne. Data were acquired by flow cytometry. 
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Figure 1.2.12 Dual labeling of mammalian cells grown with derivatives of 

N-acetylmannosamine and N-acetylgalactosamine 
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Figure 1.2.12 Dual labeling of mammalian cells grown with derivatives of 

N-acetylmannosamine and N-acetylgalactosamine. (A) Images of CHO K1 cells grown in 

medium containing N-acetylmannosamine or N-acetylgalactosamine derivatives (25 µM) for 2 d, 

then labeled by cycloaddition with an alkyne (red) and azide (green), and visualized with 

confocal microscopy. Scale bars: 5 µm. (B) Histogram showing the lesser labeling of cells 

exposed to Ac4GalKyne than Ac4ManKyne as measured by flow cytometry. (C) Plot 

demonstrating the dual labeling of cells that had metabolized Ac4GalKyne and either 

Ac4ManDiaz or Ac4ManNAz as measured by flow cytometry. (D) Quantification of the level of 

Ac4GalKyne labeling obtained in cells grown with derivatives of N-acetylmannosamine, p < 

0.0001. 
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1.2.4 NMR Spectra 

 
Spectra 1a. 1H NMR spectrum of tetra-O-acetyl ManNDiaz (mixed anomers) in CDCl3 (750 MHz) 

 
 

 
Spectra 1b. 13C NMR spectrum of tetra-O-acetyl ManNDiaz (mixed anomers) in CDCl3 (189 MHz) 

  

������������������������������������������	��	��
��
�����
��
�����

�������������������	�
�������������������������	��
�������������
��
�����

�
�
�	
�

�
�
�	
	

�
�
�

�

�
�
�

�

�
�
�




�
�
��
�

�
�
��



�
�
��
�

�
�
�

�

�
	
��



�
�
�

	

�
�
��
�

�
�
��
�

�
�
��
�

�
�
�

�

�
�
��
�

	
�
��
�

	
�
��



	
�
��
�

�
�
��
�

�
�
��
�

�
�


��
�

�
�


��
�

�
�
�
�

�

�
�
�
�




�
	
�
��
�

�
	
�
��
�

�
	
�
�	
�

�
	
�
�	
�

��������	����
�	���

���
��������



	
  

	
  
	
  

77	
  

 
 

 
Spectra 2a. 1H NMR spectrum of N-diazoacetamide benzylamine in CD3CN (400 MHz). 

 
 
 

 
Spectra 2b. 13C NMR spectrum of N-diazoacetamide benzylamine in CD3CN (101 MHz). 
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Spectra 3a. 1H NMR spectrum of DIBAC–biotin in DMSO (750 MHz). 

 

 
Spectra 3b. 13C NMR spectrum of DIBAC–biotin in DMSO (126 MHz). 
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Spectra 4a. 1H NMR spectrum of 2-aminoethyl acrylate-biotin in MeOD (500 MHz). 

 

 
Spectra 4b. 13C NMR spectrum of 2-aminoethyl acrylate-biotin in MeOD (126 MHz). 

������������������������������������������	��	��
��
������������
��
�����

����������������	�
�������������������������	��
�������������
��
�����



	
  

	
  
	
  

80	
  

 
Spectra 5a. 1H NMR spectrum of azide–ethylenediamine–biotin conjugate (500 MHz). 

 

 
Spectra 5b.13C NMR spectrum of azide–ethylenediamine–biotin conjugate in MeOD (126 MHz). 
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Spectra 6a. 1H NMR spectrum of Diazo-ethylenediamine-biotin conjugate in MeOD (500 MHz). 

 

 
Spectra 6b. 13C NMR spectrum of Azide-ethylenediamine-biotin conjugate in MeOD (126 MHz). 
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Spectra 7a. 1H NMR spectrum of 1,3,4,6-tetra-O-acetyl-N-4-pentynoylgalactosamine (GalKyne) mixed anomers 
in CDCl3 (500 MHz). 

 
Spectra 7b. 13C NMR spectrum of 1,3,4,6-tetra-O-acetyl-N-4-pentynoylgalactosamine (GalKyne) mixed 
anomers in CDCl3 (126 MHz). 
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PART 1 

CHAPTER 3 
 
 

Preferential 1,3-Dipolar Cycloadditions of Diazoacetamides with 
Unstrained Dipolarophiles in the Presence of Azides 

	
  

This chapter was originally prepared as: Aronoff, M.R.,* Gold, B.A.,* Raines, R.T. Preferential 

1,3-dipolar cycloadditions of diazoacetamides with unstrained dipolarophiles in the presence of 

azides 

 

 
 
Contributions: I performed experiments and Brian Gold performed calculations. Both M.A. and 

B.G. designed experiments and wrote the manuscript.  
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Abstract	
  	
  

Recent advances illustrate the potential for the diazo-group as an attractive tool for 

chemical biology. In particular, the ability to survive cellular metabolism and provide unique 

reactivity makes the diazo-group an attractive alternative to the azido-moiety. However, as both 

the azide and diazo group undergo rapid 1,3-dipolar cycloadditions with strained alkynes, 

selective reactivity between these two dipoles has been elusive. Herein we explore strategies of 

strain and electronic tuning to develop diazo-selective 1,3-dipolar cycloadditions that can be 

carried out in the presence of an azide under ambient aqueous conditions without catalysis. 

Findings provide the ability to selectively react a diazoacetamide with the naturally occurring 

amino acid residue, dehydroalanine, a functional moiety with significant biological relevance. 
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1.3.1 Introduction 

“If one regards reactions as new only if they have no forerunners, not even singular 

examples buried in the literature, then 1,3-dipolar additions cannot claim novelty. But if one 

defines reactions as novel which are for the first time recognized for their generality, scope, and 

mechanism, the judgement must be different.”120 

    —Rolf Huisgen, 1961 

 

The Huisgen azide–alkyne 1,3-dipolar has created a modern age of the azide, yet this 

azidophilia has caused a bottleneck where the most frequently applied chemoselective reactions 

for chemical biology all involve participation of the azide as one component.31,121-129 The similar 

but unique reactivity of the diazo group makes it an attractive alternative, especially when 

multicomponent selectivity is a concern.  

The diazo functional group has provided tremendous utility to the field of organic 

chemistry for over a century.130-133 The diazo group is capable of an extensive list of valuable 

and varied reactivity including alkylation, carbene generation, nucleophilic addition, 

homologation, and ring expansions.131 More recently, the versatile reactivity of the stabilized 

diazo group permits its use as a reporter for chemical biology—it is a potent 1,3-dipole for 

cycloadditions with cyclooctynes commonly applied used in the strain-promoted azide-alkyne 

cycloaddition (SPAAC) (Scheme 1.3.1).134  

Owing to its facile preparation, compact size, and stability in aqueous environments, the 

pendant diazoacetamide group became our first choice for these investigations. It is apparent that 

the diazo group is capable of faster cycloadditions with commonly applied cyclooctynes—in 

comparison to the equivalent precursor azide.45 However, the redundant reactivity shared 



	
  

	
  
	
  

87	
  

between these two valuable groups necessitates a simple cycloaddition that can be selective for 

the diazo group. Such a reaction can greatly broaden the utility for the diazo group in chemical 

biology, as multiple selective transformations exist that are widely used for the azide. 

We required a reaction that differentiated the reactivity between the diazo group and the 

azide but was also compatible with aqueous biological conditions. Known strategies exist for 

diazo-specific reactions in aqueous conditions such as metal-carbenoid 

additions/insertions,34,35,39-41,135 esterifications,44,136 and carbonyl additions,137 but each of these 

have drawbacks that prevent application in a general context. Frustrated by the lack of selectivity 

produced from SPAAC-type reactions with the diazo group or the azide, we sought out other 

means to generate a simple cycloaddition reaction that would favor the chemical characteristics 

of the diazo-group. Although not immediately apparent, the 1,3-dipolar cycloaddition reaction 

itself was an ideal arena to highlight the unique and distinctive reactivity of the diazo group 

separate from the azide. 

While much effort has focused on the development of activated alkynes that are suited for 

many applications,31,121-129,138-142 less effort has focused on the fabrication of activated 

dipoles.52,143-147,148 The preexisting lack of focus on dipole tuning is especially surprising, as it 

has been shown in many theoretical studies that the bulk of the activation barrier (~80%) comes 

from the energy required to distort the dipole to the TS geometry (see later discussion).149 Owing 

to the inherent conjugation to its attached carbon atom, the stabilized diazo group represents an 

excellent substrate for dipole-tuning. 

It has been previously demonstrated that orthogonal cycloadditions can be generated 

through modulation of the electronic demand of the two sets of reacting partners—in this 

instance one performs a normal electron demand (NED) cycloaddition, while the other reacts by 
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inverse electron demand (IED). Selectivity by electronic demand has been accomplished 

applying electronically diverse azides52 as well as deactivated nitrones.150 

In the work of Floris and Bickelhaupt, chemoselective NED and IED 1,3-dipolar 

cycloadditions were achieved with two unique azides.52 It was noted that an apparent ceiling of 

reactivity for strain-promoted azide-alkyne cycloadditions (SPAAC) had been reached. 

Modification of aryl azides to promote IED reactivity allowed this limit to be overcome, yet the 

ceiling for NED cycloadditions with alkyl azide remains. Thus, exploration into diazo group 

reactivity provides a new means to access more rapid NED 1,3-dipolar cycloaddition rates with 

dipoles that can undergo cellular metabolism.151 Herein we report a strategy to differentiate the 

diazo group and alkyl azides through chemoselective normal demand dipolar cycloadditions and 

provide theoretical groundwork towards optimized NED 1,3-dipolar cycloadditions to 

compliment the rapid IED cycloadditions earlier reported.52 We also report the utility of diazo 

group cycloadditions, selectively accelerated in aqueous conditions, towards modification of 

naturally occurring peptides without prior modification. 

 

1.3.2 Results and Discussion 

Computational Details 

Optimizations were performed using Gaussian 09 software152 at M06-2X level of 

theory153,154 using the 6-31+G(2d,p) basis set. M06-2X has been shown to accurately describe 

trends in reactivity in a number of cycloadditions.155 Optimizations were performed in the gas-

phase followed by single point solvation corrections. An IEFPCM dielectric continuum solvent 

model for water with UFF radii was employed. Frequency calculations were performed to 



	
  

	
  
	
  

89	
  

confirm each stationary point as minima or first-order saddle points. All ΔE values include zero-

point corrections. N-methyl acetamide was used for N-benzyl acetamide dipoles computationally. 

Selectivity: Diazo groups are primed for more rapid NED cycloadditions due to higher polarity 

and increased nucleophilicity. We hypothesized that by matching reciprocally tuned 

dipolarophiles, the diazo group would be a more suitable reaction partner than the azide. Diazo 

groups are capable of uncatalyzed cycloadditions with numerous dipolarophiles in addition to 

commonly employed strained alkynes,45,130,134,156 yet the decreased HOMO-LUMO gap imparted 

by strain also enables efficient reactions with azides. As it has been shown that diazo groups 

often react more rapidly than azides,134 we wished to examine the possibility of chemoselective 

transformations in the presence of both diazo and azido dipoles.  

Electron-rich azides have been shown to react more rapidly than electron-deficient azides 

in the cycloaddition with DIBAC.52,144 Additionally, DIBAC was the most rapid cyclooctyne to 

react with the diazoacetamide functionality.134 Thus, we wanted to see if this could be extended 

to the more electron-rich diazo group over the azide in the context of azide-diazo-competition 

reactions. One equivalent each of the diazoacetamide (1) and its azide precursor (2) were 

combined with a single equivalent of DIBAC and allowed to react until the octyne was 

consumed (Scheme 1.3.2). Despite the pronounced rate of the diazo group, a significant 

percentage of the azide had also reacted.  

The lack of selectivity presumably results from the electronic character of the employed 

diazo and azide groups. The stabilization necessary to render the diazo group practically useful 

also slows down the rate of the desired cycloaddition. The azide applied here was not conjugated 

to the deactivating carbonyl π-system, and the two dipoles are poised to display competitive 
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reactivity. As DIBAC did not give a highly selective reaction (Scheme 1.3.2), we foresaw 

selectivity by removing strain. 

As strain generally gives faster reaction kinetics, but does not provide desired selectivity, 

we wished to examine the utility of both strain and electronic tuning as means to increase 

reactivity and selectivity. As can be seen in Figure 1, a general decrease in barriers for both the 

diazo 1 and azide 2 are observed with increasing strain (top) or with increased electron-

withdrawing capabilities (bottom). The slopes of both dipoles when activated by strain are much 

steeper, illustrating the rapid reactivity afforded by strained precursors. However, the ΔΔE‡ 

between the azide and diazo are within ~0.6 kcal/mol for the reactions with 2-butyne, 

cyclononyne, and cyclooctyne (a-c), suggesting little selectivity. It is not until large amounts of 

strain are imparted, that any selectivity should be expected. This evidence, along with previous 

experimental results, shows that strain-activation alone is not likely to create selective reactivity 

for the diazo independent of the azide. 

Noteworthy, is the steeper slope of diazo group cycloadditions accelerated by electronic 

tuning relative to the analogous azide cycloadditions. This reveals the opportunity to obtain both 

faster reaction kinetics and increased selectivity as electron-withdrawing capabilities are 

increased. Examining ΔΔE‡ using the Arrhenius equation suggests we can take a reaction that is 

~7 times faster for the diazo group than the azide f and generate a reaction that is >1000 fold 

faster k. This is surprising as the diazo group is deactivated for NED via conjugation to the 

carbonyl, but the azide is not. Despite the deactivating effects of conjugation, the diazo group 

HOMO remains higher in energy than the azide (see SI). 

Additionally, the calculated barrier for the cycloaddition of diazo acetamide 1 with MVK 

j of ~12 kcal/mol is lower than the barrier of ~14 kcal/mol for the cycloaddition of azide 2 with 
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cyclooctyne c. This led us to believe that the increased reactivity of these diazo groups over alkyl 

azides may allow for reactions with unstrained alkenes that are able to surpass first generation 

SPAAC.31 

Kinetics: From this inference, we reevaluated the need for strain altogether for 1,3-dipolar 

cycloadditions with the diazo acetamide 1. We reasoned that by first removing strain from the 

reaction partner, the more nucleophilic diazo group should make a more suitable dipole for 

dipolarophiles that possessed a lower energy LUMO generated from bond polarization of 

adjacent electron-withdrawing groups. 

We first examined ethyl propiolate n, a compound with a terminal triple bond, but 

activated by a conjugated electron withdrawing ester moiety. Here, selective reactivity for the 

diazo group dipole was observed even in the presence of excess propiolate (Scheme 1.3.3). It 

should be noted that in this competition reaction both dipoles (1&2) are capable of performing 

NED cycloadditions, yet the increased nucleophilic character of the diazo group and greater 

acceleration in aqueous conditions (vide infra) allow it to outcompete the NED azide (2).  

The alkene congener of propiolate, ethyl acrylate i, was next evaluated as it has been 

postulated that alkenes react more rapidly in cycloaddition reactions.157 The alkene indeed 

reacted more quickly with the diazoacetamide 1 in aqueous co-solvent. As the reaction with 

propiolate proved to be more sluggish, we focused our attention on ethyl acrylate and related 

alkenyl compounds. Upon examining the reaction kinetics of a carbonyl series of electron-

deficient alkenes, we found the rate of the reaction was dependent upon the electron-withdrawing 

capabilities of the substituent. The reactions with even the least reactive (h-m) of these 

unstrained, yet electronically tuned cycloadditions, produced rate constants similar to those of 

early generation SPAAC (Table 1.3.1). 
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The faster reaction kinetics of ethyl acrylate i over propiolate n was initially surprising, 

as previous reports suggest similar reaction kinetics between alkenes and alkynes, despite 

different FMO energies.149 Differences are due, however, to a smaller distortion energy of the 

dipolarophile and slightly larger interaction energy (Figure 1.3.2). It has previously been shown 

that while alkynes are easier to bend than alkenes, the alkyne must be bent to a larger degree to 

reach TS geometries.157,158 The difference in dipolarophile distortion energy of 1.7 kcal/mol is 

similar to the value of 2.1 kcal/mol previously reported for the cycloadditions of diazomethane 

with ethylene and acetylene calculated at the B3LYP/6-31G(d) level of theory.149 These results 

are consistent with the smaller HOMO-LUMO gap of alkenes relative to alkynes. 

Applications: We next wanted to demonstrate a simple example of this reactivity in a useful 

context, while also further verifying the selectivity of this type of cycloaddition. In order to 

accomplish this task we prepared a compact linker molecule simultaneously containing both 

pendant functional groups. Compound 3 was prepared from 3-bromoproplyamine as shown in 

Scheme 1.3.4. This dual-linker molecule was then reacted with an excess of ethyl acrylate i at 

room temperature in H2O:CH3CN cosolvent. The results were further inspiring—the diazo group 

was completely reacted to form the pyrazoline product 3-i whereas the azide remained 

completely unchanged and free for subsequent functionalization or derivation (Scheme 1.3.4, 

also SI).  

Substituent Effects of 1,3-Dipolar Cycloadditions of Diazo- and Azido-compounds: In order 

to better understand observed reactivity, we examined the effects of substituents on 

cycloadditions between alkenes and both diazo and azide dipoles. We started with simple dipoles 

(see SI) but focus on the stabilizing substituents that allow for practically accessible diazo group 

dipoles (Figure 1.3.3&1.3.4). 
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An advantage of diazo group dipoles is the larger tunability relative to analogous azides, 

as illustrated from the larger range of activation barriers. The total range of azide cycloadditions 

is ~9 kcal/mol, while the range of diazo group cycloadditions is ~21 kcal/mol (see SI). Even 

when focusing on only practically accessible diazoacetamide 1, a range of ~13 kcal/mol is 

observed. 

As expected by the preference of diazo groups to undergo NED cycloadditions, electron-

withdrawing substituents are predicted to provide substantial activation (Figure 1.3.3 & SI). 

Interestingly, azides show ambiphilic character—benefitting from both donors and acceptors—

however, donor-substituents on the alkene (e.g., -OMe q) are not productive towards increased 

reactivity until sufficient acceptor substituents are present on the azide. This correlates well with 

that found by both Houk143 and Bickelhaupt and van Delft.52 

The lower calculated barriers for the cycloaddition of diazo compounds with electron-

deficient alkenes than with cyclooctyne are in accord with the fact that cycloadditions of 

electronically-tuned reacting partners are able to compete with early generation SPAAC (Table 

1.3.1). In addition to much less tunability, azides display the lowest predicted barriers in the 

cycloadditions with cyclooctyne. This illustrates the potential advantages of diazo group 

cycloadditions over those of azides, where careful electronic tuning can become the primary 

design principle. On the contrary, it has been claimed that the “primary importance in the design 

and synthesis of reactive cycloalkynes for copper-free click chemistry is ring strain, followed by 

electronic activation and steric effects.”159,160 A strategy based on pairing of electronics in 

reacting partners is a much more elegant approach when the end goal is selective reactivity.161 

Predictive Tools–FMO vs Distortion-Interaction Energies: In the study of Huisgen 

cycloadditions, the classically utilized predictive tool of FMO gaps162-166 has recently been 
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shown to be less valuable than the distortion-interaction analysis developed by Ess and Houk.167 

This approach is analogous to the strain-activation analysis developed by Bickelhaupt.168 We 

wished to analyze the relative utility of each approach to understanding the reactivity of 

electronically “tamed” diazo groups and azides. 

As is readily apparent from Figure 1.3.5, distortion energies are much more reliable as predictors 

of relative reactivity. The plot of activation energies vs. total distortion energies displays an R2 

value of 0.75 compared to the value 0.47 for the plot of activation energies vs FMO gap (smaller 

HOMO/LUMO pair). 

Upon examination of calculated FMOs (see SI) and TS geometries (Figure 1.3.4 & 

S1.3.5), it becomes apparent that the dominant interactions in the TS may not necessarily be 

between HOMO of the dipole and LUMO of the dipolarophile or vice versa. In nearly every 

dipole examined, the HOMO and LUMO orbitals reside within orthogonal π-systems. The 

sterically unencumbered azide can rotate to allow interactions of both π-systems with 

dipolarophile FMOs. Calculated diazo group transition states, however, display a geometry 

where the HOMO can directly interact with unoccupied orbitals of the dipolarophile, but this 

leaves the LUMO orthogonal to the forming bonds. 

As this is the case, we reexamined the correlation of activation energies with FMO gaps, 

but instead used diazo group LUMO+1 energies for IED gaps in relevant cases (see SI). The R2 

increased only slightly to 0.53, confirming that distortion energies are a much better descriptor of 

reactivity. 

SPAAC – distortion acceleration: The approach of strain activation has also been termed 

distortion acceleration when viewed through distortion-interaction analysis.140,169,170 Alkynes 

contained within a cycle are constrained to a non-optimal, bent geometry, much closer to the TS 
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geometry than their unstrained counterparts. As the geometries for each calculated cycloaddition 

involve significant distortion (Figure 1.3.4), pre-distortion is accelerating in both azide and diazo 

group cycloadditions (Figure 1.3.1).  

The concept of distortion acceleration is interesting from both a theoretical viewpoint and 

when designing reactants for chemical biology. Although it has been established that 

cycloaddition reactivities cannot be explained via a strict Bell-Evans-Polanyi, or Marcus 

treatment149,161 (cycloadditions of vastly different reaction energies often have comparable rates), 

pre-distortion of the dipolarophile enforces a more reactant-like TS in regards to the 

dipolarophile.171 Based on the Hammond-Leffler postulate, this should have a negative effect on 

selectivity.161  

The selectivity seen in many competing cycloadditions then comes from the alternative 

strategy of FMO matching between reactants.52,150 More specifically, this effect arises from the 

smaller distortion energy required by dipoles with better matched FMOs.149 

There are inherent drawbacks to both approaches, especially when the end goal is to carry 

out selective reactions in living systems. Pre-distortion towards cycloaddition geometries cannot 

be accomplished without also pre-distorting towards geometries of other TSs, such as 

nucleophilic addition. Tuning MOs suffers from the same problem, where FMO energies primed 

for dipolar cycloadditions can overlap with optimal energies for unwanted side reactions. While 

we have shown that selective 1,3-dipolar cycloadditions can be attained via FMO tuning, the 

optimal balance of strain and substituent effects is required in order to maximize reaction 

efficiency. Finding this balance for a series of dipoles will provide a myriad of possibilities for 

chemical biology. 
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Distortion-Interaction Analysis: In earlier studies, it was found that the distortion energy of 

simple diazo compounds are essentially always lower than the distortion energies of simple 

azides.149 Electron-withdrawing substituents on the diazo were shown to increase distortion 

energies, but analogous azides were not examined.172 

Our first goal was to determine if lower distortion energies of diazo group cycloadditions 

was the factor favoring diazo group cycloadditions over azido compounds when substituents are 

added to the 1,3-dipole.  While this was our initial hypothesis, it could not be ruled out that 

interaction energies became the dominant factor as dipole-stabilizing substituents were added.173 

We mainly focus on the diazoacetamide 1, as this substitution provides practically accessible 

compounds and still displays attractive substituent effects (Figure 1.3.3). 

Diazo group cycloadditions benefit from both decreased distortion energies and increased 

interaction energies (Figure 1.3.6 and Figure S1.3.8). The total distortion energies for the 

electronically tuned diazo-MVK cycloaddition 1-f-TS are less than the total distortion energies 

of the distortion accelerated azide-OCT cycloaddition 4-c-TS (23.8 vs 24.1 kcal/mol). In 

addition, the diazo-MVK cycloaddition 1-f-TS also benefits from increased interaction energies 

(-11.4 vs. -7.1 kcal/mol, respectively).  

The ΔΔE‡ between diazo and azido groups was 4.3 kcal/mol for the parent ethylene TSs 

(1-f-TS & 4-f-TS). Electronic activation increases this difference (ΔΔE‡ = 8.5 kcal/mol for 1-j-

TS & 4-j-TS), while strain decreases the difference (3.0 kcal/mol for 1-c-TS & 4-c-TS), in 

agreement with Figure 1.3.1 and S1.3.3. 

Electron-withdrawing substituents on the diazo group increase the dipole distortion 

energies relative to diazomethane and diazoethane (see SI), however, little effect is seen on the 

interaction energies. In comparison, electron-withdrawing substituents on azides have the same 
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effect on distortion energies, but also decrease interaction energies. In these cases of electron-

deficient dipoles, interaction energies remain largest for the electron-deficient methyl vinyl 

ketone j in reactions with diazos 1 & 5 (-11.4 kcal/mol, 1-j-TS), but the azides 4 & 6 show larger 

interaction energies in the reaction with electron-rich methyl vinyl ether (-10.6 kcal/mol, 4-j-

TS). This can be attributed to the nature of each cycloaddition. Even with electron-withdrawing 

substituents the diazo group favors Type I interactions, where the azide cycloadditions are truly 

Type II, benefitting from both HOMOdipole ! LUMOdipolarophile interactions as well as 

HOMOdipolarophile ! LUMOdipole. This is in agreement with calculated NBO charges (Figure 

1.3.4). When strong electron-withdrawing groups are incorporated to the 1,3-dipole, such as in 

the case of 1-diazopropan-2-one (5), the total distortion energies are similar to those of the 

analogous azido group (6), and interaction energies begin to determine relative reactivities (see 

SI). This is expected from the distortion-interaction analysis, as strong interactions in stabilized 

starting materials are often lost in the transition state, simultaneously increasing both distortion 

and interaction energies (Figure 1.3.8).  

In this case, delocalization of the carbon lone pair of the diazo group (5) into the carbonyl 

π* (78.1 kcal/mol) is traded for delocalization into the forming C-C bond. While a large energy 

must be paid to turn off interactions in the starting material (distortion energy), stabilization is 

gained via bond formation (interaction energy). The distortion energy of acetyl azide 6 is similar 

to that of diazopropanone, despite a higher degree of bending (~139° vs ~145°) in the reaction 

with methyl vinyl ketone. This stems from the weaker nN !σ*C=O hyperconjugative interaction 

(9.1 kcal/mol) that must be sacrificed in the TS, while the π-conjugation is maintained. 

Decreased distortion energies without pre-distortion: As stated above, ~80% of the distortion 

energy comes from the 1,3-dipole.149 As the approach of SPAAC focuses on decreased distortion 
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energies of the dipolarophile (the reacting partner that only contributes ~20% of the overall 

barrier),174 diazo group cycloadditions provide the opportunity of directly decreasing dipole 

distortion energies without pre-distortion of our starting compounds.  

While it has been shown that distortion-interaction analysis is a better descriptor of 

reactivity than ground state FMO gaps, it does not provide the “back of the envelope” predicting 

power provided by the well-established FMO approach.162-166 Additionally, the two are 

intricately tied, thus one cannot be evaluated without the other. For simplicity, our subsequent 

discussion will focus on the differences of ground state FMO energies of the diazo and azides 

dipoles, as well as the two approaches of strain and electronic activation. 

The decreased distortion energies result from the higher HOMO of diazo compounds 

relative to analogous azides.175 This leads to an earlier transition state, where less bending is 

required to allow for sufficient interactions towards bond formation. Despite an earlier, less 

synchronous TS, larger interaction energies are also observed relative to azide dipoles.  

As the diazoacetamide 1 has been shown to endure cellular metabolism, this alternate 

approach can provide increased reaction rates without compromising selectivity. This is in stark 

contrast to the high amount of strain (~20 kcal/mol for c) associated with the LUMO lowering 

strategy of distortion acceleration. 

In all cases, the HOMO is raised substantially upon diazotization (Figure 1.3.7). For the 

transformation from the carbamoyl azide 4 to the diazoacetamide 1, an increase of ~25 kcal/mol 

is observed. Even from the nonconjugated methyl azide 10 to diazoacetamide 1, an increase of 

almost 20 kcal/mol is observed. 

In contrast, increasing strain by almost 20 kcal/mol from 2-butyne a to cyclooctyne c 

leads to only ~5 kcal/mol decrease in the LUMO energy of the alkyne. The strategy of electronic 
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activation provides much larger effects, where the LUMO of methyl vinyl ketone j is ~35 

kcal/mol lower than propene p.  

Marcus Analysis: Also explored was the potential Dimroth-Bronsted-Marcus relationship, 

correlating kinetic reactivity to thermochemistry.176-179 An adaptation of the Marcus equation, 

utilizing electronic energies rather than free energies (Equation 1), has proven useful in exploring 

electronic effects governing chemical transformations.180-182 The last term can be neglected in 

most cases, unless the reaction is sufficiently exothermic or the barrier is relatively small. The 

intrinsic barrier (ΔE‡
0) is the reaction barrier of a hypothetical thermoneutral reaction.  

 

 

 

In a set of reactions with similar intrinsic barriers, equation 1 reduces to 

ΔΔE‡=1/2ΔΔErxn—the assumption made in the empirically derived Bell-Evans-Polyani 

relationship.183,184 It was previously shown that for 1,3-dipolar cycloadditions there was a general 

decrease in the activation barrier for more exothermic reactions, but the ΔΔE‡=1/2ΔΔErxn 

relationship was not general amongst all cycloadditions examined.149 

Interestingly, for diazonium betaine dipolar cycloadditions with ethylene, this 

relationship was observed.149 However, the same dipoles did not display the linear correlation in 

the cycloaddition with acetylene, as the diazomethane cycloadditions do not lead to aromatic 

products. This results in similar barrier heights, despite largely different reaction energies. In 

addition to the complications arising from formation of aromatic and non-aromatic products, it is 

well documented that alkyne π-bonds benefit from kinetic stability, yet form stronger bonds and 
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are often more exothermic than their alkene analogues.185,186 As a result, alkene and alkyne 

reactions—despite striking similarity—have largely different intrinsic barriers.  

As our focus is on the difference in reactivity between diazo groups and azides in the 

cyloadditions with different alkene dipolarophiles (here we omit cyclooctyne from the discussion 

to avoid complications discussed above), a case where a general Dimroth-Bronsted-Marcus 

relationship was previously observed for ethylene as a dipolarophile, we wished to examine the 

effects of substitution.  

When all cycloadditions from Figure 1.3.3 and Tables S1.3.1&1.3.3 (minus OCT) are 

plotted, no correlation is observed (R2=0.27, see SI). Separating the diazo and azide dipoles gives 

even worse correlation (R2=0.23 and 0.0003, respectively). Interestingly, plotting the electron-

deficient alkenes j & o and electron-neutral/rich alkenes f, p, q separately gives much better 

correlation (Figure 1.3.9), especially for diazo cycloadditions (R2=0.98 and 0.92, respectively). 

The lowered barriers of electron-deficient alkenes displaying similar reaction energies and the 

steeper slope suggest that the intrinsic reaction barriers are much lower for these electronically 

matched cycloadditions, a result of selective TS stabilization128,138,139,181 This also illustrates the 

dangers of making the assumption that intrinsic reaction barriers are similar, thus simplifying the 

Marcus relationship to ΔΔE‡=1/2ΔΔErxn.187 

Despite forming similar bonds, substituent effects render intrinsic barriers drastically 

different (see SI) as a result of strengthened stereoelectronic interactions with high-energy 

incipient bonds. Notably, the differences in intrinsic barriers between the two sets of reactions 

for diazo group cyloadditions are much larger (≥10 kcal/mol) than for azido group 

cycloadditions (~4-5 kcal/mol), as a result of the larger effects of substituents in the former. 
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Solvent Effects: Reactions insensitive to—and even accelerated by—water are of particular 

interest for green chemistries188 and is a tenet of click chemistry.28 While insensitivity to water is 

a requirement for chemical biology, selective rate-acceleration in aqueous environments can be 

used to obtain greater selectivities. 

The notion of little to no solvent effects on cycloaddition rate189,190 has long since been 

abandoned.103 Experimental191,192 and theoretical102,193,194 reports show that not only aggregation, 

but also TS state stabilization via H-bonding are responsible for enhanced rates in water. 

In addition to previous reports by our lab, we have observed larger solvent effects and 

rate increases in aqueous conditions for the diazo group than for the azide (see SI). It was 

previously speculated this is due to greater charge transfer in the TS as a result of the nature of 

diazo group cycloadditions,45 but a thorough computational investigation was not performed. 

Solvation corrections using both acetonitrile and water gave similar values (see SI). As 

the IEFPCM solvation model does not explicitly include nonelectrostatic contributions such as 

H-bonding, it should be considered as the first approximation of solvation effects.195-197 This is 

especially important when explicit H-bonding can lead to large stabilization of the TS.193 Effects 

of explicit H-bonding on reaction barriers were examined (see SI). To simplify calculations, we 

focused our attention on the extent of charge transfer in the transition state. 

We calculated NBO charges on reacting fragments in the TS and found a much larger 

degree of charge transfer in the diazo cycloadditions (Table 1.3.2).163 This indicates a more polar 

TS, and thus larger rate enhancements due to polar solvents. This is noteworthy, as the diazo 

group is conjugated to the amide, while the azide is not. 

The charge transfer in cycloadditions with aliphatic strained systems is much less than 

electron-deficient alkenes (Figure 1.3.10). Cycloadditions with DIBAC, however, display a 
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transfer of 0.14 e- from the diazo group, while only a transfer of 0.08 e- from the azido group 

(Figure 1.3.2). Recently reported inverse demand cycloadditions of azides with BCN show 

similar magnitude of charge transfer in the TS, but from BCN to electron-poor azides (0.22-0.26 

e-).52 These findings can be used to one’s advantage when designing reactions in aqueous 

environments. 

Lastly, we considered applications of this interesting reactivity within the arena of 

chemical biology. The ethyl acrylate moiety is too reactive for any biological application,134 

however the reduced reactivity of the acrylamide has allowed its metabolic incorporation as an 

unnatural amino acid into proteins such as GFP.198 While the cycloaddition between the diazo 

group and the acrylamide is much slower kinetically than the more reactive nitrile-imine,199 

within a biological context the diazo group can serve as a more selective reaction partner. 

Ultimately further inspired, we considered other similar groups including those found in nature 

that would provide good substrates for cycloaddition specifically with the diazo group.  

An obvious choice was dehydroalanine (Dha), a naturally occurring amino acid found 

primarily in microbial peptides including Class I bacteriocin antibiotics. In mammalian tissues 

dehydroalanine exists only transiently as an enzymatic intermediate, but this interesting residue 

can artificially be generated from a cysteine providing a means for vastly useful site-selective 

protein modifications following the addition of functionalized thiolates.200-202  

Dehydroalanine possesses two electronically modulating groups bonded to the alkene. 

We hypothesized this functionality might create a better substrate for the diazo group to undergo 

cycloaddition with. Reactivity was tested using an O-acyl Dha fragment, and the kinetics indeed 

exceeded that of previously tested alkenes (Figure 1.3.11). The additional electronic modulation 

induced by the second substituted group did make Dha an excellent substrate. This was 
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corroborated with computational investigations (SI)—the ΔE‡ was found to be 13.8 kcal/mol 

with 0.217 e- transfer in the TS. 

Inspired by this reactivity, with additional consideration of the biological endurance of 

the diazo group, we wished to investigate Dha-containing substrates found to persist in nature. 

Dehydroalanine is common in many lantibiotics including the preeminent member of the class, 

nisin.203-206 Nisin is well suited for testing the biological compatibility for cycloaddition with the 

diazo group as it contains three potentially reactive residues. This includes two dehydroalanine 

(Dha) and one dehydrodrobutyrine (Dhb), but nisin also displays a myriad of other more 

common peptidic functional groups (see SI). We combined a crude mixture of denatured protein 

solids containing 2.5% mass of nisin with a novel compound containing a diazoacetamide moiety 

installed pendant to a pegylated biotin. We observed a change in mass by MALDI that 

corresponded to labeling of the peptide by cycloaddition with the biotinylated diazo compound 

(see SI). Installation of the biotin molecule—which has a high affinity for streptavidin—

facilitates purification and could be used for isolation and discovery of novel Dha-containing 

peptides with potential antibacterial activity.  

 

1.3.3 Conclusions 

Here we report a new means to differentiate reactivity between very similar 1,3-dipoles. 

While strain is necessary to obtain sufficient reaction kinetics for cycloadditions of azides, a 

decrease in the energy required to distort the diazo group to its TS geometry allows for relatively 

rapid reactivity without destabilization associated with pre-distortion. 

Diazo group cycloadditions with electronically activated alkenes display reaction kinetics 

competitive with first generation SPAAC. The extent of charge transfer in the TS allows for 
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large rate enhancements in aqueous conditions. As a result, highly selective reactivity is 

observed via electronic tuning that cannot be accomplished via strain activation. 

These insights paved the way for cycloadditions to the naturally occurring amino acid, 

dehydroalanine. Functionalization of nisin was possible without prior modification or 

incorporation of a chemical reporter functional group. To our knowledge, this is the only 

example of synthetic modification of a naturally occurring amino acid via a direct cycloaddition 

reaction. 

We have additionally provided a means to selective reactivity between compact diazo 

groups and alkyl azides at rates comparable to strain-promoted diazo-alkyne cycloadditions. 

These insights can provide the theoretical groundwork for further optimization to allow for rapid 

reactivity and selectivity between diazo compounds and the more-commonly utilized azide.   

 

1.3.4 Materials and Methods 

Silica gel (40 µm) was from SiliCycle. All reagent-grade materials were from Sigma–Aldrich 

(St. Louis, MO) and were used without further purification, Nisin from Lactococcus lactis was 

also from Sigma–Aldrich and used directly. Slide-A-Lyzer Dialysis cassettes (2K MWCO) were 

purchased from Life Technologies (Grand Island, NY). 

 

General Experimental 

Solvent removal. The phrase “concentrated under reduced pressure” refers to the removal of 

solvents and other volatile materials using a rotary evaporator at water aspirator pressure (<20 

torr) while maintaining the water-bath temperature below 40 °C. Residual solvent was removed 
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from samples at high vacuum (<0.1 torr). The term “high vacuum” refers to vacuum achieved by 

mechanical belt-drive oil pump. 

 

Instrumentation. 1H, 13C NMR spectra for all compounds were acquired on Bruker 

Spectrometers in the NMRFAM at the University of Wisconsin–Madison operating at operating 

at 400, 500, or 750 MHz for 1H and 126 or 189 MHz for 13C. The chemical shift data are 

reported in units of	
  δ (ppm) relative to residual solvent or TMS. Electrospray ionization (ESI) 

mass spectrometry was performed with a Micromass LCT at the Mass Spectrometry Facility in 

the Department of Chemistry at the University of Wisconsin–Madison. Absorbance 

measurements were made with an Infinite M1000 plate reader from Tecan (Männedorf, 

Switzerland). 

 

General Procedures. All reactions were performed at ambient temperature and air conditions 

unless specified otherwise. 

	
  

Kinetics 

General procedure for all kinetic experiments: 

The diazo-acetamide was dissolved in the appropriate organic or organic/aqueous solvent at a 

concentration of 40mM. In a clear 96-well plate 50mL the diazo-acetamide stock solution was 

combined with 50mL of a stock solution of the dipolarophile (5eq) to produce a final 

concentration of 20mM for the diazo. Absorbance was measured using an infinite M1000 plate 

reader from Tecan, monitoring at the absorbance maximum for the diazo-acetamide of 388nm 

(Figure S1). Multiple readings were taken from each well (circle (filled) 3x3) every 60s at 
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ambient temperature, followed by an orbital mixing of 10s. All assays were performed in 

triplicate with simlilar results and an average of these values was applied for rate determinations. 

The formation of final products was confirmed by mass spectroscopy and NMR-spectroscopy 

from identical assays. A graphical plot of the decrease in absorbance of the diazo-acetamide 

group was converted to a plot of concentration as a function over time (Figure S2). Pseudo-first 

order kinetics were determined from the slope, converted to M-1/s-1. 

 

Competition reactions 

N-benzyl-2-diazoacetamide24 (1)(3.5 mg, 0.02 mmol), and N-benzyl-2-azidoacetamide24 (2) (3.8 

mg, 0.02 mmol) were dissolved in CH3CN (0.5 mL) with stirring, and ddH2O was added (0.5 

mL). To the solution, ethyl acrylate (i) (0.011 mL, 0.1 mmol) was added and the reaction mixture 

was stirred 24 h. The reaction mixture was then concentrated to dryness under high vacuum, and 

analyzed by 1H-NMR. Spectral data was identical when the procedure was replicated with the 

reaction time extended to 72 h. 

 

N-benzyl-2-diazoacetamide (1) (3.5 mg, 0.02 mmol), and N-benzyl-2-azidoacetamide (2) (3.8 

mg, 0.02 mmol) were dissolved in CH3CN (0.5mL), and ddH2O was added (0.5mL). To the 

resulting solution, DIBAC-amine (0.055 mg, 0.02 mmol) was added and stirred 24 h at r.t. The 

reaction mixture was then concentrated to dryness under high vacuum, and analyzed by 1H-

NMR. 
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Scheme 1.3.1 1,3-dipolar cycloadditions of diazoacetamides 
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Scheme 1.3.1. (A) Metabolic incorporation of the diazoacetamide and labeling by cycloaddition 

on a cell when appended to an N-acetylmannosamine. (B) General reaction for 1,3-dipolar 

cycloadditions of diazoacetamides with electronically activated alkenes and alkynes to produce 

the 3,5 disubstituted pyrazoline or pyrazole. 
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Scheme 1.3.2 A competition reaction between 1 eq. each of diazo (R=Bn), azide (R=Bn), 

and DIBAC 
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Scheme 1.3.2. A competition reaction between 1 eq. each of the diazo group (R=Bn), the azide 

(R=Bn), and DIBAC performed in 50:50 CH3CN:H2O failed to afford adequate selectivity for 

the faster diazo group reactant.  
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Figure 1.3.1 Comparison of activation via strain or electron-withdrawing substituents for 

1,3-dipolar cycloadditions of carbamoyl azide and diazoacetamide – R = Me 
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Figure 1.3.1. Comparison of activation via strain (above) or electron-withdrawing substituents 

(below) for 1,3-dipolar cycloadditions of carbamoyl azide (squares) and diazoacetamide (circles) 

– R = Me. Strain energy calculated from the isodesmic equation found in reference 207. 

Activation energies calculated at the M06-2X/6-31+G(2d,p) level of theory. Energies include 

solvation corrections (water) on gas-phase geometries using IEFPCM model (radii=UFF). All 

energies in kcal/mol. 
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Scheme 1.3.3 Competition of diazoacetamide (1, 1 eq.) and azide (2, 1 eq). with unstrained 

dipolarophiles 
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Scheme 1.3.3. Competition of diazoacetamide (1, 1 eq.) and azide (2, 1 eq). with unstrained 

dipolarophiles (5 eq.) provides selectivity for the diazo group. Conditions: 50:50 CH3CN:H2O, 

r.t., 24h. (SI-16) 

	
    



	
  

	
  
	
  

116	
  

Table 1.3.1 Calculated activation energies and experimentally determined pseudo-first 

order rate constants 
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Table 1.3.1. Calculated activation energies and experimentally determined pseudo-first order 

rate constants for 1,3-dipolar cycloadditions of in 50:50 H2O:CH3CN at room temperature. aRate 

constants measured 50:50 CH3CN:H2O in M-1s-1. bRate determined in CD3CN.31 cMe used for Et 

or iPr and cyclooctyne used for the derivatized OCT computationally.  
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Scheme 1.3.4 Synthesis and intramolecular competition reaction 
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Scheme 1.3.4: Synthesis and intramolecular competition reaction using a dual-linker molecule 

containing pendant diazo group and azido functionalities. 
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Figure 1.3.2 Transition state geometries, activation energies, and distortion-interactions 

energies 
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Figure 1.3.2. Transition state geometries, activation energies, and distortion-interactions 

energies calculated at the M06-2X/6-31+G(2d,p) level of theory. Energies and NBO charges on 

dipolarophiles (italics) include solvation corrections (water) on gas-phase geometries using 

IEFPCM model (radii=UFF). All energies in kcal/mol. 
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Figure 1.3.3 Substituent effects on activation energies of azido and diazo group 

cycloadditions 
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Figure 1.3.3. Substituent effects on activation energies of azido and diazo group cycloadditions 

calculated at the M06-2X/6-31+G(2d,p) level of theory. Energies include solvation corrections 

(water) on gas-phase geometires using IEFPCM model (radii=UFF). All energies in kcal/mol. 

See SI for substituent effects on cycloadditions with other dipoles. 
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Figure 1.3.4 Exemplary transition-state geometries of azide and diazo group cycloadditions 
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Figure 1.3.4. Exemplary transition-state geometries of azide and diazo group cycloadditions 

calculated at the M06-2X/6-31+G(2d,p) level of theory. Energies and NBO charges on 

dipolarophiles (italics) include solvation corrections (water) on gas-phase geometries using 

IEFPCM model (radii=UFF). All energies in kcal/mol.   
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Figure 1.3.5 Activation energies vs. FMO gap and distortion energies 
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Figure 1.3.5. Activation energies vs. FMO gap (top) and distortion energies (bottom) for 

cycloadditions from Fig 1.3.4 and Table S1.3.3 (see SI). FMO gap is defined by the smaller of 

the NED/IED HOMO-LUMO energy difference. 
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Figure 1.3.6 Distortion-interaction analysis for selected cycloadditions 
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Figure 1.3.6. Distortion-interaction analysis for selected cycloadditions calculated at the M06-

2X/6-31+G(2d,p) level of theory. Energies include solvation corrections (water) on gas-phase 

geometries using IEFPCM model (radii=UFF). All energies in kcal/mol. 
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Figure 1.3.7 Comparison of the strategies of predistortion acceleration and electronic 

tuning 
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Figure 1.3.7. Comparison of the strategies of predistortion acceleration and electronic tuning. 

All orbital energies calculated at the M06-2X/6-31+G(2d,p) level of theory, including solvation 

corrections (water) on gas-phase geometries using IEFPCM model (radii=UFF). Contained 

within cycloalkynes are strain energies (kcal/mol) calculated as in Figure 1.3.2.  
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Figure 1.3.8 Comparison of bending in diazopropanone and acetyl azide 
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Figure 1.3.8. Comparison of bending in diazopropanone (top) and acetyl azide (bottom) and 

effects on (hyper)conjugation. The larger decrease in conjugation in diazopropanone leads to 

similar distortion energies despite less bending. Geometries for 5-j-TS and 6-j-TS. 
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Figure 1.3.9 Activation energies vs. reaction energies 
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Figure 1.3.9. Activation energies vs. reaction energies separated by dipoles and activated and 

non-activated dipolarophiles for cycloadditions from Fig 1.3.5. and Table S1.3.3. Cyclooctyne is 

excluded for reasons discussed in the text. For alternate fitting, see SI. 
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Table 1.3.2 NBO charge on dipole in the TS 
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Table 1.3.2. NBO charge on dipole in the TS. 
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Figure 1.3.10 Electrostatic potential maps 
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Figure 1.3.10. Electrostatic potential maps calculated at the B3LYP/6-31G(d) level of theory on 

M06-2X/6-31+G(2d,p) geometries. NBO charges (italics) calculated at the M06-2X/6-

31+G(2d,p) level of theory, including solvation corrections (water) on gas-phase geometries 

using IEFPCM model (radii=UFF).  
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Figure 1.3.11 Pseudo-first order rate constant measured in 50:50 CH3CN:H2O at r.t. in M-

1s-1 
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Figure 1.3.11. Pseudo-first order rate constant measured in 50:50 CH3CN:H2O at r.t. in M-1s-1. 
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Figure 1.3.S1 Absorbance maximum (388 nm) of the diazo-acetamide 
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Figure 1.3.S1. Absorbance maximum (388 nm) of the diazo-acetamide (1).  
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Figure 1.3.S2 Representative kinetic plot for the absorbance assay 
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Figure 1.3.S2. Representative kinetic plot for the absorbance assay. 
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Figure 1.3.S3 Rate enhancement observed in aqueous cosolvent conditions 
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Figure 1.3.S3. Reaction rates determined for 1:1 v/v of organic solvent:ddH2O where 

enhancement was observed in all aqueous cosolvent conditions relative to the reaction rates only 

in organic solvent. Acetonitrile produced the fastest rates without cosolvent, and was chosen for 

subsequent assays. The addition of water generated an average increase of 39% in rates with the 

conditions tested above. 
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Figure 1.3.S4 Comparison of activation via strain or electon-withdrawing substituents 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

  



	
  

	
  
	
  

149	
  

 

 

 

 

 

 

 

 

 

Figure 1.3.S4. Comparison of activation via strain (left) or electon-withdrawing substituents 

(right) for 1,3-dipolar cycloadditions of methyl azide (squares) and diazoethane (circles). Strain 

energy calculated from the isodesmic equation described by Bach.207 Activation energies 

calculated at the M06-2X/6-31+G(2d,p) level of theory. Energies include solvation corrections 

(water) on gas phase geometries using IEFPCM model (radii=UFF). All energies in kcal/mol. 
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Figure 1.3.S5 Substituent effects on activation energies of azido and diazo group 

cycloadditions 
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Figure 1.3.S5. Substituent effects on activation energies of azido and diazo group cycloadditions 

calculated at the M06-2X/6-31+G(2d,p) level of theory. Energies include solvation corrections 

(water) on gas phase geometries using IEFPCM model (radii=UFF). All energies in kcal/mol. 
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Table 1.3.S1 Gas phase activation energies of azide and diazo group cycloadditions 

 
 
 
 
 
 
 
 
 
 

 

 

 
 

  

  
    

 
 

 ΔE≠  ΔG≠
 ΔE≠  ΔG≠

 ΔE≠  ΔG≠
 ΔE≠  ΔG≠

 ΔE≠  ΔG≠
 ΔE≠  ΔG≠

 
7 16.5 27.7 18.1 29.6 22.1 33.5 11.6 23.0 8.5 20.6 11.0 22.6 
8 22.1 33.0 23.1 34.3 22.9 34.0 21.0 32.4 18.4 30.0 14.8 26.0 
9 14.2 26.3 15.7 28.2 19.5 32.3 8.8 21.3 6.0 18.7 8.3 20.6 

10 20.3 31.9 21.2 33.2 21.7 33.8 17.8 30.3 15.9 28.1 13.1 24.8 
1 19.2 30.9 20.2 32.8 23.0 35.9 15.0 27.2 11.4 23.7 12.8 25.3 
4 24.1 34.9 24.4 35.9 23.5 34.6 24.1 35.7 20.6 32.3 16.4 28.4 
5 20.7 31.9 21.9 33.5 24.7 36.9 17.6 29.2 13.8 25.8 14.5 26.7 
6 23.2 34.9 23.6 36.3 22.6 35.0 23.7 36.9 19.6 32.7 15.3 27.8 
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Table 1.3.S1. Gas phase activation energies of azide and diazo group cycloadditions calculated 

at the M06-2X/6-31+G(2d,p) level of theory. All energies in kcal/mol. 
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Table 1.3.S2 Gas phase reaction energies of azide and diazo group cycloadditions 

 

 

 

 

 

 
 

  

  
    

 
 

 ΔE  ΔG ΔE  ΔG ΔE  ΔG ΔE  ΔG ΔE  ΔG ΔE  ΔG 
7 -35.8 -23.7 -35.5 -23.5 -30.0 -17.3 -31.0 -19.0 -34.8 -22.5 -61.2 -48.3 
8 -25.2 -13.7 -25.7 -13.6 -25.8 -13.4 -19.5 -7.5 -24.1 -12.0 -75.4 -62.6 
9 -38.6 -25.9 -38.1 -24.8 -37.1 -18.1 -34.1 -20.9 -37.6 -24.1 -63.5 -49.3 

10 -29.3 -16.9 -28.7 -15.6 -29.3 -16.0 -25.3 -12.5 -28.4 -15.2 -81.1 -67.3 
1 -33.8 -21.5 -33.8 -20.5 -22.1 -9.2 -28.3 -15.6 -32.3 -19.1 -59.2 -45.5 
4 -21.4 -9.8 -21.2 -8.6 -23.8 -11.0 -14.5 -2.3 -20.9 -8.2 -66.3 -53.0 
5 -28.3 -16.8 -28.2 -16.0 -19.2 -6.5 -23.1 -10.9 -27.2 -16.2 -52.9 -39.8 
6 -23.7 -11.1 -23.2 -9.7 -24.2 -10.1 -16.8 -4.2 -23.2 -9.9 -64.8 -49.9 
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Table 1.3.S2. Gas phase reaction energies of azide and diazo group cycloadditions calculated at 

the M06-2X/6-31+G(2d,p) level of theory. All energies in kcal/mol. 
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Table 1.3.S3 Activation energies of azide and diazo group cycloadditions 

 

 

 

 

 

 

 

 
 

  

  
      

 ΔE≠  ΔG≠
 ΔE≠  ΔG≠

 ΔE≠  ΔG≠
 ΔE≠  ΔG≠

 ΔE≠  ΔG≠
 ΔE≠  ΔG≠

 
7 16.9 28.0 18.8 30.2 22.9 34.2 9.4 20.9 8.2 20.3 12.5 24.1 
8 23.3 34.2 24.3 35.6 24.3 35.2 20.4 31.6 18.7 30.1 16.7 27.8 
9 14.5 26.4 16.3 28.6 20.4 33.1 6.7 19.1 5.6 18.3 9.7 21.9 

10 21.1 32.7 22.0 34.1 23.0 35.0 19.9 32.3 15.8 27.9 14.6 26.3 
1 19.5 31.1 20.8 32.4 24.9 37.6 14.2 25.9 12.3 26.0 13.9 26.1 
4 23.8 35.6 24.0 34.5 23.1 35.3 23.4 34.4 20.8 33.5 16.9 29.2 
5 21.4 32.5 22.7 34.1 26.5 38.7 17.1 28.5 15.1 26.7 15.8 27.9 
6 22.5 33.0 22.6 36.1 21.5 34.6 22.3 34.2 19.8 32.2 15.4 28.6 
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Table 1.3.S3. Activation energies of azide and diazo group cycloadditions calculated at the M06-

2X/6-31+G(2d,p) level of theory. Energies include solvation corrections (water) on gas phase 

geometries using IEFPCM model (radii=UFF). All energies in kcal/mol. 
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Table 1.3.S4 Reaction energies of azide and diazo group cycloadditions 

 

 

 

 

 

 
 
 
  

  
     

 
 ΔE  ΔG ΔE  ΔG ΔE  ΔG ΔE  ΔG ΔE  ΔG ΔE  ΔG 

7 -37.4 -25.4 -37.1 -25.1 -31.5 -18.8 -31.9 -19.8 -34.5 -22.3 -62.5 -49.5 
8 -26.8 -15.3 -27.1 -15.0 -26.2 -13.8 -20.7 -8.8 -23.9 -12.0 -77.8 -64.9 
9 -40.1 -27.5 -39.6 -26.5 -33.0 -19.5 -34.7 -21.7 -37.1 23.7 -64.5 -50.4 

10 -30.9 -18.5 -30.4 -17.2 -30.1 -16.7 -25.5 -12.6 -28.1 -15.1 -83.5 -69.7 
1 -32.9 -20.6 -32.3 -20.5 -23.9 -10.8 -26.0 -12.3 -29.6 -17.2 -56.3 -42.6 
4 -26.7 -15.0 -26.1 -13.5 -26.5 -13.6 -18.3 -6.3 -23.4 -11.1 -70.3 -57.0 
5 -27.7 -16.5 -27.5 -15.4 -20.7 -8.0 -21.6 -9.7 -25.0 -12.4 -51.4 -38.3 
6 -29.4 -17.1 -28.7 -15.4 -27.6 -13.8 -21.0 -8.2 -26.3 -11.9 -68.7 -54.3 
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Table 1.3.S4. Reaction energies of azide and diazo group cycloadditions calculated at the M06-

2X/6-31+G(2d,p) level of theory. Energies include solvation corrections (water) on gas phase 

geometries using IEFPCM model (radii=UFF). All energies in kcal/mol. 
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Figure 1.3.S6 Transition geometries of azide and diazo group cycloadditions 
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Figure 1.3.S6. Transition geometries of azide and diazo group cycloadditions calculated at the 

M06-2X/6-31+G(2d,p) level of theory. NBO charges on dipolarophiles (italics) include solvation 

corrections (water) on gas phase geometries using IEFPCM model (radii=UFF). All energies in 

kcal/mol given in Tables 1.3.S1 & 1.3.S3. 
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Figure 1.3.S7 Orbitals calculated at the HF/6-31G(d) level of theory 
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Figure 1.3.S7. Orbitals calculated at the HF/6-31G(d) level of theory. Energies obtained at the 

M06-2X/6-31+G(2d,p) level of theory, including single point solvation corrections (water) using 

IEFPCM. 
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Figure 1.3.S8 Activation energies vs. FMO gap for cycloadditions 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

  



	
  

	
  
	
  

165	
  

 

 

 

 

 

 

 

 

Figure 1.3.S8. Activation energies vs. FMO gap for cycloadditions from Fig 1.3.5 and Tables 

1.3.S1&1.3.3. FMO gap is defined by the smaller of the NED/IED HOMO-LUMO energy 

difference using HOMO+1 for IED diazo group cycloadditions when relevant. 
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Figure 1.3.S9 Distortion–interaction analysis for cycloadditions 
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Figure 1.3.S9. Distortion–interaction analysis for cycloadditions calculated at the M06-2X/6-

31+G(2d,p) level of theory. Energies include solvation corrections (water) on gas phase 

geometries using IEFPCM model (radii=UFF). All energies in kcal/mol. From left to right in 

each plot, the values are for ethylene, propene, methyl vinyl ether, acrylonitrile, methyl vinyl 

ketone, and cyclooctyne. Color coding is as follows: Blue=dipole distortion, red=dipolarophile 

distortion, green=interaction, purple=activation energy.  
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Figure 1.3.S10 Distortion–interaction analysis for experimentally investigated carbonyl 

series 
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Figure 1.3.S10. Distortion–interaction analysis for experimentally investigated carbonyl series 

calculated at the M06-2X/6-31+G(2d,p) level of theory. Energies include solvation corrections 

(water) on gas phase geometries using IEFPCM model (radii=UFF). All energies in kcal/mol. 

From left to right in each plot, the values are for methyl vinyl ketone, methyl acrylate, 

acrylamide, N-methylacrylamide, and N,N-dimethylacrylamide. Blue=dipole distortion, 

red=dipolarophile distortion, green=interaction, purple=activation energy. 
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Figure 1.3.S11 Activation energies vs. reaction energies and separated by dipoles 
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Figure 1.3.S11. Activation energies vs. reaction energies (left) and separated by dipoles (right) 

for cycloadditions from Tables 1.3.S1 & 1.3.3. Cyclooctyne is excluded for reasons discussed in 

the main manuscript.  
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Table 1.3.S5 Intrinsic reaction bariers of azide and diazo group cycloadditions 

 

 

 

 

 

 

	
  
	
   	
  

  
    

 
 

 ΔE‡
0 ΔE‡

0 ΔE‡
0 ΔE‡

0 ΔE‡
0 ΔE‡

0 
7 32.9 34.9 37.0 22.5 22.1 37.2 
8 35.4 36.6 36.2 29.9 29.4 47.7 
9 31.3 33.1 35.0 20.4 19.8 34.4 

10 34.8 35.6 36.5 31.4 28.1 47.1 
1 34.0 35.1 35.9 25.5 24.9 36.6 
4 35.9 35.9 35.1 31.9 31.4 45.2 
5 33.8 35.1 36.1 26.8 26.1 37.0 
6 35.7 35.5 33.9 31.9 31.6 42.9 
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Table 1.3.S5. Intrinsic reaction bariers of azide and diazo group cycloadditions calculated at the 

M06-2X/6-31+G(2d,p) level of theory. Energies include solvation corrections (water) on gas 

phase geometries using IEFPCM model (radii=UFF). All energies in kcal/mol. 
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Figure 1.3.S12 Implicit and explicit solvation for azide and diazo group cycloadditions with 

methyl vinyl ketone 
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Figure 1.3.S12. Implicit and explicit solvation for azide and diazo group cycloadditions with 

methyl vinyl ketone calculated at the M06-2X/6-31+G(2d,p) level of theory. Energies on the left 

include solvation corrections (acetonitrile or water) on gas phase geometries using IEFPCM 

model (radii=UFF). All energies in kcal/mol. 
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Figure 1.3.S13 Electrostatic potential maps 
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Figure 1.3.S13. Electrostatic potential maps calculated at the B3LYP/6-31G(d) level of theory 

on M06-2X/6-31+G(2d,p) geometries. Activation energies and NBO interaction energies 

calculated at the M06-2X/6-31+G(2d,p) level of theory. Energies include solvation corrections 

(water) on gas phase geometries using IEFPCM model (radii=UFF). All energies in kcal/mol. 
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1.3.6 Synthesis  

	
  
	
  

	
   	
   	
   	
  
	
  

	
  
N-benzyl-2-diazoacetamide (1) was prepared from N-benzyl-2-azidoacetamide (2) according 

to a previously reported method and was confirmed with identical spectroscopic data.24 

	
  

 

	
  

	
  
	
  
	
  

Synthesis of ethyl 5-(benzylcarbamoyl)-4,5-dihydro-1H-pyrazole-3-carboxylate: N-benzyl-2-

diazoacetamide (1) (3.5 mg, 0.02 mmol) was dissolved in CH3CN (0.5 mL) with stirring, and 

ddH2O was added (0.5 mL). Ethyl acrylate (i) (0.011 mL, 0.1 mmol) was added and the reaction 

mixture was stirred O/N. The resulting solution was concentrated to dryness under high vacuum 

to provide the desired pyrazoline product as a mixture of isomers (5.5 mg, quant.) Spectral 

characterization is provided for the major isomer as observed (see HSQC and HMBC for isomer 

determination): 1H NMR (500 MHz, CD3CN) δ 7.37 – 7.25 (m, 6H), 7.12 (d, J = 3.0 Hz, 1H), 
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4.42 (dd, J = 9.7, 3.0 Hz, 1H), 4.38 (d, J = 6.2 Hz, 2H), 4.23 (q, J = 7.1 Hz, 2H), 3.25 (dd, J = 

17.4, 12.9 Hz, 1H), 2.95 (ddd, J = 17.4, 9.5, 1.2 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H). 13C NMR (126 

MHz, CD3CN) δ 172.42, 163.07, 143.40, 140.05, 129.43, 128.28, 128.02, 63.79, 61.67, 43.49, 

37.03, 14.49. HRMS (ESI) calcd. for C14H17N3O3 [M+H]+ 276.1343, found 276.1348. 

 

 

 

	
  
	
  
	
  

Synthesis of N5-benzyl-N3-isopropyl-pyrazoline-3,5-dicarboxamide: N-benzyl-2-

diazoacetamide (1)  (3.5 mg, 0.02 mmol) was dissolved in CH3CN (0.5 mL) with stirring, and 

ddH2O was added (0.5 mL). N-isopropyl acrylamide (h) (0.011 mL, 0.1 mmol) was added and 

the reaction mixture was stirred 4 h. The resulting solution was concentrated to dryness, and 

purified by preparatory chromatography on silica gel (50% v/v EtOAc in hexanes) and 

concentrated to provide the desired product as a mixture of isomers 1:0.72 (5.5 mg, 96%). 1H 

NMR (500 MHz, CD3CN) δ 7.66 (ddd, J = 49.6, 5.7, 3.3 Hz, 0.7H), 7.48 – 7.40 (m, 1H), 7.36 – 

7.22 (m, 8.5H), 6.76 – 6.66 (m, 2H), 6.59 (s, 1H), 4.41 (d, J = 6.4 Hz, 2H), 4.36 (d, J = 6.1 Hz, 

1.4H), 4.31 (ddd, J = 12.8, 9.4, 3.6 Hz, 0.7H), 4.22 (ddd, J = 12.5, 9.2, 3.4 Hz, 1H), 4.18 (m, 

0.7H), 4.01 (ddt, J = 13.2, 8.3, 6.6 Hz, 0.7 H), 4.01 (ddt, J = 13.2, 8., 6.6 Hz, 1H), 3.24 (dt, J = 
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17.6, 12.2 Hz, 1.7H), 2.89 (dddd, J = 17.7, 9.1, 3.4, 1.3 Hz, 1.7H), 1.14 (dd, J = 6.7, 1.1 Hz, 

4.2H), 1.10 (dd, J = 6.6, 2.1 Hz, 6H). 13C NMR (126 MHz, CD3CN) δ 172.56, 171.43, 

168.38,162.54, 161.53, 148.45, 147.93, 140.43, 140.10, 133.18, 132.17, 129.62, 129.34, 129.31, 

128.18, 128.16, 127.90, 127.85, 68.60, 63.36, 43.32, 43.06, 42.00, 41.80, 39.51, 37.01, 36.91, 

31.04, 29.57, 24.44, 23.59 22.58, 22.51, 22.47, 14.26, 11.25. HRMS (ESI) m/z calc’d for 

C14H17N3O3 [M+H]+ 289.1660, found 289.1656. 

 

 

 

	
  
	
  
	
  

Synthesis of ethyl 5-(benzylcarbamoyl)-1H-pyrazole-3-carboxylate: N-benzyl-2-

diazoacetamide (1) (3.5 mg, 0.02 mmol) was dissolved in CH3CN (0.5 mL) with stirring, and 

ddH2O was added (0.5 mL). Ethyl propiolate (j) (0.011 mL, 0.1 mmol) was added and the 

reaction mixture was stirred O/N. The resulting solution was concentrated to dryness under high 

vacuum to provide the product as a white solid (5.5 mg, quant.). 1H NMR (500 MHz, MeOD) δ 

7.38 – 7.19 (m, 6H), 4.56 (s, 2H), 4.38 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H). 13C NMR 

(126 MHz, MeOD) δ 139.97, 129.54, 128.53, 128.24, 109.35, 62.40, 43.84, 14.54. HRMS (ESI) 

m/z calc’d for C14H15N3O3 [M+H]+ 274.1187, found 274.1193. 
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Synthesis of N-benzyl-3-cyano-4,5-dihydro-1H-pyrazole-5-carboxamide: N-benzyl-2-

diazoacetamide (1) (3.5 mg, 0.02 mmol) was dissolved in CH3CN (0.5 mL) with stirring, and 

ddH2O was added (0.5 mL). Acrylonitrile (0.010 mL, 0.1 mmol) was added and the reaction 

mixture was stirred O/N. The reaction was concentrated to dryness under high vacuum to 

provide the product as a white solid (0.005 g, quant.). 1H NMR (500 MHz, CD3CN) δ 7.15 – 

7.02 (m, 6H), 6.96 (s, 1H), 4.25 – 4.18 (m, 1H), 4.14 (d, J = 6.1 Hz, 2H), 3.03 (dd, J = 17.1, 13.1 

Hz, 1H), 2.81 (ddd, J = 17.1, 9.4, 1.0 Hz, 1H). 13C NMR (126 MHz, CD3CN) δ 172.86, 141.59, 

131.14, 130.01, 129.77, 126.07, 117.21, 65.07, 45.28, 40.26. HRMS (ESI) m/z calc’d for 

C12H12N4O [M+H]+ 229.1084, found 229.1079. 
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Biotin-PEG2-azidoacetamide: Biotin-PEG2-iodoacetamide (0.010 g, 0.001 mmol) was 

dissolved in ddH2O (0.25 mL) with stirring and the solution was cooled to 00 C. Sodium azide 

(0.03g, 0.0836 mmol) was added, and the reaction mixture was allowed to warm to r.t. O/N. The 

reaction mixture was then concentrated to dryness. The resulting residue was triturated into 

DCM (5 mL) and filtered, and the filtrate was washed with DCM (5 mL). The combined 

organics were concentrated under reduced pressure to provide the biotin-PEG2-azidoacetamide 

conjugate as a high purity white solid (0.014 g, 98%) that was used without further purification. 

1H NMR (750 MHz, CDCl3) δ 7.16 (t, J = 5.8 Hz, 1H), 6.91 (s, 1H), 6.77 (t, J = 5.7 Hz, 1H), 

5.87 (s, 1H), 4.50 (dd, J = 7.8, 4.8 Hz, 1H), 4.30 (dd, J = 8.0, 4.7 Hz, 1H), 3.97 (s, 2H), 3.61 (s, 

3H), 3.57 (q, J = 5.2 Hz, 4H), 3.48 (q, J = 5.4 Hz, 2H), 3.46 – 3.38 (m, 1H), 3.13 (td, J = 7.3, 4.5 

Hz, 1H), 2.89 (dd, J = 12.9, 4.8 Hz, 1H), 2.74 (d, J = 12.8 Hz, 1H), 2.22 (t, J = 7.6 Hz, 2H), 1.75 

– 1.62 (m, 3H), 1.47 – 1.37 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 173.51, 167.26, 164.35, 

70.23, 70.08, 70.02, 69.67, 61.85, 60.34, 55.78, 52.59, 40.63, 39.33, 39.22, 36.13, 28.33, 28.19, 

25.72. HRMS (ESI) m/z calc’d for C18H31N7O5S [M+H]+ 458.2181, found 458.2185. 
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Biotin-PEG2-diazoacetamide: Biotin-PEG2-azidoacetamide (0.037 g, 0.08 mmol) was 

dissolved in an aqueous solution of THF (10% H2O v/v in THF) (0.75 mL) with stirring. To the 

solution, N-succinimidyl 3-(diphenylphosphino)propionate24 (0.03 g, 0.086 mmol) was added 

and the reaction mixture was stirred O/N. A saturated aqueous solution of NaHCO3 (1 mL) was 

added and the reaction mixture was stirred vigorously for 6 h. The reaction mixture was salted 

with NaCl (0.05 g) and extracted into DCM (6x 5 mL), and the combined organics were dried 

over NaSO4, and concentrated to a pale yellow solid. The residue was purified by 

chromatography over silica gel (10% v/v MeOH in DCM) to give the biotin-PEG2-

diazoacetamide conjugate as a pale yellow solid (0.023 g, 62%). 1H NMR (500 MHz, CDCl3) δ 

6.56 (s, 2H), 6.41 (s, 1H), 5.29 (s, 1H), 4.52 (dd, J = 7.8, 4.9 Hz, 1H), 4.33 (td, J = 5.1, 2.4 Hz, 

1H), 3.69 – 3.35 (m, 10H), 3.17 (td, J = 7.4, 4.7 Hz, 1H), 2.92 (dd, J = 12.8, 4.9 Hz, 1H), 2.74 (d, 

J = 12.9 Hz, 1H), 2.24 (t, J = 7.2 Hz, 2H), 1.80 – 1.60 (m, 6H), 1.54 – 1.37 (m, 2H). 13C NMR 

(126 MHz, CDCl3) δ 173.56, 164.01, 70.42, 70.28, 70.00, 69.84, 61.78, 60.29, 55.46, 47.17, 

HN NH

O

S

H
H

O

N3

NH

O

O

O

H
N

HN NH

O

S

H
H

O

N

NH

O

O

O

H
N

N1.

2. NaHCO3/H2O

O

O

PPh2

N

O

O

THF/H2O



	
  

	
  
	
  

184	
  

40.67, 39.62, 39.31, 36.10, 28.05, 28.03, 25.49. HRMS (ESI) m/z calc’d for C18H30N6O5S 

[M+Na]+ 465.1891, found 465.1905. 

 

 

 

 

Synthesis of N-(3-azidopropyl)-2-diazoacetamide: NHS-diazoacetamide117 (0.094 g, 0.5 mmol) 

was dissolved in THF (1 mL) with stirring, and the solution was cooled to 0° C. 3-

azidopropanamine (0.1 g, 0.5 mmol) was added as a 28% w/v solution in Et2O (0.2 mL) and the 

reaction mixture was allowed to warm to r.t. O/N. The reaction mixture was then concentrated by 

rotary evaporation, and purified by chromatography on silica gel (50:50 EtOAc:Hexanes) to 

provide the N-(3-azidopropyl)-2-diazoacetamide as a yellow oil (0.05 g, 60%). 1H NMR (500 

MHz, CD3CN) δ 6.18 (s, 1H), 4.95 (s, 1H), 3.33 (t, J = 6.8 Hz, 2H), 3.24 (q, J = 6.5 Hz, 1H), 

1.70 (p, J = 6.7 Hz, 1H). 13C NMR (126 MHz, CD3CN) δ 168.16, 51.41, 49.03, 39.29, 31.50. 

HRMS (ESI) m/z calc’d for C14H17N3O3 [M+H]+ 169.0833, found 169.0832.  
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Synthesis of 2-acetamido-N-benzylacrylamide: 2-acetamidoacrylic acid (0.260 g, 2 mmol) and 

DCC (0.413 g, 2 mmol) was suspended in THF (5 mL) and the solution was cooled to -5° C. 

Benzylamine (0.214 g, 2 mmol) was added, and the reaction mixture was allowed to gradually 

warm to r.t. O/N. The reaction mixture was then concentrated by rotary evaporation, and purified 

by chromatography on silica gel (50% v/v EtOAc in hexanes) to provide 2-acetamido-N-

benzylacrylamide as a white solid ( 0.18 g, 41%). 1H NMR (500 MHz, CDCl3) δ 8.13 (s, 1H), 

7.39 – 7.27 (m, 5H), 6.49 (s, 1H), 6.46 (d, J = 1.8 Hz, 1H), 5.20 (d, J = 1.7 Hz, 1H), 4.53 (d, J = 

5.8 Hz, 2H), 2.13 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 171.88, 166.59, 139.98, 136.88, 131.59, 

130.60, 130.49, 103.57, 46.90, 27.50. HRMS (ESI) m/z calc’d for C12H14N2O2 [M+H]+ 219.1129, 

found 219.1125.  
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Labeling of Nisin peptide 

 

 

Figure 1.3.S13. Nisin peptide (full sequence) with 2 probable Dha sites for conjugation (red 
boxes). 
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Nisin from Lactococcus lactis (2.5% by mass, balance sodium chloride and denatured milk 

solids) (0.01 g, 7.5x10-4 mmol) was dissolved in sodium phosphate buffer (1 mL, 10 mM, pH 

7.4) with stirring. To the resulting solution, biotin-PEG2-diazoacetamide (0.002 g, 4.5x10-3 

mmol) was added as a solution in sodium phosphate buffer (0.5 mL, 10 mM, pH 7.4), and the 

reaction mixture was nutated for 16 h. The resulting solution was purified by dialysis (2K 

MWCO) into the same buffered solution, and analyzed directly by MALDI-TOF using sinapic 

acid as matrix and unlabeled Nisin for internal calibration. Caluculated mass for Nisin + biotin-

PEG2-diazoacetamide, 3796.6, meas. m/z 3795.12.  
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Fig. 1.3.S14.   1H NMR spectrum of ethyl 5-(benzylcarbamoyl)-4,5-dihydro-1H-pyrazole-3-
carboxylate in CD3CN (500 MHz). 
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Fig. 1.3.S15.   13C NMR spectrum of ethyl 5-(benzylcarbamoyl)-4,5-dihydro-1H-pyrazole-3-
carboxylate in CD3CN (126 MHz). 
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Fig. 1.3.S16.   1H NMR spectrum of N5-benzyl-N3-isopropyl-pyrazoline-3,5-dicarboxamide 
(mixed isomers) in CD3CN (500 MHz). 
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Fig. 1.3.S17.   13C NMR spectrum of N5-benzyl-N3-isopropyl-pyrazoline-3,5-dicarboxamide 
(mixed isomers in CD3CN (126 MHz). 
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Fig. 1.3.S18. HSQC 2D spectrum of ethyl 5-(benzylcarbamoyl)-4,5-dihydro-1H-pyrazole-3-
carboxylate in CD3CN (500, 126 MHz).  
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Fig. 1.3.S19. HMBC 2D spectrum of ethyl 5-(benzylcarbamoyl)-4,5-dihydro-1H-pyrazole-3-
carboxylate in CD3CN (500, 126 MHz).  
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Fig. 1.3.S20: HMBC 2D spectrum of ethyl 5-(benzylcarbamoyl)-4,5-dihydro-1H-pyrazole-3-
carboxylate in CD3CN (500, 126 MHz).  
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Fig. 1.3.S21: HMBC 2D spectrum ZOOM of S20 ethyl 5-(benzylcarbamoyl)-4,5-dihydro-1H-
pyrazole-3-carboxylate in CD3CN (500, 126 MHz).  
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Fig. 1.3.S22. 1H NMR spectrum of ethyl 5-(benzylcarbamoyl)-1H-pyrazole-3-carboxylate in 
MeOD (500 MHz). 
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Fig. 1.3.S23. 13C NMR spectrum of ethyl 5-(benzylcarbamoyl)-1H-pyrazole-3-carboxylate in 
MeOD (126 MHz). 
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Fig. 1.3.S24. 1H NMR spectrum of N-benzyl-3-cyano-4,5-dihydro-1H-pyrazole-5-
carboxamide in CD3CN (500 MHz). 
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Fig. 1.3.S25. 13C NMR spectrum of N-benzyl-3-cyano-4,5-dihydro-1H-pyrazole-5-
carboxamide in CD3CN (126 MHz). 
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Fig. 1.3.S26. 1H NMR spectrum of isopropyl-2-acrylamidoethylcarbamate in CDCl3 (400 
MHz). 
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Fig. 1.3.S27. 13C NMR spectrum of isopropyl-2-acrylamidoethylcarbamate in CDCl3 (101 
MHz). 
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Fig. 1.3.S28. 1H NMR spectrum of biotin-PEG2-azidoacetamide in CDCl3 (750 MHz). 
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Fig. 1.3.S29. 13C NMR spectrum of biotin-PEG2-azidoacetamide in CDCl3 (126 MHz). 
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Fig. 1.3.S30. 13C NMR spectrum of biotin-PEG2-diazoacetamide in CDCl3 (126 MHz). 
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Fig. 1.3.S31. 1H NMR spectrum of biotin-PEG2-diazoacetamide in CD3CN (500 MHz). 
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Fig. 1.3.S32. 1H NMR spectrum of N-(3-azidopropyl)-2-diazoacetamide in CD3CN (500 
MHz). 
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Fig. 1.3.S33. 13C NMR spectrum of N-(3-azidopropyl)-2-diazoacetamide in CD3CN (126 
MHz). 
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Fig. 1.3.S34. 1H NMR spectrum of 2-acetamido-N-benzylacrylamide in CDCl3 (500 MHz). 
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Fig. 1.3.S35. 13C NMR spectrum of 2-acetamido-N-benzylacrylamide in CDCl3 (126 MHz). 
 
 
 

���������������	�
��������������������������	��
����
���
����



	
  

	
  
	
  

210	
  

 
Figure 1.3.S36. 1H NMR spectrum of N-(3-azidopropyl)-2-diazoacetamide competition 
reaction with ethylacrylate (i) in CD3CN (500 MHz). 

����������������������������������������	��	��
��
�����
��
�����

�
��
�

�
��
�



	
  

	
  
	
  

211	
  

 
Figure 1.3.S37. (Inset of 1.3.S36) 1H NMR spectrum of N-(3-azidopropyl)-2-diazoacetamide 
competition reaction with ethylacrylate (i) in CD3CN (500 MHz). 
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Figure 1.3.S38. 1H-NMR of (1) (1 eq) and (2) (1 eq) with ethyl acrylate (i) (5 eq) after 24 h in 
CD3CN (500 MHz). 
 

������������������������������������������	��	��

���

��

�
��
�

�
��
�

�
��
�



	
  

	
  
	
  

213	
  

 
Figure 1.3.S39. ZOOM of 1.3.S38 1H-NMR of (1) (1 eq) and (2) (1 eq) with ethylacrylate (i) 
(5eq) after 24 h in CD3CN (500 MHz). 
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Figure 1.3.S40. 1H-NMR of (1) (1eq) and (2) (1eq) with ethyl propiolate (j) (5eq) after 24 h in 
MeOD (500 MHz). 
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Figure 1.3.S41. ZOOM of 1.3.S40. 1H-NMR of (1) (1 eq) and (2) (1 eq) with ethyl propiolate (2) 
(5 eq) after 24 h in MeOD (500 MHz). 
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Figure 1.3.S42. MALDI-TOF trace of Nisin following treatment with diazoacetamide-PEG2-
biotin. 
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PART 1 

CHAPTER 4 
 
 

Uncharged Phosphinothiols for the Traceless Staudinger-
Ligation in Aqueous Conditions 

	
  

This chapter was originally prepared as: Andersen, K.A.,* Aronoff, M.R.,* Martin, L.J., 

Raines, R.T. A semisynthetic route to authentic ubiquitin chains. In preparation. 

 
 
Contributions: I designed the uncharged water-soluble phosphinothiols, performed all 

chemical synthesis, and all small molecule ligation studies. Kristen Andersen produced 

the proteins used in this study and performed experiments involving proteins. The 

ubiquitin-intein construct was cloned by Langdon J. Martin. 

Note: The general method detailed in this chapter was published as: Creating	
   site-­‐

specific	
  isopeptide	
  linkages	
  between	
  proteins	
  with	
  the	
  traceless	
  Staudinger	
  ligation.	
  

Kristen	
   A.	
   Andersen	
   and	
   Ronald	
   T.	
   Raines	
   (2015).	
  Methods	
   in	
   Molecular	
   Biology	
  

1248,	
  55–65. 
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Abstract	
  	
  

The traceless Staudinger ligation is a powerful chemoselective tool to form an amide 

bond without residual atoms or racemization. Here, we increase the compatibility of this 

reaction with biological systems by improving upon the water solubility and efficiency of 

the phosphinothiol component of the Staudinger ligation. Then, we utilize the Staudinger 

ligation to form an authentic isopeptide bond between ubiquitin monomers. The method 

developed here provides the basis for producing ubiquitin polymers of precise length and 

connectivity in a semisynthetic manner. This technology allows for the synthesis of 

chains containing any linkage—including mixed and branched linkages—in a highly 

controlled manner.  
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1.4.1 Introduction 

The Staudinger ligation, based on the Staudinger reaction, is a powerful 

chemoselective reaction that is compatible with biological systems. The Staudinger 

reaction occurs between an azide and a phosphine, wherein a phosphine reduces the azide 

to an amine via an iminophosphorane intermediate. Acylation of this iminophosphorane 

intermediate results in an amide, rather than an amine, in what is known as the Staudinger 

ligation. Importantly, this reaction has the potential to mediate the ligation of peptides at 

virtually any residue, without installing any additional atoms or causing 

racemization.66,69,208  

Previously, the Raines group developed (diphenylphosphino)methanethiol as the 

most efficient known phosphinothiol that will facilitate this ligation.60,209 Various 

functional groups, including tertiary amines and carboxylic acids, were added to the 

phenyl rings of this scaffold to improve water solubility. Ulimately, bis(m-N,N-

dimethylaminomethylphenyl)-phosphinothiomethanethiol (1) was determined to the best 

of the tested reagents for the aqueous Staudinger ligation.210 The use of this reaction in a 

completely aqueous environment is critical for its implementation in biomacromolecule 

ligations that are not able to withstand the presence of organic solvents. Yet, 

phosphinothiol 1 is challenging to synthesize, and the choice and placement of the N,N-

dimethylamino groups could impart undesirable steric or electronic effects that are 

heretofore unappreciated, and could hinder the success of the ligation. We sought to 

investigate this hypothesis further by comparing the established phosphinothiol 1, against 

bis(p-N,N-dimethylaminomethylphenyl)phosphinothiomethanethiol (2), which would 

mitigate steric hindrance, and an analogue utilizing the 2-methoxyethoxymethyl ether 
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(MEM) group at the meta position (3), which would provide water solubility without 

introducing a charge to the molecule (Figure 1.4.1). 

We explore these three phosphinothiols, and their use in the Staudinger ligation at 

multiple levels. First, we examine the efficacy of these phosphinothiols to facilitate the 

Staudinger ligation at the small-molecule level. Next, we append these phosphinothiols to 

the C terminus of a protein as a phosphinothioester through expressed protein ligation 

(EPL), and examine the efficacy of the Staudinger ligation with a small-molecule azide. 

Ultimately, we seek to define the optimal phosphinothiol for protein–protein ligation, and 

with the isopeptide-linked ubiquitin–ubiquitin dimer as the goal.  

The synthesis of ubiquitin chains is an ideal system in which to apply the 

Staudinger ligation. Ubiquitin is a small, globular protein that serves as an important 

post-translational modifier in the eukaryotic cell, operating as a signal in the form of both 

mono- and polyubiquitin chains. Ubiquitin is typically attached to a target protein 

through an isopeptide bond between the C-terminal glycine residue of ubiquitin and the ε-

nitrogen of a lysine on the substrate protein. In vivo, the formation of the isopeptide bond 

is accomplished enzymatically.211,212 Ubiquitin contains lysine residues at positions 6, 11, 

27, 29, 33, 48, and 63 which are all known to serve as sites of attachment for additional 

ubiquitin molecules.213 Attachment of ubiquitin, either as a monomer or in a chain 

connected through any of the seven lysine residues of ubiquitin, designates substrates for 

a variety of fates including endocytosis, proteasomal degradation, and participation in 

other signal transduction pathways.211,214 Recent studies of ubiquitin polymers have 

found a diverse set of ubiquitin linkages to be present naturally, including all seven 

homopolymeric ubiquitin chains, branching at the proximal ubiquitin and mixed linkage 
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chains.215-218  

The current understanding of the complexity of ubiquitin signaling pathways is 

incomplete due to the limitations of existing techniques used to study ubiquitin signaling, 

and a lack of facile methods to synthesize ubiquitin chains. Previously, ubiquitin 

signaling has been studied either through genetic modification, or mass spectrometry; 

however, these techniques have limitations, particularly in delineating the roles of less 

abundant linkages (6, 27, 29, 33) and mixed or branched chains.  

A convenient and efficient method to assess specific ubiquitin chains in vitro—

both in isolation and while attached to protein substrates—has become critical to the 

advancement of the ubiquitin-signaling field. This task has proven to be challenging due 

to the difficulty of creating the isopeptide bond between proteins with a high degree of 

specificity. Several groups have recently published syntheses of diubiquitin, as reviewed 

by Martin and Raines.219 Unfortunately, while innovative, these methods of native chain 

production remain mostly unrealistic for mainstream use in the biological community due 

to highly specialized techniques, harsh conditions, and low overall yields. 

Here, the Staudinger ligation will be used to ligate two ubiquitin molecules, 

produced recombinantly in Escherichia coli, via an amide linkage without any residual 

atoms or racemization (Figure 1.4.2).65,209 This traceless reaction will produce an 

isopeptide bond between an azide-labeled proximal ubiquitin and a distal ubiquitin 

labeled with a C-terminal phosphinothioester. The distal ubiquitin contains a C-terminal 

phosphinothioester, generated via expressed protein ligation, while the proximal ubiquitin 

contains an azide on the ε-nitrogen of the lysine to be modified, incorporated as 

azidonorleucine (ANL) with non-natural amino acid incorporation. This method is an 
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improvement over current technologies because it creates an authentic isopeptide bond 

between recombinant proteins with highly selective chemistry that operates under mild 

aqueous conditions, allowing application to a wide variety of substrate proteins.  
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1.4.2 Results and Discussion 

1.4.2.1 Small molecule ligations 

Phosphinothiol 2 was synthesized via the route reported previously for 

phosphinothiol 1, and with similar synthetic challenges. Phosphinothiol 3 was also 

synthesized analogously via the Grignard method, but the MEM groups facilitated a one-

step reduction and protection of the phosphorous,220 which is the most challenging step in 

the N,N-dimethylamino synthetic route.221 As a net result, phosphinothiol 3 was obtained 

in dramatically higher overall yield than phosphinothiol 1 or 2. 

Phosphinothiol 3 was significantly more soluble than phosphinothiol 1 or 2, 

dissolving readily in buffer at 5 mg/mL, while 1 and 2 required extended stirring to 

dissolve. Phosphinothiol 3 also outperformed phosphinothiol 1 or 2 in a small molecule 

Staudinger ligation test in buffer (Table 1.4.1). 

 

1.4.2.2 Protein Production 

The ubiquitin that was to serve as the substrate protein for ubiquitination required 

an azido group at the Nε of the lysine side chain at the point to be modified. To 

accomplish this modification, the non-natural amino acid incorporation system developed 

by the Tirrell group was utilized to incorporate ANL.222 This technique hijacks the 

methionyl t-RNA synthetase by modifying the amino acid-binding pocket, allowing for 

incorporation of ANL at the AUG codon in the absence of methionine. Ubiquitin does 

not contain any other methionine residues other than at the start codon. The ubiquitin 

construct was designed with a His6 tag and TEV protease recognition site inserted 

between the N-terminal AUG start codon, and the second codon. This tag enables 

purification with metal ion-affinity chromatography, and cleavage at the N terminus, 
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which could contain an additional ANL at position 1 (Figure 1.4.3A). The construct was 

expressed in methionine-auxotrophic E. coli cells with induction under conditions of 

methionine starvation and ANL supplementation. The incorporation of ANL was 

assessed by copper-catalyzed cycloaddition using an Alexa Fluor® 488 alkyne dye, with a 

fluorescent signal denoting a protein containing ANL (Figure 1.4.3B). The purified 

protein was also characterized via MALDI–TOF mass spectrometry, with a mass of 

10344 Da representing a protein containing two ANL substitutions (positions 1 and the 

canonical 63 site) (Figure 1.4.3C). Subsequent cleavage of the tag with TEV Protease and 

purification resulted in the final protein of 8418 Da.  

The pendant ubiquitin to be attached to the substrate above requires a C-terminal 

phosphinothioester, which was accomplished by EPL (Figure 1.4.4A). The ubiquitin was 

expressed as a C-terminal intein fusion protein with a chitin-binding domain. During the 

subsequent purification over chitin resin a pH shift facilitated an N!S acyl transfer, and 

incubation with the small-molecule thiol 2-mercaptoethanesulfonate (MESNa) resulted in 

the elution of the ubiquitin from the resin with a C-terminal thioester (Figure 1.4.4B). A 

transthioesterification with an excess of the phosphinothiols resulted in the decoration of 

the ubiquitin with the final C-terminal phosphinothioester (Figure 1.4.4C). This 

phosphinothioester protein was highly sensitive to oxygen, with oxidation of the 

phosphine and hydrolysis of the phosphinothioester occurring within hours of air 

exposure. Due to this sensitivity, the phosphinothioester protein was kept under N2(g) 

whenever possible, and used for the ligation immediately. 
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1.4.2.3 Protein Ligations 

A reaction between the ubiquitin C-terminal phosphinothioester proteins and an 

azido-biotin provided a simple system in which to observe the efficacy of the 

phosphinothiol in isolation, before transitioning into the protein–protein reaction in which 

the size of both reactants can introduce complications, including issues of diffusion rates 

and sterics. In a direct comparison between the ubiquitin phosphinothioesters with 

phosphinothiols 1 and 2, phosphinothioester 2 provided a higher ligation yield, which 

was found to be optimal at pH 8.5. These preliminary data would suggest that the meta 

ligands might have had a deleterious effect on the ligation reaction that is relieved when 

the substituents are moved to the para position.  

 

1.4.2.4 Protein–Protein Ligation 

The ubiquitin phosphinothioesters with phosphinothiols 1 and 2 were reacted with 

the K63M ANL-containing ubiquitin (Figure 1.4.6A). The products of the reaction were 

quantified from silver-stained SDS–PAGE, and showed a slightly higher yield with 

phosphinothiol 2, reinforcing the findings of the protein–small molecule ligation 

experiments. The products were characterized subsequently by MALDI–TOF mass 

spectrometry, which showed the formation of a ubiquitin–ubiquitin dimer at 18921 Da 

(Figure 1.4.6B, C). A lower product yield, in comparison to small-molecule studies is 

expected, due to the lower reactant concentrations and larger sizes of the reactants. The 

MALDI–TOF data, however, suggests that the major issue contributing to the lower 

yields is the oxidation and subsequent hydrolysis of the phosphinothiol from the C 

terminus. Once this process has occurred, this protein is no longer able to participate in 

the ligation reaction. Based on the relative sizes of ligation product peaks and 



	
  

	
  
	
  

227	
  

oxidized/hydrolyzed pendant ubiquitin, this side reaction appears to occur much more 

rapidly than does the desired ligation reaction.  

 

1.4.3 Future Directions 

The phosphinothioester is highly sensitive to oxygen. The phosphine reacts 

readily with oxygen to form a phosphine oxide, rendering the phosphine unable to 

participate in the Staudinger ligation and promoting subsequent hydrolysis of the 

thioester. This oxidation reaction is in direct competition with the Staudinger ligation, 

and occurs quickly, particularly at the elevated temperatures used to promote the ligation 

reaction. At the small-molecule level, the Staudinger ligation has classically been 

performed under inert gas to limit this side reaction. Excluding oxygen is, however, far 

more challenging with proteins. In particular, once the distal ubiquitin has been adorned 

with the phosphinothioester, it must undergo further purification steps while in its highly 

oxygen-sensitive state. To limit this oxidation, future experiments with the 

phosphinothioester may be undertaken in an oxygen-free environment. Due to the 

extensive handling involved, a glove box would allow for the purification of the 

ubiquitin-phosphinothioester, and subsequent Staudinger ligation with minimal oxidation 

issues.  

 Additionally, phosphinothiol 3 will be utilized for protein ligation assays for 

comparison with phosphinothiols 1 and 2. Phosphinothiol 3 utilizes MEM groups to 

promote water solubility, but has no charged side groups. This phosphinothiol is newly 

synthesized and characterized at the time of writing. In preliminary studies, this 

phosphine appears to be more water-soluble than phosphinothiols 1 and 2, which take 

several minutes to dissolve in buffer. This phosphinothiol will be appended to the 



	
  

	
  
	
  

228	
  

pendant ubiquitin, and characterized and analyzed for its ability to facilitate the 

Staudinger ligation between two ubiquitin molecules. 

 

Upon adaptation of the protocol described here to the glove box, and addition of 

phosphinothiol 3, the following experiments should be performed at the protein–protein 

ligation level: 

1. Characterization of ubiquitin–phosphinothioester with phosphinothiol 3. 

2. SDS–PAGE of Staudinger ligation experiments with all three phosphines (1, 2, 3), 

at pH 7.0, 7.5, 8.0, and 8.5 to determine optimal phosphine-stability and ligation-

yield conditions. 

3. Immunoblot of Staudinger ligation products with a general ubiquitin antibody, as 

well as K48 and K63 specific antibodies. K48 and K63 dimers purchased from 

Boston Biochem will be used as controls.  

4. Digestion of the Staudinger ligation product with Isopeptidase T (USP5), 

examined by SDS–PAGE (Sypro Ruby or silver stain).  

5. Characterization of final dimer via MALDI–TOF mass spectrometry. 

6. Trypsin Digest, LC/MS/MS of final dimer to verify that the specific linkage was 

formed, with the correct fingerprint of an isopeptide bond. 
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1.4.4 Materials & Methods 

1.4.4.1 Materials 

Chemicals  

Silica gel (40 µm) was from SiliCycle (Québec City, Canada). All reagent-grade 

materials were from Sigma–Aldrich (St. Louis, MO) and were used without further 

purification. Ultrapure water with a resistivity of ≥18 MV cm–1 was generated with an 

Arium Pro water purification system from Sartorius (Bohemia, NY). The cDNA 

encoding Saccharomyces cerevisiae ubiquitin was codon-optimized for expression in 

Escherichia coli and synthesized by Bio Basic (Toronto, Canada). The vector pTXB, and 

NdeI and SapI restriction enzymes were from New England BioLabs (Ipswich, MA). 

 

Instrumentation  

1H, 13C, and 31P NMR spectra for all compounds were acquired at ambient temperature 

on Bruker spectrometers in the National Magnetic Resonance Facility at Madison 

(NMRFAM) at the University of Wisconsin–Madison operating at 400, 500, or 750 MHz 

for 1H and 126 or 189 MHz for 13C, and 162 MHz for 31P NMR. Chemical shift data are 

reported in units of δ (ppm) relative to residual solvent or TMS. Electrospray ionization 

(ESI) mass spectrometry was performed with a Micromass LCT at the Mass 

Spectrometry Facility in the Department of Chemistry at the University of Wisconsin–

Madison. The mass of each ubiquitin variant and dimer was confirmed by matrix-assisted 

laser desorption/ionization time-of-flight (MALDI–TOF) mass spectrometry with a 

Voyager-DE-PRO Biospectrometry Workstation from Applied Biosystems (Foster City, 

CA). Absorbance measurements were made with an infinite M1000 plate reader from 

Tecan (Männedorf, Switzerland).  
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1.4.4.2 Synthesis 

The phrase “concentrated under reduced pressure” refers to the removal of solvents and 

other volatile materials using a rotary evaporator at water aspirator pressure (<20 torr) 

while maintaining the water-bath temperature below 40 °C. Residual solvent was 

removed from samples at high vacuum (<0.1 torr). All reactions were performed at 

ambient temperature unless indicated otherwise. 

 
HSCH2P(C6H4-m-CH2NMe2)2 (1) was synthesized as reported previously.210  
 
 
Synthesis of HSCH2P(C6H4-p-CH2NMe2)2 (2): 
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1,1'-(4,4'-phosphorylbis(4,1-phenylene))bis(N,N-dimethylmethanamine): Freshly 

ground Mg turnings (0.354 g, 14.56 mmol) and I2 (cat) were added to a 2-neck 100-mL 

round-bottom flask that was fitted with a reflux condenser and sealed with a septum. The 

flask was purged by vacuum and filled with N2(g) (3 cycles) ending with a positive 

pressure of N2(g). Anhydrous THF (5 mL) was added to cover the Mg, and the resulting 

suspension was stirred. 1-(4-bromophenyl)-N,N-dimethylmethanamine (3.1 g, 14.48 

mmol) was dissolved in anhydrous THF (25 mL). The resulting solution was added 

through the septum, and the reaction was heated at reflux for 4 h. The reaction progress 

was observed by the near complete consumption of the Mg turnings. The reaction 

mixture was then cooled to room temperature, and placed in an ice bath. Diethyl 

phosphite (0.465 mL, 3.62 mmol) was added dropwise, and the reaction mixture was 

allowed to warm to room temperature overnight. The yellow mixture was then quenched 

with dH2O and the concentrated under reduced pressure, leaving a white slurry. This 

slurry was dissolved in MeOH (100 mL) and filtered through a shallow pad of Celite® to 

remove undissolved solids. The residual solids were washed further with MeOH (100 

mL), and the filtrate was concentrated. The residue was purified by chromatography on 

silica gel (10–20% v/v gradient of MeOH in DCM containing 0.5% v/v TEA) to produce 

1,1'-(4,4'-phosphorylbis(4,1-phenylene))bis(N,N-dimethylmethanamine) as a light yellow 

solid (1.1 g, 96%). 1H NMR (500 MHz, CDCl3) δ 8.08 (d, J = 480.1 Hz, 1H), 7.67 (dd, J 
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= 13.5, 7.8 Hz, 4H), 7.48 (dd, J = 8.0, 2.6 Hz, 4H), 3.51 (s, 4H), 2.27 (s, 11H). 13C NMR 

(101 MHz, CDCl3) δ 144.05, z131.04, 130.93, 129.75, 129.62, 63.98, 45.46. 31P NMR 

(162 MHz, CDCl3) δ 20.09. HRMS (ESI) m/z calc’d for [C18H25N2OP+H]+ 317.1778, 

found 317.1781. 

 

 

 

 

Borane bis{4-[(dimethylamino)methyl]phenyl}phosphine complex: 1,1'-(4,4'-

phosphorylbis(4,1-phenylene))bis(N,N-dimethylmethanamine) (0.509 g, 1.61 mmol) was 

dissolved in anhydrous THF (8 mL) and the resulting solution was sparged and purged 

(3x) with N2(g). DIBAL-H as a 1.0 M solution in THF (10 mL, 10 mmol) was added 

dropwise, producing immediate gas evolution. The reaction mixture was stirred 

overnight. The reaction mixture was then cooled in an ice bath, and excess DIBAL-H was 

quenched with water (0.4 mL), 10% w/v NaOH (0.6 mL), and water (1 mL). The reaction 

mixture was removed from the ice bath, and stirred for 30 min. The resulting slurry was 

dried over MgSO4(s) and filtered, and the filtrate was concentrated under reduced 

pressure. The residue was dissolved in anhydrous DCM (20 mL), and the resulting 

solution was washed with brine (20 mL), dried over MgSO4(s), and filtered. The filtrate 

was concentrated to approximately half the volume. The solution was cooled in an ice 

bath, borane dimethylsulfide (0.52 mL, 5.15 mmol) was added dropwise, and the 
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resulting solution was allowed to warm to ambient temperature and stir overnight. The 

reaction mixture was concentrated under reduced pressure, and the residue was purified 

by chromatography on silica gel (CH2Cl2) to yield a pure white solid (0.17 g, 30% overall 

from two steps) 1H NMR (500 MHz, CDCl3) δ 7.79 – 7.66 (m, 4H), 7.48 (dd, J = 8.0, 2.1 

Hz, 4H), 6.37 (dq, J = 381.6, 7.0 Hz, 1H), 3.98 (s, 4H), 2.55 (s, 12H). 13C NMR (126 

MHz, CDCl3) δ 135.34, 135.31, 133.20, 133.11, 133.03, 127.30, 126.85, 67.21, 50.49, 

50.46.31P NMR (400MHz, CDCl3) δ -0.269. HRMS (ESI) m/z calculated for 

[C18H34B3N2P+NH4]+ 358.3151, found 358.3155. 

 

 

 

 

Borane bis{4-[(dimethylamino)methyl]phenyl}phosphine ethanethioate complex: 

Borane bis{4-[(dimethylamino)methyl]phenyl}phosphine (0.170 g, 0.5 mmol) was 

dissolved in DMF (2.5 mL) and the solution was cooled to 0 °C. NaH (0.02 g, 0.5 mmol) 

was added portionwise, and the reaction mixture was stirred until the evolution of gas 

was no longer observed. The bromothioester (0.17 g, 1 mmol) was added slowly, and the 

reaction mixture was removed from the ice bath and stirred overnight. The reaction 

mixture was concentrated by rotary evaporation and purified by chromatography on silica 

get (2% EtOAc, 28% Hexane, 70% DCM v/v/v) to yield the borane bis{4-
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[(dimethylamino)methyl]phenyl}phosphine ethanethioate complex as a white solid (0.1 g, 

50%). 1H NMR (500 MHz, CDCl3) δ 7.74 (dd, J = 10.5, 7.9 Hz, 4H), 7.48 (dd, J = 8.1, 

2.2 Hz, 4H), 3.98 (s, 4H), 3.73 (d, J = 6.7 Hz, 2H), 2.55 (d, J = 2.5 Hz, 13H), 2.27 (s, 3H), 

1.74 (bs, 6H). 13C NMR (126 MHz, CDCl3) δ 193.04, 193.02, 135.40, 135.38, 132.95, 

132.87, 132.61, 132.53, 128.75, 128.32, 67.22, 50.54, 50.52, 30.22, 23.75, 23.47. 31P 

NMR (202 MHz, CDCl3) δ 19.29. HRMS (ESI) m/z calc’d for [C21H38B3OPS+NH4]+ 

446.3134, found 446.3136. 

 

 

 

 

 

Borane bis{4-[(dimethylamino)methyl]phenyl}phosphine methanethiol complex: 

Borane bis{4-[(dimethylamino)methyl]phenyl}phosphine thioester (0.01 g, 0.023 mmol) 

was dissolved in MeOH (1 mL) with stirring. To the resulting solution, an aqueous 

solution of 7 N KOH (0.05 mL, 0.35 mmol) was added, and the reaction mixture was 

stirred overnight. The reaction mixture was quenched with saturated NH4Cl (10 mL) and 

the solution was concentrated by rotary evaporation. The resulting slurry was extracted 

with DCM (4 x 10 mL), and the combined organics were dried over Na2SO4(s), and the 

solution concentrated under reduced pressure to yield the borane bis{4-
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[(dimethylamino)methyl] phenyl}phosphine ethanethiol complex as a yellowish solid 

(0.01 g, quant). 1H NMR (500 MHz, CDCl3) δ 7.74 (dd, J = 10.5, 7.9 Hz, 4H), 7.48 (dd, J 

= 8.1, 2.2 Hz, 4H), 3.98 (s, 4H), 3.73 (d, J = 6.7 Hz, 2H), 2.55 (d, J = 2.5 Hz, 13H), 1.74 

(s, 6H). 13C NMR (126 MHz, CDCl3) δ 156.87, 135.35, 133.07, 132.99, 132.78, 132.67, 

132.60, 132.23, 128.97, 128.54, 67.26, 50.59, 50.53, 34.07, 29.85, 25.73, 25.07. 31P 

NMR (202 MHz, CDCl3) δ 21.11. 

 
 

 

 

 

(Bis(3-[(2-methoxyethoxy)-methoxymethyl]phenyl)phosphino)methanethiol: Borane 

bis(3-[(2-methoxyethoxy)-methoxymethyl]phenyl)phosphine thiol complex (0.01 g, 0.02 

mmol) was dissolved in anhydrous MeOH (10 mL) in a sealed vial and heated to 70 oC 

with stirring for 12 h. The reaction mixture was then concentrated by rotary evaporation 

and used directly (0.01 g, quant.). 1H NMR (500 MHz, CDCl3) δ 7.74 (dd, J = 10.5, 7.9 

Hz, 4H), 7.48 (dd, J = 8.1, 2.2 Hz, 4H), 3.98 (s, 4H), 3.73 (d, J = 6.7 Hz, 2H), 2.55 (d, J = 

2.5 Hz, 13H). 13C NMR (P-coupled,126 MHz, CDCl3) δ 193.04, 193.02, 135.40, 135.38, 

132.95, 132.87, 132.61, 132.53, 128.75, 128.32, 67.22, 50.54, 50.52, 30.22, 23.75, 23.47. 

31P NMR (162 MHz, CDCl3) δ -10.02. 
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Synthesis of HSCH2P(C6H4-m-CH2OCH2OCH2CH2OCH3)2 (3): 
 

 

Borane bis(3-[(2-methoxyethoxy)-methoxymethyl]phenyl)phosphine complex: 

Synthesized as reported previously.25 

 

 

Borane bis(3-[(2-methoxyethoxy)-methoxymethyl]phenyl)phosphine thioester 

complex: Borane bis(3-[(2-methoxyethoxy)-methoxymethyl]phenyl)phosphine (0.52 g, 

1.2 mmol) was dissolved in DMF (5 mL) and the resulting solution was cooled to 0 °C. 

To this solution NaH (0.048 g, 1.2 mmol) was added portionwise until the cessation of 

gas evolution was observed. The bromothioester (0.2 g, 3 mmol) was then added to the 

reaction mixture, and the resulting solution was allowed to warm to room temperature 
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and was stirred overnight. The reaction mixture was concentrated by rotary evaporation 

and purified by chromatography on silica gel to yield the borane bis(3-[(2-

methoxyethoxy)-methoxymethyl]phenyl)phosphine thioester complex as a clear oil 

(0.234 g, 37%). 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 11.2 Hz, 2H), 7.59 (t, 2H), 

7.51 (d, J = 7.6 Hz, 2H), 7.43 (td, J = 7.6, 2.5 Hz, 2H), 4.80 (s, 4H), 4.63 (s, 4H), 3.77 – 

3.68 (m, 6H), 3.56 (dd, J = 5.8, 3.5 Hz, 4H), 3.39 (s, 6H), 2.26 (s, 3H). 13C NMR (126 

MHz, CDCl3) δ 193.29, 193.27, 139.11, 139.03, 131.70, 131.65, 131.63, 131.57, 131.21, 

131.19, 129.08, 129.00, 128.00, 127.57, 95.12, 71.80, 68.80, 67.12, 59.15, 30.16, 23.88, 

23.59. 31P NMR (162 MHz, CDCl3) δ 18.24. HRMS (ESI) m/z calc’d for 

[C25H38BO7PS+Na]+ 546.2098, found 546.2097. 

 

	
  	
  	
  	
  	
  	
  

	
  
	
  

Borane (bis(3-[(2-methoxyethoxy)-methoxymethyl]phenyl)phosphine)methanethiol 

complex: Borane bis(3-[(2-methoxyethoxy)-methoxymethyl]phenyl)phosphine thioester 

complex (0.015 g, 0.03 mmol) was dissolved in MeOH (1 mL). To the resulting solution, 

an aqueous solution of 7 N KOH (0.05 mL, 0.35 mmol) was added, and the reaction 

mixture was stirred overnight. The reaction mixture was quenched with saturated NH4Cl 
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(10 mL) and the organics were removed by rotary evaporation. The suspension was then 

extracted into DCM (4 x 10 mL), dried over Na2SO4, and concentrated to yield the 

borane bis(3-[(2-methoxyethoxy)-methoxymethyl]phenyl)phosphine thiol complex as a 

lightly colored oil (0.015 g, quant.). 1H NMR (500 MHz, CDCl3) δ 7.67 (dd, J = 10.4, 8.1 

Hz, 4H), 7.46 (dd, J = 8.1, 2.3 Hz, 5H), 4.82 (s, 4H), 4.66 (s, 4H), 3.79 – 3.69 (m, 6H), 

3.60 – 3.52 (m, 6H), 3.40 (d, J = 1.7 Hz, 6H). 13C NMR (126 MHz, CDCl3) δ 142.22, 

142.20, 132.81, 132.73, 128.16, 128.08, 127.22, 127.17, 126.73, 95.21, 71.85, 68.73, 

67.19, 59.22, 59.20. 31P NMR (162 MHz, CDCl3) δ 20.53. HRMS (ESI) m/z calc’d for 

[C23H36BO6PS+NH4]+ 499.2438, found 499.2436. 

 

	
  
	
  	
  	
  	
  	
  

	
  
	
  
	
  
(Bis(3-[(2-methoxyethoxy)-methoxymethyl]phenyl)phosphino)methanethiol: The 

borane bis{3-[(2-methoxyethoxy)-methoxymethyl]phenyl}phosphine thiol complex 

(0.015 g, 0.03 mmol) was dissolved in anhydrous MeOH (10 mL) in a sealed vial and the 

solution was heated to 70oC for 12 h. The reaction mixture was then concentrated by 

rotary evaporation and used directly (0.015 g, quant.). 1H NMR (500 MHz, CDCl3) δ 

7.90 – 7.64 (m, 2H), 7.53 – 7.40 (m, 3H), 7.36 (s, 0H), 4.84 – 4.78 (m, 4H), 4.69 – 4.63 

(m, 3H), 3.74 (dd, J = 5.7, 3.6 Hz, 4H), 3.56 (dd, J = 5.8, 3.4 Hz, 4H), 3.40 (s, 4H). 13C 
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NMR (126 MHz, CDCl3) δ 143.04, 132.25, 132.16, 132.09, 132.02, 131.95, 131.79, 

131.71, 131.09, 131.01, 128.52, 128.19, 128.15, 128.09, 128.05, 127.94, 127.45, 95.47, 

95.45, 95.43, 72.10, 69.00, 68.89, 67.45, 67.44, 59.46. 31P NMR (162 MHz, CDCl3) δ 

28.49. 
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1.4.4.3 Small Molecule Staudinger Ligation Testing 

The phosphinothioester (0.01 mmol) was combined with DABCO (0.01 mmol, or 

0.03 mmol), and the vessel was evacuated, and purged with N2(g) for three cycles, ending 

with positive pressure of N2(g). Anhydrous toluene (1 mL) was added, and the reaction 

mixture was heated to 40 oC for 4 h. The reaction mixture was returned to high vacuum 

and concentrated to dryness. 2-azido-N-benzylacetamide25 was added to the deprotected 

phosphinothioester as a solution in 1 mL of either DMF or buffer (50 mM Tris, pH 8.0). 

The reaction mixture was then again evacuated, and purged with N2(g) for three cycles, 

ending with positive pressure of N2(g) and sealed. The reaction mixture was stirred for 20 

h at 40 oC, and then analyzed by LCMS. The percent conversions were determined by 

monitoring peak absorbance at 254 nm to provide the integration of the glycine amide-

product and the integration of the unreacted 2-azido-N-benzylacetamide. 

Phosphinothioester reduction in situ was performed according to a previously 

reported procedure.223 The phosphinothioester (0.01 mmol) was combined with DABCO 

(0.01 mmol, or 0.03 mmol) and 2-azido-N-benzylacetamide25 and the vessel was 

evacuated and purged with N2(g)  for three cycles, ending with positive pressure of N2(g). 

Anhydrous DMF (1 mL) was added to the reagents, and the reaction mixture was stirred 

for 20 h at 40 oC, and analyzed by LCMS. 
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1.4.4.3.1 LCMS Chromatogram of glycine-coupling assay. Amide product is visible at 

6.592 min., unreacted azide is observed at 7.817 min. 

 

1.4.4.4 Protein Production 

Site-directed mutagenesis with the QuickChange kit from Agilent Technologies (Santa 

Clara, CA) was used to generate all ubiquitin variants. Constructs were verified by 

Sanger sequencing at the University of Wisconsin–Madison Biotechnology Center 

Sequencing Facility.  

1.4.4.4.1 Distal Ubiquitin 

cDNA encoding S. cerevisiae ubiquitin was inserted into the pTXB expression vector 

between the NdeI and SapI sites. The ubiquitin protein was expressed as an intein fusion 

protein with a chitin binding domain in BL21(DE3) E. coli cells. The cells were grown 

and induced at 37°C in autoinduction media for 20 h. The cells were harvested by 

centrifugation at 5000g for 20 min. The cell pellet was resuspended in lysis buffer (30 
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mM HEPES–NaOH buffer, pH 8.0, containing 0.30 M NaCl and 1.0 mM EDTA) and 

lysed at 22 kPSI in a T Series Cell Disrupter 2.2 kW from Constant Systems Limited 

(Northants, UK). The debris was cleared by centrifugation at 15000g for 45 min at 4 °C. 

The supernatant was incubated for 4 h at 4 °C with chitin resin equilibrated in lysis buffer 

(10 mL resin/L liquid growth). The flow through was discarded and the resin was washed 

with 5 column volumes of wash buffer (30 mM HEPES–NaOH buffer, pH 8.0, 

containing 0.50 M NaCl and 1.0 mM EDTA). The protein was eluted from the resin as a 

thioester with MESNa by incubation in elution buffer (30 mM potassium phosphate 

buffer, pH 6.0, containing 0.20 M NaCl, 1.0 mM EDTA, and 0.10 M MESNa) for 48 h 

on a nutator at 4 °C. The ubiquitin-MESNa thioester solution was concentrated and 

purified further by gel filtration chromatography on a Superdex G75 26/60 column, in 50 

mM NaOAc pH 5.0, 0.1 M NaCl, 0.05% NaN3). The protein solution was sparged with 

nitrogen for 10 min, before adding 100x molar excess of the phosphinothiol. The solution 

was sparged with nitrogen for a further 10 min, before being stirred at 4 °C for 48 h to 

induce transthioesterification. The protein was then purified by PD10 column with 50 

mM HEPES-NaOH, pH 7.5. The final ubiquitin phosphinothioester was characterized by 

MALDI-TOF and SDS-PAGE. 

1.4.4.4.2 Proximal Ubiquitin 

The ubiquitin gene was ligated into the pQE60 vector (Qiagen), with an N-terminal His6 

tag and TEV protease recognition sequence inserted between the start codon and the 

second amino acid in the protein. Site-directed mutagenesis was used to install a K!M 

mutation at the desired site of azidonorleucine incorporation. This plasmid was 

transformed into M15MA cells (Met auxotroph), also containing pREP4, to limit leaky 
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expression. The cells were grown in 1 L Terrific Broth at 37 °C, shaking until OD600 

reached 1.2 – 1.4. The cells were centrifuged at 5000g for 7 min, and resuspended gently 

in 1 L M9 media (M9 salts, 0.2% glucose, 1mM MgSO4, 25 mg/L thiamine) containing 

19 amino acids (40 mg/L, excluding methionine). The culture was further grown at 37 

°C, shaking for 20 minutes, and the centrifugation was repeated. The cells were again 

taken up in 1 L M9 media, containing 19 amino acids (excluding methionine) with 1 mM 

azidonorleucine. The cells were grown at 37 °C with shaking for a further 20 minutes 

before IPTG was added to 1 mM to induce protein expression for 12 h. The cells were 

harvested at 5000g for 20 minutes, and resuspended in lysis buffer (30 mM phosphate 

buffer, pH 8.0, containing 0.50 M NaCl and 20 mM imidazole). Cells were lysed at 22 

kPSI in a T Series Cell Disrupter 2.2 kW, and the supernatant was clarified by 

centrifugation at 15000g for 45 minutes. The supernatant was filtered through a 0.45 µm 

filter, before purification by immobilized metal ion affinity chromatography (IMAC) 

using a HisTrap SP HP column and an AKTA system from GE Healthcare (Piscataway, 

NJ) with a linear gradient of imidazole (0.02–0.5 M) in 30 mM phosphate buffer, pH 8.0, 

with 0.5 M NaCl. The purified protein was dialyzed into 50 mM HEPES-NaOH, pH 7.5 

and concentrated to 100-200 µM. If the N-terminal tag needed to be removed, TEV 

Protease (Promega, Madison, WI), was utilized to cleave off the tag, and a further round 

of IMAC purified the ubiquitin variant from the enzyme and tag. Incorporation of 

azidonorleucine was verified by MALDI-TOF and by reaction of the azido group with 

Alexa Fluor® 488-alkyne.  

 

1.4.4.5 Ubiquitin-Biotin Staudinger Ligations 

50 µl of ubiquitin-phosphinothioester 1 or 2 (200 µM, 1 nmol) was combined with 100 
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fold molar excess of azide-PEG3-biotin (Sigma Aldrich). The pH was adjusted with 

HEPES-NaOH to 7.0, 7.5, 8.0 or 8.5. A control ubiquitin with no C-terminal modification 

was also prepared at pH 8.0. The reactions were mixed and reacted at 40 °C for 12 h. The 

reactions were quenched with the addition of SDS-PAGE sample buffer, and boiled for 5 

minutes. The samples were run on a 12% SDS-PAGE gel, and transferred to PVDF for 

1.5 h at 100 V. The PVDF was blocked with 5% non-fat milk in 1X TBST for 1 h at 

room temperature. The blot was washed 3 x 5 min in 1X TBST, and incubated in anti-

biotin-HRP antibody (Cell Signaling Technology) for 1 h at room temperature. The blot 

was washed 3 x 5 min in 1X TBST, and HRP was detected by chemiluminescence, 

imaging using an ImageQuant LAS 4000 (GE Healthcare). 

 

1.4.4.6 Ubiquitin-Ubiquitin Staudinger Ligations 

100 µl of ubiquitin-phosphinothioester 1 or 2 (200 µM, 2 nmol) was combined 

with 0.5 equivalents of the K63 azidonorleucine protein. The pH was adjusted with 

HEPES-NaOH to 6.5, 7.0, 7.5, 8.0 or 8.5. A control ubiquitin with no C-terminal 

modification was also prepared at pH 7.0 and 8.0. The reactions were mixed and reacted 

at 40 °C for 18 h. A portion of the reaction was removed at 18 h, and spotted on a 

MALDI-TOF plate with sinapinic acid matrix, for mass spectrometry analysis. The 

remainder of the reaction was quenched with the addition of SDS-PAGE sample buffer, 

and boiled for 5 minutes. The samples were run on a 12% SDS-PAGE gel, and then silver 

stained.  
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Table 1.4.1 Small-molecule Staudinger ligation testing 

 

 

 

 

 

 

Small-molecule Staudinger ligation testing (reported as % amide conversion) 

Phosphinothiol 
 

DMF 
(Reduced in situ) 

 
DMF 

 
50 mM Tris 

pH 8.0 
 
1 
 

 
n/a 

 

 
n/a 

 
56 

 
2 
 

 
64 
 

 
56 

 
62 

 
3 
 

 
88 
 

 
76 

 
91 
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Figure 1.4.1 Phosphinothiols compared directly in the aqueous Staudinger ligation. 
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Figure 1.4.1 Phosphinothiols compared directly in the aqueous Staudinger ligation. (1) 

bis(m-N,N-dimethylaminomethylphenyl)-phosphinothiomethanethiol, (2) N,N-

dimethylaminomethyl-phenyl)phosphinothiomethanethiol and (3) (Bis(3-[(2-

methoxyethoxy)-methoxymethyl]-phenyl)phosphino)methanethiol. 
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Figure 1.4.2 Retrosynthetic scheme for the production of ubiquitin chains. 
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Figure 1.4.2 Retrosynthetic scheme for the production of ubiquitin chains. The distal 

ubiquitin (blue) is produced by Expressed Protein Ligation and decorated with a 

phosphinothiol (R= C6H4-m-CH2NMe2 or C6H4-p-CH2NMe2 or (C6H4-p-

CH2OCH2OCH2CH2OCH3)). The proximal ubiquitin contains an azide installed through 

non-native amino acid incorporation. The final dimer is linked through an isopeptide 

bond formed by the Staudinger ligation.  
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Figure 1.4.3 Preparation of the proximal ubiquitin. 
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Figure 1.4.3 Preparation of the proximal ubiquitin. (A) The proximal ubiquitin along 

with a polyhistidine tag and TEV protease recognition sequence is expressed in 

methionine auxotrophic cells, with a methionyl t-RNA synthetase variant that enables the 

incorporation of azidonorleucine at methionine codons. The protein is subsequently 

purified by metal ion affinity chromatography (IMAC). The tag, including the 

azidonorleucine incorporated at the start codon, is removed with TEV protease. Both the 

TEV protease and the affinity tag are removed by a second round of IMAC. (B) SDS-

PAGE of varying protein expression conditions of the K63M variant, stained with 

coomassie (top) and scanned for 488 nm fluorescent signal after reaction with an Alexa 

Fluor® 488 alkyne and Cu(I). (C) MALDI-TOF of the purified K63M variant, after 

removal of the purification tag. 
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Figure 1.4.4 Preparation of the distal ubiquitin. 
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Figure 1.4.4 Preparation of the distal ubiquitin. (A) The distal ubiquitin is expressed 

recombinantly as an intein fusion protein with a chitin binding protein. The protein is 

then bound to chitin resin, and a drop in pH facilitates an N!S acyl rearrangement. The 

protein is eluted from resin by cleavage with a thiol (typically MESNa). A 

transthioesterification results in generation of the final ubiquitin phosphinothioester that 

will be used in the Staudinger ligation. (B) Ubiquitin with a C-terminal MESNa thioester. 

(C) Ubiquitin with a C-terminal phosphinothioester.
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Figure 1.4.5 Protein-small molecule ligations. 
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Figure 1.4.5 Protein-small molecule ligations. (A) Reaction scheme of ubiquitin C-

terminal phosphinothioester with an azido-biotin. (B) Immunoblot of Staudinger ligations 

with phosphinothiols 1 or 2 at varying pH’s (α-biotin).  
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Figure 1.4.6 Ubiquitin-ubiquitin dimer formation via the Staudinger ligation. 
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Figure 1.4.6 Ubiquitin-ubiquitin dimer formation via the Staudinger ligation. (A) 

Reaction scheme for the formation of the ubiquitin-ubiquitin dimer. (B) Silver-stained 

SDS-PAGE of Staudinger ligations with the K63M variant at varying pH’s, with 

phosphinothioesters of phosphinothiols 1, or 2, or no C-terminal phosphinothioester on 

the proximal ubiquitin. Red arrows represent the expected position of the ubiquitin-

ubiquitin dimer product band. (C) MALDI-TOF data of a Staudinger ligation of the 

K63M variant with phosphinothioester 2 at pH 8.0.  
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1.4.5 NMR 

1H NMR (500 MHz, CDCl3) 

 
 
13C NMR (126 MHz, CDCl3)  
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31P NMR (400MHz, CDCl3) 
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1H NMR (500 MHz, CDCl3)  

 
13C NMR (126 MHz, CDCl3)  
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31P NMR (400MHz, CDCl3) 
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1H NMR (500 MHz, CDCl3) 

 
13C NMR (126 MHz, CDCl3)  
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31P NMR (202 MHz, CDCl3)  
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1H NMR (500 MHz, CDCl3) 

 

13C NMR (126 MHz CDCl3) 
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31P NMR (162 MHz, CDCl3) 
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13C NMR (126 MHz, CDCl3)  
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31P NMR (162 MHz, CDCl3) 
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1H NMR (400 MHz, CDCl3) 

 
13C NMR (126 MHz, CDCl3) 
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31P NMR (162 MHz, CDCl3) 
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1H NMR (400 MHz, CDCl3) 

 

	
  
13C NMR (126 MHz, CDCl3) 
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31P NMR (162 MHz, CDCl3) 
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1H NMR (400 MHz, CDCl3) 

 
13C NMR (126 MHz, CDCl3) 
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31P NMR (162 MHz, CDCl3) 
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PART 2 

CHAPTER 1 

 

 

Introduction: 

Protection and Detection of Boronic Acids  
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2.1.1 Introduction to Boronic Acids 

 The unique chemical characteristics of boronic acids provide chemical 

opportunities not available with other functional groups. Boronic acids are trivalent 

boron-containing compounds with two hydroxyl groups and a single carbon substituent. 

Structurally, the boronic acid is the boron-containing variation of a carboxylic acid; but 

unlike the carbon equivalent, it is not found in nature. Favorable characteristics stem 

from the unique electronic structure of boron. Because boron has six valence electrons, a 

vacant p-orbital remains on boron that is orthogonal to the three substituents, generating a 

trigonal planar geometry. The empty orbital on the Lewis acidic boron is of low energy. 

This empty orbital can accept electrons from another group such as a hydroxide ion. As a 

result, boronic acids exist in an equilibrium state between the neutral sp2 and the anionic 

sp3 hybridization when bound to another ligand. It is in large part due to this unique 

Lewis-acidity that boronic acids make such valuable reagents.  

 Boronic acids have significant chemical value because many derivatives are 

useful synthetic intermediates. Although the first isolation of a boronic acid was 

performed by Frankland in 1860 with the oxidation of ethylborane to ethylboronic 

acid,224,225 synthetic chemistry did not fully recognize the value of these groups until the 

development and widespread adoption of the palladium-catalyzed Suzuki–Miyaura cross-

coupling reaction for C–C bond formations226—work that shared the 2010 Nobel Prize 

for Chemistry.227 Major synthetic transformations that apply boronic acids as reactants 

include the Suzuki–Miyaura cross-coupling reaction,228 the Rh-catalyzed asymmetric 

conjugate addition to α,β-unsaturated carbonyl groups,229 and the Chan–Lam Cu-

mediated N-arylation reaction.230 Boronic acids are generally considered to be green 
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chemicals as they oxidize and degrade into boric acid, a boron derivative with the 

approximate toxicity of NaCl (Merck Index CAS 10043-35-3). The appeal of the boronic 

acid functional group for biologically-associated applications is due in part to the 

negligible toxicity of these compounds. This safety has resulted in the implementation of 

boronic acids as therapeutics, chemical biology tools and sensors, and drug-delivery 

vehicles.231  

 

2.1.2 Synthetic Transformations of Boronic Acid Derivatives 

 The implementation of boronic acids into chemical biology and medicinal 

chemistry has created a need for methodological requirements that facilitate handling of 

these functional groups. Because early interest in boronic acids was for their intermediate 

value, less focus has been given to utilization of this valuable group when it is carried 

through synthetic transformations. When the boronic acid functional group is needed as 

part of the final synthetic target, one frequent strategy is to install the boronic 

functionality either very late or as the final step in the synthesis. The available methods 

for installation of an aryl or alkyl boronic acid generally create a carbon nucleophile and 

as a result require harsh conditions and/or metal catalysts that are incompatible with 

many common functional groups found on compounds intended for biological use, such 

as amines or hydroxyl groups. This lack of compatibility requires installing additional 

protecting groups, adding synthetic steps that lengthen syntheses and present additional 

compatibility considerations. Additionally, the polarity and potential charge of boronic 

acids can confound the isolation and purification of these molecules. Consequently, most 
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of these endeavors progress through lengthy and difficult synthetic routes with 

characteristically poor recovery of intermediates and disappointing yields.  

 

2.1.3 Protection of Boronic Acids with the Pinacol Group 

 Pinacol, or 2,3-dimethyl-2,3-butanediol, was the first molecule used commonly to 

protect boronic acids. The condensation of a boronic acid with pinacol produces a 

boronic pinacol ester with a relatively stable 5-membered ring centered at boron (Figure 

2.1.2). The pinacol protection of a boronic acid provides multiple benefits. The boronic 

ester moiety facilitates handling and isolation of the boron-derivative as it eliminates 

hydrogen bonds, reducing polarity and increasing solubility in organic solvents. The 

pinacol ester provides another benefit by mitigating the reactivity of the Lewis-acidic 

boron through two effects. First, the four methyl groups on pinacol sterically shield the 

empty orbital on boron from the approach of nucleophiles. Secondly, the oxygen atoms 

of the pinacol ester provide electronic stability for the boron as the lone pairs of oxygen 

in boronic esters are more readily conjugated into the electron-deficient boron in part due 

to the σ-donating ability of carbon (Figure 2.1.2).232 Ultimately, the pinacol ester serves 

as a protecting group because it diminishes the Lewis-acidity of the boron, making 

boronic esters less reactive than boronic acids. 

 

2.1.4 Organotrifluoroborates as Surrogates for Boronic Acids 

 Although potassium organotrifluorborate salts (R-BF3
–K+) are not technically 

boronic acids, these compounds provide another approach to the facile usage and 



	
  

	
  
	
  

280	
  

handling of boronic acids. These salts avoid much of the inherent instability of 

tricoordinate boron species. Although they were characterized first in 1960,233 their 

general utility was not recognized until the widespread incorporation of boronic acid 

cross-coupling reactions into synthetic chemistry three decades later. 

Organotrifluoroborates have three fluorine substituents and are tetrahedral in geometry 

(Figure 2.1.3). As a result of the additional fluorine ligand bonded to boron, they are not 

Lewis-acidic like the parent boronic acid. Potassium organotrifluoroborate salts can be 

prepared easily from boronic acids by treatment with KHF2. Following the reaction, it is 

easy to isolate the trifluoroborate salt by precipitation or crystallization from an organic 

solvent such as acetone after the insoluble KF salts are removed by filtration or Soxhlet 

extraction.234 Typically, as the salts of potassium, most organotrifluoroborates are 

crystalline solids or powders. This crystallinity simplifies handling and storage. These 

compounds can be effectively analyzed for purity through multinuclear 19F- and 11B-

NMR experiments, in addition to 1H- and 13C-NMR experiments. 

 Trifluoroborate derivatives have been applied for a surprising and impressive 

number of various chemical transformations without loss of the functional group.235 

Some examples include substitution reactions,236 reductive aminations,237 

oxidations,238,239 and 1,3-dipolar cycloadditions.240 These derivatives also perform well as 

substrates in the Suzuki coupling reaction.235,241 Organotrifluoroborates cannot be used 

for some applications as they are sensitive to hydrolysis or solvolysis, especially in the 

presence of fluorophiles such as silicon. Stirring the trifluoroborate salt in silica does, 

however, provide a simple and somewhat economical method for the deprotection and 

regeneration of the boronic acid. This deprotection method highlights the incompatibility 
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of this protecting group with silica-gel chromatography and ultimately limits any 

purification to alternative methods.242 

 

2.1.5 Diaminonaphthalene-Enabled Iterative Cross-Couplings of Boronic Acids  

	
   The first compound employed as a formal protecting group for boronic acids was 

diaminonaphthalene. Diaminonapthlalene (dan) is a napthalene derivative possessing two 

flagpole nitrogens in the 1 and 8 positions on the napthalene ring (Figure 2.1.3). Oddly, 

the complex of diaminonaphthalene with phenylboronic acid as well as an iteration with 

anthranillamide243 were first reported as potential chemosterilants for the common 

housefly.244 The ligand is installed by refluxing diaminonaphthalene with a boronic acid 

under conditions for the azeotropic removal of water. This installation involves refluxing 

toluene with a connected Dean–Stark apparatus to remove the two equivalents of water 

formed (Figure 2.1.4). The boron–diaminonaphthalene [B(dan)] complex uses the 

“flagpole” nitrogens of the naphthalene to form a six-membered ring centered on boron. 

This protecting group complex is more stable than pinacol boranes, in part due to the 

inherent strength of the boron–nitrogen bond. Additionally, the free lone-pair electrons 

on nitrogen can delocalize into the vacant orbital on the boron center with enough effect 

to shield the otherwise Lewis-acidic boron from nucleophilic attack. Lastly, the relatively 

high pKa of the N-bound protons makes this complex stable to most bases. 	
  

 Dan-protected boronic acids can survive some synthetic transformations but were 

primarily developed for iterative cross-coupling reactions. In this method, one coupling 

reaction can be performed at another location on the B(dan) protected compound; then, 

the diaminonaphthalene can be removed and the deprotected boronic acid can participate 
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in a second cross-coupling sequence.245-248 The increased stability of the B(dan) complex 

over the pinacol boron has been demonstrated by the selective Suzuki reaction of the 

pinacol borane on a differentially protected diboron compound presenting both 

functionalities.249 The –B(dan) complex can be deprotected to unmask the boronic acid 

through an extended reaction of 24–48 h with aqueous acid that cleaves the group 

through protonation of the nitrogens and subsequent hydrolysis.245   

 

2.1.6 Multistep Transformations with MIDA Boronic Acids 

 The most recently developed protecting group for boronic acids employs multiple 

effects to mitigate the reactivity of boron. This strategy utilizes the commercially 

available trivalent ligand methyliminodiacetic acid (MIDA) to create a tetracoordinate 

boron species from two bonds to carboxylate oxygens and a single bond to a tertiary 

nitrogen (Figure 2.1.5). The two carboxylate oxygens on MIDA replace the hydroxyls of 

the boronic acid, and the tertiary amine occupies the site of the p-orbital, otherwise 

vacant in tricoordinate boron species. The dative N–B bond is atypically long and permits 

the otherwise strained bicyclic arrangement. Because the nitrogen is tertiary, the 

formation of this fourth bond with both atoms creates a charge-neutral complex between 

the two opposing formal charges on boron and nitrogen (Figure 2.1.5). The MIDA-

protected boronate is typically a crystalline solid that is air and temperature-stable, and 

can be purified through silica-gel chromatography.250 

 The stability conferred by MIDA-boronates allows for a significant number of 

synthetic transformations on distal functional groups without disruption or degradation of 

the boron functionality. Although originally developed to create a bench- and air-stable 
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boron reagent that could be applied for iterative cross-couplings, MIDA-boronates are 

resistant to anhydrous base but can be very rapidly deprotected with mildly basic aqueous 

conditions, likely through a saponification process.251 MIDA-boronates require 

specialized conditions for the Suzuki reaction such as a phosphate base and anhydrous 

solvent, but because of the speed and efficiency of deprotection, they are more amenable 

to iterative cross-coupling reactions which can be performed by “slow-release” of the 

unmasked boronic acid.250 These features of MIDA allow for boron-containing products 

to be carried through a number of different transformations, including several oxidations, 

reductive aminations, and Horner-Wadsworth-Emmons and Takai olefinations, in 

addition to cross-coupling chemistry.252 The strategy of MIDA protection was extended 

to effect stereochemical control—the N-methyl group on MIDA was substituted to a 

chiral ligand to form PIDA, a pinene-iminodiacetic acid derivative for stereoselective 

synthesis and subsequent iterative cross coupling.253 Although MIDA-boronates allow for 

a significant improvement in the handling and versatility of boronic acids, they are 

incompatible with DIBAL, TBAF, LiAlH4, and metal alkoxides.252 

 

2.1.7 Benzoxaborole 

 Among all boronic acids, the Raines laboratory has been interested principally in 

the benzoxoaborole derivative. This special boronic acid was first synthesized by Torssell 

in 1957254 but the widely accepted value of this compound occurred with the discovery 

by Hall and coworkers that benzoxaborole binds strongly to diols—in particular those 

found on carbohydrates.255 This sugar-binding affinity is much higher than that of other 

boronic acids because of the strain imparted through the annulated 5-memberd oxaborole 
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ring.256 Under physiological conditions this effect results in a notable pKa difference; 

phenylboronic acid has a pKa of 8.7 whereas benzoxaborole has a pKa of 7.3.257 Although 

new benzoxaboroles have been reported only in the last few years, this functional group 

has been used for a tremendous number of biologically-relevant applications that take 

advantage of its high water solubility and very low toxicity. This work has been outlined 

thoroughly in recent reviews.258,259 Some examples of benzoxaborole versatility include 

applications as β-lactamase inhibitors,260 antibacterial agents,261 antivirals specifically for 

hepatitis C,262-264 and even anti-inflammatory therapeutics.265,266 The Raines group has 

also shown benzoxaborole to be a useful drug-delivery agent for protein internalization 

owing to interactions between the boronic acid and cell-surface glycans.267 Additionally, 

one benzoxaborole, Tavaborole®, is a recently FDA-approved treatment as a topical 

solution for onychomycosis.268  

 

2.1.8 A Protecting Group for Benzoxaborole 

 While the described protecting group strategies have all contributed greatly to the 

advancement of chemical pursuits employing boronic acids, none of these approaches can 

be applied for the most potent boron-containing pharmacophore, benzoxaborole. The 

biologically directed pursuits of the Raines laboratory involve applications of this 

unusual boronic acid, but there remains a lack of developed methodology for the 

synthetic manipulation of this scaffold. For benzoxaborole, the annulated 5-membered 

oxaborole ring and internal boronic ester is remarkably stable. This makes this group 

incompatible with trivalent ligands that protect other boronic acids. 
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 Taking inspiration from the approaches applied successfully for boronic acids, I 

prepared and developed a divalent protecting group for benzoxaborole (Figure 2.1.4). 

This work is the focus of Chapter 2 of Part 2. The compound is derived from Proton 

Sponge® and combines the divalent coordination of diaminonaphthalene with the charge 

neutrality of MIDA in the form of the tertiary amine of 1-dimethylamino-8-

methylaminonaphthalene. Following coordination with benzoxaborole, the protected 

complex is fluorescent. This fluorescence aids in tracking products through synthetic 

transformations during thin-layer TLC as well as silica-gel chromatography. The new 

protecting group is highly stable under extremely basic conditions as it lacks any acidic 

protons, and the occupancy of the otherwise empty p-orbital on the benzoxaborole boron 

atom upon quaternization shields the boron from nucleophilic attack. I applied this novel 

protection strategy to a variety of benzoxaboroles that include other pendant functional 

groups such as amines, benzyl ethers, hydroxyl groups, and esters (Figure 2.1.4). 

Following protection of the benzoxaborole moiety, these compounds were subjected to a 

number of synthetic transformations that would not be possible without the protecting 

group on boron. I performed reactions on distal functional groups including amide 

couplings, protections and deprotections, Suzuki–Miyaura cross-couplings, and 

Buchwald-aminations. The boron-protecting group is removed by aqueous acid, but is 

stable to anhydrous acid. This strategy expands the chemical scope of benzoxaboroles, as 

very few derivatives are known and even fewer are available commercially. With this 

new technology, future advancements are enabled for this special boronic acid. 
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2.1.9 Boron-Specific Sensing and Recognition 

 Fluorescent indicators, imaging, and spectroscopy are arguably the most critical 

tools for the translation of chemical information, such as the presence and concentration 

of some compound of interest into a measurable analytical output. Boron and boronic 

acids have played a substantial role in the development of many fluorescent sensors. 

Boron sensing first originated for the analysis of boron levels in soil and water 

samples,269-271 but widespread application of boron in sensing and sensors arose only 

after the development of boron-based fluorophores and the recognition of boronic-acid 

based assays for saccharide detection.272  

 

2.1.10 Boron-Based Fluorophores 

 The dipyrrole-based boron fluorophores represent a successful and widely used 

class of fluorescent dyes for biological labeling. Those based on 4,4-difluoro-4-bora-

3a,4a-diaza-s-indacene, commonly known as BODIPY,273 possess many desirable 

attributes, including photo- and chemical stability, high molar absorption coefficients 

(ε) and fluorescence quantum yields (Φ), narrow emission bands with good intensity, 

excellent solubility, and excitation and emission frequencies within the visible 

spectrum.274 Due to its high hydrophobicity and neutral charge, BODIPY can diffuse 

through the cellular membrane, and modifications to the dipyrrole scaffold have afforded 

derivatives that can be targeted intracellularly to various organelles, the cytosol, and 

mitochondria. Additionally, many derivatives exist for tagging of biomolecules such as 

proteins. As a result, various types of BODIPY dyes have been developed for 

fluorescence imaging within living systems, and several are commercially available.275 
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2.1.11 Boron-Sensing Chromophores 

 Boron-based sensors and indicators have gained popularity as a result of 

applications that apply competitive binding assays with boron to determine concentration 

of an analyte. The most common type of assay involves the 1,2-diol containing alizarin 

red-S (ARS) and a boronic acid with which reversible conjugate formation can occur. In 

complexation with a boronic acid, a notable red to orange hypsochromic shift is observed 

as compared to free ARS.272 Upon exposure to an analyte that can bind the boronic acid, 

such as a saccharide, the ARS is displaced and the color change can be used to determine 

saccharide concentration.276  

 Curcumin, the principle curcuminoid found in the spice turmeric, also functions 

as a colorimetric indicator for boron. Curcumin possesses a 1,3-diketone moiety in the 

center of an extended, conjugated π-system. The 1,3-diketone undergoes keto–enol 

tautomerization and as a result, curcumin effectively chelates boron to generate a 

bathochromic spectral shift from the turmeric orange to red. A 2:1 complex of two 

curcumin molecules with one boric acid is known as rosocyanine, and the red absorbance 

maximum at 540 nm is used for quantification of boron.  

 

2.1.12 Boron-Sensing Fluorophores 

 The widespread utilization of boronic acids through synthetic chemistry has 

necessitated techniques that facilitate their application. The in situ observation and 

monitoring of boronic acids by fluorescence represents a newer use for boron-sensors. 

Buchwald and coworkers demonstrated that a fluorescent sensor can be used as a means 

to assess the state of boronic acids readily in a given reaction. Their method employs a 
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dihydroxy coumarin fluorophore that can bind to boronic acids without interfering with 

the cross-coupling reaction.277 The complex created upon binding a boronic acid initiates 

a visible increase in fluorescence intensity when illuminated with a common long-

wavelength handheld UV lamp (365 nm) relative to the unbound coumarin. This visible 

change upon complex formation allows for the qualitative determination of reaction 

progress through the consumption of the boronic acid reactant. 

 

2.1.13 Determination of Boron with ESIPT Fluorescence 

 To ameliorate the challenges presented in assessing and monitoring boronic acids 

during synthetic transformations, I pursued a simple strategy for the detection of boron 

and boronic acids. The results of this work comprise Chapter 3 of Part 2. A method that 

facilitates the detection of boronic acids needs to be very sensitive, but must also apply 

simple and rapid techniques common to the organic chemistry laboratory. In organic 

chemistry, the simplest and most frequently applied method to monitor reaction progress 

and reagent purity is thin-layer chromatography. The divalent protecting group of 

Chapter 2 of Part 2 forms a fluorescent complex with a protected benzoxaborole. During 

synthetic transformations of the protected benzoxaborole compounds, its bright 

fluorescence confers a significant advantage. The development of a boron-specific TLC-

stain provides this same advantage to all boronic acids. 

 10-Hydroxybenzo[h]quinolone (HBQ) is a molecule that rapidly forms a complex 

with the benzoxaborole moiety to produce a very bright fluorescent adduct. I applied 

HBQ as a boron-specific indicator for TLC and materials applications as outlined in 

Chapter 3 of Part 2. HBQ is a known excited-state intramolecular proton transfer 
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fluorophore (ESIPT) that is excited at 365 nm but has an emission wavelength ~600 nm 

(Figure 2.1.5). In complexation with a boronic acid, ESIPT is interrupted for HBQ, and 

the shorter, brighter emission is observed.  

 

2.1.14 Conclusions 

 Part 2 of this thesis details the establishment of two novel tools to facilitate the 

application and development of boronic acids for chemical biology. The second chapter 

includes a robust protecting group for benzoxaborole—the most widely employed 

oxaborole in medicinal chemistry and a valuable functional derivative of boronic acid 

with great potential in drug delivery. The third chapter in this second part also includes 

the establishment of a novel method for the detection of boron and boron-containing 

compounds based on interruption of the ESIPT photophysical process. This method is 

readily applicable with TLC methods, and can also provide quantitative information 

regarding boron concentration. My hope is that these advances become utilized widely 

and enable future endeavors for this field. 
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Figure 2.1.1 Boron-variations utilized in organic chemistry are sorted by oxidation 

state. 
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Figure 2.1.1 Boron-variations utilized in organic chemistry are sorted by oxidation state. 

 

  



	
  

	
  
	
  

292	
  

2.1.2 Protection of a boronic acid with pinacol generates a boronic ester. 
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Figure 2.1.2 Protection of a boronic acid with pinacol generates a boronic ester. 
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Figure 2.1.3 Common protecting group strategies for boronic acids 
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Figure 2.1.3 Common protecting group strategies for boronic acids: (1) pinacol-borane, 

(2) borane-diaminonaphthalene complex B(dan), (3) potassium trifluoroborate salt, (4) 

MIDA boronate.   
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Figure 2.1.4 Applications of benzoxaborole in medicinal chemistry and chemical 

biology. 
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Figure 2.1.4 Applications of benzoxaborole in medicinal chemistry and chemical 

biology. Adapted from ref. 258. 
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Figure 2.1.5 The protecting group derived from Proton Sponge® facilitates synthetic 

manipulation of compounds containing the benzoxaborole moiety. 
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Figure 2.1.5 The protecting group derived from Proton Sponge® facilitates synthetic 

manipulation of compounds containing the benzoxaborole moiety.  
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Figure 2.1.6 The boron-interrupted emission of HBQ is ~200 nm shorter than the 

typically predominating ESIPT emission. 
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Figure 2.1.6 The boron-interrupted emission of HBQ is ~200 nm shorter than the 

typically predominating ESIPT emission.  This shift generates a clearly visible color 

change that indicates the presence of boron-containing compounds. 
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PART 2 

CHAPTER 2 

 

 

A Divalent Protecting Group for Benzoxaboroles 

 

 
 
Contributions: I synthesized the Proton Sponge derived protecting group, benzoxaborole 

derivatives, performed the base-stability and acidic deprotection assays, and the synthetic 

transformations. Brett VanVeller and I cowrote the manuscript.  

Note: The following chapter was published in part as Brett VanVeller, Matthew R. 

Aronoff, and Ronald T. Raines (2013). RSC	
  Advances	
  3, 21331–21333. 

This work also appears in the following patent: Protecting Groups for Boronic Acids 

P130142US01 Raines, R. T.; VanVeller, B.; Aronoff, M. R. 
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Abstract 

1-Dimethylamino-8-methylaminonaphthalene is put forth as a protecting group 

for benzoxaboroles. The ensuing complex is fluorescent, charge-neutral, highly stable 

under basic conditions, stable to anhydrous acid, and readily cleavable in aqueous acid to 

return the free benzoxaborole. 
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2.2.1 Introduction 

Benzoxaborole is an annulated boronic acid that—in the last five years—has 

become a privileged structure in drug discovery and biotechnology. Well beyond its role 

as “just another” reacting partner in Suzuki–Miyaura reactions, the benzoxaborole 

scaffold can serve as a potent pharmacophore in medicinal chemistry and possesses 

desirable properties for carbohydrate recognition. Its empty boron p-orbital, however, 

complicates its reactivity and isolation. Classical boron-protecting groups are ineffective 

for protection of benzoxaborole. Here, in Chapter 2 I report a novel protecting group 

designed to resolve current limitations. The resulting protected complexes are easily 

formed and readily compatible with extractive and chromatographic separations, as well 

as synthetic reagents commonly employed in multistep syntheses. The protecting group is 

stable to basic and anhydrous acidic conditions, but cleaves readily to return intact 

benzoxaborole with aqueous acid.  

 Oxaborole heterocycles are boronic acids that are receiving much attention for 

applications in drug discovery,278-287 synthetic methodology,288 molecular 

recognition,255,289-293 and biotechnology.267,294-297 Benzoxaborole (1; Figure 2.1.2),298 

which is characterized by a phenyl ring fused to a five-membered oxaborole, is the 

most widely employed oxaborole pharmacophore in medicinal chemistry.278-287 

Compared to phenylboronic acid, the annulated benzylic alcohol in 1 confers high 

stability,299 low pKa,300 and superior polyol-binding (1→2) under physiological 

conditions (i.e., water near neutral pH),255,289,293,301 favorable attributes for 

applications that entail binding to carbohydrates. 255,267,289-297 

 The vacant p-orbital on boron—essential for complexation with polyols—can 
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confound multistep synthetic routes and the purification/isolation of derivatives. This 

issue is compounded further by the commerical availability of countless elaborately 

functionalized boronic acids but only a small number of simple benzoxaboroles. Our 

interest in benzoxaboroles for the cellular delivery of chemotherapeutic agents267 and 

other pharmacological applications drove us to develop a protecting group for 1 that 

would enhance its synthetic utility.  

 A variety of successful protecting group strategies have been developed to 

modulate the undesired reactivity of boronic acids. A common example is a pinacol 

ester (3), which sterically shields the p-orbital from reaction. Similarly, Suginome and 

coworkers demonstrated the reduced reactivity of boronic acids in a complex with 

1,8-diaminonaphthalene (4).302,303 An often-employed strategy developed by 

Molander and coworkers capitalizes on the fluoro-affinity of boron to form a 

trifluoroboronate salt (5).234,304 While highly stable, these salts are incompatible with 

chromatography, limiting their utility in multistep synthetic routes. Burke and 

coworkers have popularized a trivalent N-methyliminodiacetic acid (MIDA)305 ligand 

for boronic acids that coordinates the vacant p-orbital with a trialkylamine through a 

dative bond to give a charge-neutral complex (6).251,306 This complex is broadly 

compatible with synthetic reagents and chromatographic purification.252 The trivalent 

MIDA group is not, however, suitable for protecting 1, which can coordinate to only 

two ligands. Divalent protecting groups like 3 and 4 are also not appropriate for 1 

because they would lead to anionic complexes (7 and 8). Likewise, fluoride protection 

would yield an anionic difluoroborate salt (9).  
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2.2.2 Results and Discussion 

 We sought to apply the principle of charge neutrality, as demonstrated by the 

efficacious MIDA protecting group, to the divalent protection of benzoxaboroles. 

Inspired by the strong complexes that simple boronic acids form with 1,8-

diaminonaphthalene (4),302,303 we devised a protecting group based on 1,8-

bis(dimethylamino)naphthalene307 (Proton-sponge®) to generate charge-neutral 

complexes with 1 that maintain a Lewis basic site to promote acid-mediated cleavage 

(Figure 2.2.3). We found that complexes 11a–e were fluorescent, stable to basic 

conditions, moderately stable to anhydrous acid, and readily deprotected under 

aqueous acidic conditions. 

 Following a previous report,308 1,8-bis(dimethylamino)naphthalene was mono-

demethylated to give 1-dimethylamino-8-methylaminonaphthalene (10) in one step of 

>90% yield without chromatography. After azeotropic removal of water, 1a–e and 10 

readily formed complexes 11a–e (Figure 2.2.3). Excess 10 was necessary for high 

yields, but unreacted 10 was re-isolated quantitatively by chromatography (Figure 

2.2.4 B, inset). Formation of the complex generated a tetrahedral boron center 

(1c→11c 11B NMR δ 33.2 sp2 → δ 9.1 sp3)305 that was stereogenic—the benzylic 

protons of 1 became nonequivalent (Figure 2.2.4 A) and served as signature of 

complex formation. The complex was characterized with x-ray crystallography 

(Figure 2.2.4 C). 

 Next, we investigated the generality of our protecting group design. First, we 

investigated a small library of compounds similar to 10 for protection of 1a (see 

section 2.2.5). Only 10, however, led to complexes that were stable during 
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chromatography. α-Amino acids (which resemble divalent versions of MIDA) are 

known to form stable complexes with dialkyl boranes (i.e., borinic acids).309 We 

found these complexes to be too fragile for effective protection of 1. From these data, 

we conclude that the stability of complexes 11a–e stems from both the rigid structure 

imposed by the diaminonaphthalene ring and the strongly donating nitrogen ligands. 

The ease of purification also relies on coordinating the vacant p-orbital through a 

dative bond supplied by the dimethyl amino ligand to create a charge-neutral 

complex. Finally, we note that 11a–e are highly fluorescent (11a, ΦF = 0.45, Fig. 

2.2.2B and inset) allowing for easy tracking of product derivatives (11–18) during 

multi-step synthesis and purification using a standard long-wave (365 nm) bench-top 

lamp.310 Complex 11a was subjected to a screen of conditions to determine its 

stability (Table 2.2.5, representative time points, see section 2.2.7 for kinetic traces 

and further discussion). In general, 11a is deprotected readily under aqueous acidic 

conditions (entries 1–3), but exhibits modest (i.e., kinetic) stability under anhydrous 

acid (entries 4–6) (Table 2.2.5). This sensitivity to acid affirms an aspect of our 

design—protonation of the methylamino group leads to weaker binding and allows for 

hydrolytic cleavage. In contrast, 11a is highly stable under basic conditions (entries 

7–10). This reactivity indicates that protecting group 10 is well suited for solid-phase 

peptide synthesis,290 in which amino acids are coupled under basic conditions and 

subsequently cleaved from a solid-support using acid. Finally, the complex tolerated 

strong reducing reagents, such as LiAlH4 (entry 11). We do note that oxidative 

conditions were not compatible with 11b and lead to complex mixtures. This 

sensitivity is not surprising due to the electron-rich nature of the diaminonaphthalene 
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moiety, which is prone to oxidation.311,312  

 To explore further the stability of the protecting group, we evaluated 11b, 11d, 

and 11e under a series of synthetic transformations (Figure 2.2.6, see section 2.2.8 for 

11b). As expected, the complex was able to tolerate reducing conditions such as 

H2/Pd (11e→12). Conversion of 12 to triflate 13 and subsequent Suzuki–Miyaura 

coupling using an XPhos palladacyclic precatalyst,313 provided 14 in high yield. 

Notably, 10 prevented reaction at the benzoxaborole center.314,315 Recent data suggest 

that Suzuki–Miyaura reactions necessitate a vacant boron p-orbital,316 validating our 

protecting group design.317  

 The base stability of the complex allowed for Buchwald–Hartwig C–N cross-

coupling of the protected boron center to give 15 from 11d.318,319 As noted above, 

protecting group 10 is compatible with organic amine bases associated with peptide 

bond formation reagents to provide 16 in high yield (94%). In comparison, a similar 

peptide coupling reaction attempted with unprotected 1d provided only a 23% yield 

of the amide 18. Notably, in both the Pd-catalyzed and peptide-coupling reactions, the 

methylamino groups in 11d are unreactive. Finally, evincing the utility of the 

protecting group under anhydrous acid, selective deprotection of the amino group in 

16 with HCl in dioxane gave 17 in good yield (78%), while the benzoxaborole moiety 

could be deprotected selectively with aqueous acetic acid to return 18. 

 

2.2.3 Future Directions and Conclusions  

 In conclusion, benzoxaborole 1 has become a privileged entity in medicinal 

chemistry and for carbohydrate recognition. Its continued development will rely on 
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the efficiency of its derivitization. We have demonstrated the stability and utility of 1 

and other benzoxaboroles when protected with 10. Protecting group 10 occupies the 

vacant p-orbital on boron while creating charge neutrality in the final product. Its 

complexes are formed readily and are compatible with synthetic reagents and 

separation/purification techniques employed commonly in multistep syntheses to 

enable or improve the efficiency of manipulating benzoxoborole. 
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Figure 2.2.2 Structure of free benzoxaborole (1), its complexation with a polyol (2), 

and other general structures of protected boronic acids (3–6) and their unsuitable 

complexes (7–9) with 1. 
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Figure 2.2.2 Structure of free benzoxaborole (1), its complexation with a polyol (2), 

and other general structures of protected boronic acids (3–6) and their unsuitable 

complexes (7–9) with 1. 
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Figure 2.2.3 Protection of benzoxaborole derivatives 
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Figure 2.2.3 Protection of benzoxaborole derivatives 
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Figure 2.2.4 Characterization of complex 11a 
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Figure. 2.2.4 Characterization of complex 11a. (A) 1H NMR spectra of 1a and 11a 

showing the splitting of benzylic proton signals in 1 into two diasteriotopic doublets. (B) 

Absorbance (black) and fluorescence (blue) spectra of 11a in CHCl3. Inset: silica gel 

thin-layer chromatography plate (0.5% v/v MeOH in DCM, Rf = 0.7 separation between 

10 and 11a) illuminated under short (254 nm) and long (365 nm) wavelength light. (C) 

X-ray crystal structure of racemic 11a with anisotropic thermal ellipsoids set at 50% 

probability and hydrogen atoms omitted. (i) 11a showing both components of positional 

disorder. (ii) and (iii) Disorder components (enantiomers) separated for clarity. 
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Table 2.2.5 Screening of the stability of 11a under various conditions 

 

 

 

 

 

 

Screening of the stability of 11a under various conditions a 

Entry Conditions % Cleaved Time (h) 
1 0.5 M HCl in (THF/H2O, 1:1) b  94    4 
2 0.5 M TFA in (THF/H2O, 1:1) b  99    4 
3 0.5 M AcOH in (THF/H2O, 1:1) b  90    4 
4 0.5 M TFA in DCM b  82    4 
5 0.5 M BF3OEt2 in DCM b  43    4 
6 4 M HCl in dioxane b  30    4 
7 0.1 M pH = 7 PBS in THF (1:1) c    0  36 
8 0.5 M NaOH in (THF/H2O, 1:1) c    0  72 
9 20% v/v piperidine in CH2Cl2 c    0  72 
10 20% v/v DIEA in CH2Cl2 c    0  72 
11 0.5 M LiAlH4 in THF b,c    0    2 
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Table 2.2.5 aAverage of two experiments at 0.1 M 11a with 4-bromo-2,6-dimethylaniline 

as an internal standard. bAnalyzed with LC-MS. cAnalyzed with 1H NMR spectroscopy. 
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Figure 2.2.6 Synthetic evaluation of protected benzoxaborole derivatives 

  

 

 

 



	
  

	
  
	
  

319	
  

 

 

 

 

 

 

 

 

 

 

Figure 2.2.6 Synthetic evaluation of protected benzoxaborole derivatives; yields are 

isolated but not optimized. 

	
    



	
  

	
  
	
  

320	
  

2.2.5 Materials & Methods 

Materials 

Silica gel (40 µm) was from SiliCycle. All reagent-grade materials were from Sigma–

Aldrich (St. Louis, MO) and were used without further purification, except for 2 

hydroxymethylphenylboronic acid and 5-amino-2-hydroxymethylphenylboronic acid, 

which were from Combi-Blocks (San Diego, CA). 

 

Solvent removal 

The phrase “concentrated under reduced pressure” refers to the removal of solvents and 

other volatile materials using a rotary evaporator at water aspirator pressure (<20 torr) 

while maintaining the water-bath temperature below 40 °C. Residual solvent was 

removed from samples at high vacuum (<0.1 torr). The term “high vacuum” refers to 

vacuum achieved by mechanical belt-drive oil pump.  

 

NMR Spectroscopy 

1H, 13C, and 11B NMR spectra for all compounds were acquired on Bruker Spectrometers 

in the NMRFAM at the University of Wisconsin–Madison operating at 500 and 125 MHz. 

The chemical shift data are reported in units of δ (ppm) relative to residual solvent and to 

20% v/v BF3-etherate in CDCl3 as an external standard for 11B NMR spectroscopy.  

 

Absorption and Emission Spectroscopy 

Fluorescence spectra were measured with a Photon Technology International 810 

fluorometer using right-angle detection. Ultraviolet–visible absorption spectra were 

measured with a Varian Cary 300 Bio diode array spectrophotometer and corrected for 
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background signal with a solvent-filled cuvette. Fluorescence quantum yields in CHCl3 

were determined relative to quinine sulfate in 1 N H2SO4, and were corrected for solvent 

refractive index and absorption differences at the excitation wavelength. 

 

Analyses of Deprotection 

Deprotection reactions were run with 4-bromo-2,6-dimethylaniline as 

an internal standard. Samples were taken from the deprotection reaction mixtures at 

known times and diluted with methanol, and the extent of cleavage was analyzed with an 

LCMS-2020 single quadrupole liquid chromatograph mass spectrometer from Shimadzu 

(Kyoto, Japan) using an H2O/MeCN (0.1% v/v formic acid) gradient suitable for baseline 

separation of starting material and the internal standard. 

 

2.2.6 Evaluation of Other Protecting Groups 

 

The above compounds were tested for complexation of 1a by refluxing in ethanol or 

toluene. (Dean–Stark conditions applied in the case of toluene.) The potential protecting 

groups were selected because they possess a donor nitrogen ligand that would lead to a 

charge neutral complex (i.e., a tertiary or pyridine nitrogen). Except for 10, all of the 
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protecting groups above did not form complexes with 1a that were stable to 

chromatographic and/or extractive purification. Notably, 19, 26 and 28 formed 

complexes that were stable enough for characterization (see table of contents), but were 

too fragile for further manipulation. Compounds 28 and 29 have been described to form 

complexes with borinic acids, but were not effective for benzoxaborole.309,320
 Of 

particular note is the failure of 20—a 5-membered variant of 10—as a protecting group. 

Potential protecting groups with oxygen ligands (-OH, -CO2H) would often form 

protected products that were distinguishable by TLC, but would decompose during 

subsequent extractive or chromatographic purification. Finally, protecting groups that 

were able to form 6-membered ring complexes with 1a were formed more readily. 

 

2.2.7 Deprotection Analyses 

 

Kinetic traces for the deprotection of compound 11a. Percent cleavage was determined 

through comparison of integrations against the internal standard from the LCMS trace 

and averaged from replicates. Data were fitted to an exponential decay curve with the 

program Prism 5.0 from GraphPad Software (La Jolla, CA). 

Discussion. The complex shows modest kinetic stability in the presence of certain 

anhydrous acids such as BF3(EtO)2 and 4 M HCl in dioxane. The initial cleavage rates for 
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these two acids began at 20% due to contaminating water. The synthesis of 17 and 18 

confirms the complexes kinetic stability to anhydrous acid and susceptibility to aqueous 

acid (see Scheme 3 in the main text). Finally, extent of cleavage was made based on 

disappearance of 11a because boronic acids have poor detection thresholds under LCMS. 

The cleaved product was confirmed to be the expected benzoxaborole as shown in NMR 

spectra comparing compound 18, 10, and the reaction of compound 16. 
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2.2.8 Synthesis 

 
 

Synthesis of 1c. 2,5-Bis(hydroxymethyl)phenylboronic acid (0.41 g, 2.5 mmol) was 

dissolved in DCM (25 mL). Triethylamine (0.35 mL, 2.5 mmol), dimethylaminopyridine 

(0.015 g, 0.125 mmol), and acetic anhydride (0.473 mL, 5 mmol) were added, and the 

resulting mixture was stirred for 12 h. The reaction mixture was concentrated under 

reduced pressure, dissolved in EtOAc (15 mL), and washed with 1 M sodium citrate (3 × 

10 mL), dried over Na2SO4(s), and concentrated under reduced pressure to yield 1c 

(80%). 1H NMR (400 MHz, CDCl3) δ 7.63 (s, 1H), 7.47 (d, J=7.8 Hz, 1H), 7.37 (d, J=7.8 

Hz, 1H), 5.13 (s, 2H), 5.06 (s, 2H), 2.07 (s, 3H). 13C NMR (125 MHz, MeOD) δ 172.37, 

136.30, 132.00, 130.99, 129.22, 122.27, 67.14, 66.76, 20.85. 11B NMR (CDCl3, 96 MHz) 

δ 33.20. HRMS (ESI) calcd. for C11H13BO4 [M+NH4]+ 237.1282, found 237.1288.  

 

Synthesis of 1e: 6-Benzyloxy-1,3-dihydro-1-hydroxy-2,1-benzoxaborole was prepared 

following the reported method of Qiao and coworkers,287 with the following changes. 

5-(Benzyloxy)-2-formylphenylboronic acid (0.5 g, 1.95 mmol) was dissolved in THF 

(15 mL), and the resulting solution was cooled to 0 °C. To this solution under stirring, 

NaBH4 (0.094 g, 2.5 mmol) was added. After stirring for 2 h, 1 M HCl (6 mL) was added, 

and the resulting mixture was concentrated under reduced pressure, extracted with EtOAc 
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Me2
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(3 × 10 mL), and dried over Na2SO4(s). The resulting white solid was recrystallized from 

water to give 1e (6-benzyloxy-1,3-dihydro-1-hydroxy-2,1-benzoxaborole) (94%). 

 

Synthesis of 11a. 1-Dimethylamino-8-methylaminonaphthalene (10)308 (0.540 g, 

2.7 mmol), and (2-hydroxymethyl)phenylboronic acid (0.120 g, 0.9 mmol) were 

dissolved in 20 mL of dry toluene. The reaction mixture was fitted with a Dean–Stark 

trap (filled with 5 mL of dry toluene) and condenser, then heated at 125 °C for 24 h. The 

reaction mixture was cooled to room temperature, concentrated under reduced pressure, 

dissolved in DCM (5 mL), washed with 2.5 M NaOH (3 × 10 mL), dried over Na2SO4(s), 

and concentrated under reduced pressure to a brown oil. The residue was purified by 

silica gel chromatography (1% MeOH in DCM) to provide 11a (92%) and quantitative 

re-isolation of 10. 1H NMR (500 MHz, CDCl3) δ 7.76 (d, J=8.3Hz, 1H), 7.45 (t, J=7.9 Hz, 

1H), 7.35 (t, J=7.9 Hz, 1H), 7.18 (d, J=8.3 Hz, 1H), 7.11 (m, 2H), 6.77 (m, 1H), 6.59 (d, 

J=7.8 Hz, 1H), 6.14 (bs, 1H), 5.22 (d, J=13.9 Hz, 2H), 5.13 (d, J=13.9 Hz, 2H), 2.88 (s, 

3H), 2.86 (s, 3H), 2.71 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 149.17, 146.75, 143.66, 

135.87, 129.00, 128.87, 128.58, 127.20, 126.13, 124.79, 120.14, 117.49, 113.32, 112.61, 

105.43, 72.80, 46.29, 32.17. 11B NMR (CDCl3, 96 MHz) δ 9.25. HRMS (ESI) calcd. for 

C20H21BN2O [M+] 316.1857, found 316.1841.  

 
Synthesis of 11b from 1b. 2,5-Bis(hydroxymethyl)phenylboronic acid (0.164 g, 1 mmol) 

was dissolved in 1 mL of dry DMSO. To this solution was added compound 10 (1-

dimethylamino-8-methylaminonaphthalene) (0.6 g, 3 mmol), and 20 mL of dry toluene. 

The reaction mixture was fitted with a Dean–Stark trap (filled with 5 mL of dry toluene) 
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and condenser, then heated at 130 °C for 24 h. The reaction mixture was cooled to room 

temperature, concentrated under reduced pressure, dissolved in chloroform (5 mL), 

washed with 2.5 M NaOH (3 × 10 mL), dried over Na2SO4(s), and concentrated under 

reduced pressure to a brown oil. The residue was purified by silica gel chromatography 

(2.5% v/v MeOH in DCM) to provide 11b (85%) and quantitative re-isolation of 10. 1H-

NMR (500 MHz, CDCl3): d  7.78 (d 1H), 7.45 (t 1H), 7.37 (t 1H), 7.22 (d 1H), 7.17 (bd 

1H), 7.13 (d 2H), 6.09 (d 1H), 5.21 (d 1H), 5.13 (d 1H), 4.29 (s 2H), 2.91 (bs 3H), 2.87 (s 

3H), 2.75 (s 3H). 13C NMR (125 MHz, CDCl3): d  149.00, 146.55, 143.50, 138.57, 

135.87, 128.99, 128.67, 127.72, 126.82, 124.81, 120.40, 117.33, 113.43, 112.62, 105.37, 

72.55, 65.78, 50.11, 44.60, 32.18. 11B NMR (DMSO-d6, 96 MHz): δ 8.53. HRMS (ESI) 

calcd. for C21H24BN2O2 [M+] 346.1962, found 346.1972. 

 

Synthesis of 11c. Compound 1c (0.368 g, 1.91 mmol) and 10 (1-dimethylamino-8-

methylaminonaphthalene) (0.6 g, 3 mmol), were dissolved in 35 mL of dry toluene. The 

reaction mixture was fitted with a Dean–Stark trap (filled with 5 mL of dry toluene), and 

condenser, then heated at 125 °C for 15 h. The reaction mixture was cooled to room 

temperature, concentrated under reduced pressure, dissolved in chloroform (5 mL), 

washed with 2.5 M NaOH (3 × 10 mL), dried over Na2SO4(s), and concentrated under 

reduced pressure to a brown oil. The residue was purified by silica gel chromatography 

(97.5:2.5 DCM:MeOH) to provide 11c (86%) and quantitative re-isolation of 10. 1H-

NMR (500 MHz, CDCl3): d  7.78 (d 1H), 7.46 (t 1H), 7.38 (t 1H), 7.22 (d 1H), 7.12 (m 

3H), 6.61 (d 1H), 6.04 (bs 1H), 5.20 (d 1H), 5.13 (d 1H), 4.73 (m 2H), 2.90 (s 3H), 2.87 

(s 3H), 2.74 (s 3H), 1.93 (s 3H). 13C NMR (125 MHz, CDCl3): d  170.98, 149.44, 146.56, 
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143.48, 135.86, 133.42, 128.98, 128.65, 128.48, 127.25, 124.74, 120.31, 117.37, 113.46, 

112.60, 105.43, 72.59, 66.73, 32.13, 21.08. 11B NMR (CDCl3, 96 MHz) d  9.13. HRMS 

(ESI) calcd. for C23H25BN2O3 [M+]+ 388.2067, found 388.2080. 

 

Synthesis of 11d. 5-Amino-2-hydroxymethylphenylboronic acid (0.4 g, 2.7 mmol) was 

dissolved in 3 mL of MeOH and added to 10308 (0.8 g, 4 mmol) in 3 mL of toluene. The 

mixture was then evaporated to dryness to give an oil. The residue was dissolved in 20 

mL of toluene and heated to reflux under Dean–Stark conditions for 12 h under N2(g). 

The solution was concentrated under reduced pressure, and the residue was purified by 

silica gel chromatography (95:5, DCM:MeOH) to give 11d (88%) and quantitative re-

isolation of 10. 1H NMR (CDCl3, 500 MHz) δ 7.76 (d, J=8.5 Hz, 1H), 7.46 (dd, app t, 

J=8, 8 Hz, 1H), 7.37 (dd, app t, J=8, 8 Hz, 1H), 7.22 (d, J=7.5 Hz, 1H), 7.11 (d, J=8 Hz, 

1H), 6.91 (d, J=8 Hz, 1H), 6.60 (d, J=8 Hz, 1H), 6.49 (dd, J=8, 2 Hz, 1H), 5.49 (br s, 1H, 

H′), 5.14 (d, J=13 Hz, 1H), 5.06 (d, J=13 Hz, 1H), 2.89 (s, 3H), 2.87 (s, 3H), 2.76 (s, 

3H). 13C NMR (CDCl3, 125 MHz) δ 146.6, 144.2, 143.6, 139.7, 135.8, 128.9, 128.4, 

124.8, 120.6, 117.3, 115.3, 115.1, 113.1, 112.6, 105.2, 72.4, 50.1, 44.3, 32.1. 11B NMR 

(CDCl3, 96 MHz) δ 9.01. HRMS (ESI) calcd. for C20H22BN3O [M+H]+ 331.1966, found 

331.1967. 

Assignment of H′ based on 2D NMR data (Fig. S11 and S12), which showed that, 

despite its upfield position and broad appearance, H′ was attached to an aromatic carbon 

and coupled to the aromatic protons on the ring and the benzylic methylene protons. 

Further, H′ was not exchangeable with D2O. 
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Synthesis of 11e from 1e. Compound 1e (6-Benzyloxy-1,3-dihydro-1-hydroxy-2,1-

benzoxaborole) (0.4 g, 1.61 mmol) and 1-dimethylamino-8-methylaminonaphthalene 

(0.96 g 4.8 mmol) was dissolved in DMSO (5 mL), to which was added toluene (20 mL). 

The reaction mixture was heated at reflux under Dean–Stark conditions for 12 h under 

N2(g). The solution was concentration under reduced pressure, and the residue was 

purified by silica gel chromatography (98:1:1, DCM:MeOH:TEA) to give 11e (99.5%) 

and quantitative re-isolation of 10. 1H NMR (CDCl3, 500 MHz) δ 7.74 (d, J=8 Hz, 1H), 

7.43 (t, J=7 Hz, 1H), 7.34 (t, J=7 Hz, 1H), 7.22 (m, 3H), 7.18 (d, J=8 Hz, 1H), 7.11 (m, 

3H), 7.01 (d, J=8 Hz, 1H), 6.72 (dd, J=8, 2.5 Hz, 1H), 6.57 (d, J=8 Hz, 1H), 5.75 (bs, 

1H), 5.15 (d, J=13 Hz, 1H), 5.06 (d, J=13 Hz, 1H), 4.59 (s, 2H), 2.85 (s, 3H), 2.84 (s 3H), 

2.70 (s 3H). 13C NMR (CDCl3, 125 MHz) δ 157.04, 146.31, 143.25, 141.35, 136.95, 

135.53, 128.68, 128.27, 128.21, 127.53, 127.51, 124.60, 120.63, 117.04, 114.09, 113.17, 

112.46, 105.07, 72.03, 69.42, 49.68, 44.27, 31.92. 11B NMR (CDCl3, 96 MHz) δ 8.83. 

HRMS (ESI) calcd. for C27H27BN2O2 [M+H]+ 422.2275, found 422.2261. 

 

 

 

Synthesis of 12 from 11e. Compound 11e (0.21 g, 0.5 mmol) was dissolved in 10 mL of 

6:4 MeOH/EtOAc. To this solution under N2(g) was added 10% Pd/C (0.1 g, 0.1 mmol 
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Pd). The reaction mixture was purged with H2(g) via a balloon, and the resulting slurry 

was stirred for 1 h. The reaction mixture was filtered through a sintered glass funnel, and 

concentrated under reduced pressure. The residue was then purified by silica gel 

chromatography (98:1:1 DCM:MeOH:TEA) to give 12 (86% based on re-isolated starting 

material). 1H NMR (600 MHz, CD2Cl2) δ 7.77 (d, J=8.2 Hz, 1H), 7.46–7.39 (m, 2H), 

7.27 (d, J=7.6 Hz, 1H), 7.11 (d, J=7.9 Hz, 1H), 6.97 (d, J=8.1 Hz, 1H), 6.58 (t, J=7.7 Hz, 

2H), 5.53–5.44 (bs, 1H), 5.08 (d, J=13.3 Hz, 1H), 5.01 (d, J=13.3 Hz, 1H), 2.86 (s, 3H), 

2.82 (s, 3H), 2.73 (s, 3H). 13C NMR (126 MHz, CD2Cl2) δ 153.75, 146.23, 143.21, 140.97, 

135.37, 128.38, 127.88, 124.41, 120.55, 116.92, 113.98, 112.70, 112.42, 104.61, 71.66, 

49.48, 43.77, 31.29. 11B NMR (CDCl3, 96 MHz) δ 8.76. HRMS (ESI) calcd. for 

C20H21BN2O2 [M+H]+ 332.1806, found 332.1818. 

 

 

 

Synthesis of 13. To a solution of 12 (0.1 g, 0.3 mmol) and PhN(OTf)2 (0.22 g, 0.6 mmol) 

in 10 mL of THF was added NaH as a 60% dispersion in mineral oil (0.120 g, 3.0 mmol). 

The reaction mixture was stirred for 1 h, diluted with DCM, and washed with sat. 

NaHCO3(aq). The organic layer was dried over MgSO4(s), concentrated under reduced 

pressure, and purified by silica gel chromatography (6:4 hexanes/EtOAc) to give 13 
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(77%) that was deemed of sufficient purity for the subsequent step. 1H NMR (CDCl3, 500 

MHz) δ 7.80 (d, J=8.5 Hz, 1H), 7.47 (m, 1H), 7.39 (m, 1H), 7.21 (d, J=7.5 Hz, 1H), 7.16 

(d, J=8 Hz, 1H), 7.14 (d, J=8 Hz, 1H), 6.97 (dd, J=8.5, 2 Hz, 1H), 6.62 (d, J=7.5 Hz, 1H), 

5.80 (br s, 1H), 5.21 (d, J=14.5 Hz, 1H), 5.12 (d, J=14.5 Hz, 1H), 2.90 (s, 3H), 2.86 (s, 

3H), 2.71 (s, 3H). 13C NMR (CDCl3, 125 MHz) δ 163.6, 149.9, 148.9, 148.8, 146.2, 

142.9, 138.4, 137.4, 135.9, 129.1, 128.9, 128.7, 128.5, 127.9, 127.8, 126.5, 125.5, 124.8, 

124.6, 123.9, 123.0, 121.8, 121.3, 119.9, 117.4, 117.2, 116.7, 114.1, 112.9, 105.8, 72.3, 

50.1, 45.6, 44.3, 34.6, 31.9. 11B NMR (CDCl3, 96 MHz) δ 8.63. HRMS (ESI) calcd. for 

C21H20BF3N2O4S [M+H]+ 464.1284, found 464.1299. 

 

 

 

Synthesis of 14. To a solution of 13 (60 mg, 0.13 mmol), XPhos palladacycle (2.35 mg, 

0.013 mmol), and p-tolylboronic acid (70 mg, 0.52 mmol) in 1 mL of degassed THF 

under N2(g) was added 2 mL of degassed 0.5 M K3PO4. The reaction mixture was stirred 

overnight, and then partitioned between DCM and water. The organic layer was dried 

over MgSO4(s), concentrated under reduced pressure, and purified by silica gel 

chromatography (7:3 hexanes/EtOAc) to give 14 (83%).1H NMR (CDCl3, 500 MHz) δ 

7.77 (d, J=8.5 Hz, 1H), 7.45 (m, 1H), 7.36 (m, 2H), 7.24 (m, 2H), 7.18 (d, J=8 Hz, 1H), 

7.11 (d, J=8 Hz, 1H), 7.06 (br s, 3H), 6.61 (d, J=8 Hz, 1H), 6.39 (br s, 1H), 5.25 (d, J=14 
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Hz, 1H), 5.17 (d, J=14 Hz, 1H), 2.92 (s, 3H), 2.90 (s, 3H), 2.79 (s, 3H), 2.29 (s, 3H). 13C 

NMR (CDCl3, 125 MHz) δ 148.3, 146.5, 143.5, 139.0, 138.7, 136.2, 135.8, 129.2, 128.9, 

128.5, 128.4, 127.7, 127.2, 126.8, 126.8, 126.3, 124.6, 120.3, 117.3, 113.4, 112.5, 105.4, 

72.5, 49.7, 44.7, 32.2, 14.2. 11B NMR (CDCl3, 96 MHz) δ 8.72. HRMS (ESI) calcd. for 

C27H27BN2O [M+H] 406.2336, found 406.2326. 

 

 

 

Synthesis of 15. Compound 11d (0.1 g, 0.3 mmol), BrettPhos Palladacycle (2.4 mg, 3 

µmol), and NaOt-Bu (58 mg, 0.6 mmol) were dissolved in 2 mL of dry, degassed dioxane 

under N2(g). Chlorobenzene (35 mg, 0.31 mmol) was added, and the reaction mixture 

was sealed and heated at 80 °C for 3 h. The solution was concentrated under reduced 

pressure, and the residue was purified by silica gel chromatography (60:39:1 

hexanes/EtOAc/NEt3) to give 15 (89%). 1H NMR (CDCl3, 750 MHz) δ 7.78 (d, J=8 Hz, 

1H), 7.48 (dd, app t, J=8, 8 Hz, 1H), 7.41 (dd, app t, J=8, 8 Hz, 1H), 7.28 (dd, J=7.5 Hz, 

1H), 7.13 (d, J=7.5 Hz, 1H), 7.10 (dd, app t, J=7.5, 7.5 Hz, 2H), 7.05 (d, J=8 Hz, 1H), 

6.95 (d, J=7.5 Hz, 1H), 6.78 (dd, app t, J=7.5 Hz, 1H), 6.72 (d, J=8 Hz, 2H), 6.64 (d, J=8 

Hz, 1H), 5.84 (br s, 1H), 5.33 (br s, 1H), 5.23 (d, J=13 Hz, 1H), 5.14 (d, J=13 Hz, 1H), 

2.95 (s, 3H), 2.92 (s, 3H), 2.82 (s, 3H). 13C NMR (CDCl3, 125 MHz) δ 146.7, 143.9, 

143.6, 142.3, 140.5, 135.8, 129.1, 129.0, 128.6, 124.8, 120.6, 119.5, 118.9, 118.1, 115.9, 

Pd NH2BrettPhos
Cl

BrettPhos palladacycle

MBTEBO N
MeN

Me2

NH2

BO N
MeN

Me2

N
H

Ph

BrettPhos 
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113.4, 112.6, 105.4, 72.5, 50.1, 44.3, 32.2. 11B NMR (CDCl3, 96 MHz) δ 9.07. HRMS 

(ESI) calcd. for C26H26BN3O [M+H]+ 407.2279, found 407.2264. 

 

 

 

Synthesis of 16. Compound 11d (0.1 g, 0.3 mmol), Boc-glycine (0.069 g, 0.39 mmol), 

and HBTU (0.15 g, 0.39 mmol) were dissolved in 4 mL of DMF. DIEA (0.16 g, 1.2 

mmol) was added, and the reaction mixture was stirred for 1 h. The solution was 

concentrated under reduced pressure, and the residue was dissolved in DCM and 

extracted with sat. NaHCO3(aq) (2×) and water (2×). The organic layer was dried over 

Na2SO4(s) and concentrated under reduced pressure. The residue was purified by silica 

gel chromatography (96:4, DCM:MeOH) to give 16 (94%). 1H NMR (CDCl3, 500 MHz) 

δ 7.77 (d, J=8 Hz, 1H), 7.66 (dd, J=8, 1 Hz, 1H), 7.47 (dd, app t, J=8, 8 Hz, 1H), 7.39 

(dd, app t, J=8, 8 Hz, 1H), 7.23 (d, J=7.5 Hz, 1H), 7.11 (dd, J=11.5, 8 Hz, 2H), 6.60 (d, 

J=7.5 Hz, 1H), 5.81 (br s, 1H), 5.18 (d, J=14 Hz, 1H), 5.10 (d, J=14 Hz, 1H), 3.72 (m, 

2H), 2.89-2.75 (isomeric Me, 9H), 1.40 (br s, 9H). 13C NMR (CDCl3, 125 MHz) δ 167.2, 

155.4, 146.5, 145.7 143.4, 135.9, 135.1, 129.1, 128.7, 125.0, 120.8, 120.2, 119.9, 117.3, 

113.5, 112.8, 105.4, 80.5, 72.5, 50.2, 45.1, 44.5, 38.8, 32.2, 28.4. 11B NMR (CDCl3, 

96 MHz) δ 8.95. HRMS (ESI) calcd. for C27H33BN4O4 [M+H] 488.2704, found 

488.2721. 

BO N
MeN
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Synthesis of 18. 5-Amino-2-hydroxymethylphenylboronic acid HCl salt (0.056 g, 

0.3 mmol), Boc-glycine (0.069 g, 0.39 mmol), and HBTU (0.15 g, 0.39 mmol) were 

dissolved in 4 mL of DMF. DIEA (0.16 g, 1.2 mmol) was added, and the reaction 

mixture was stirred for 1 h. The solution was concentrated under reduced pressure, and 

the residue was dissolved in DCM and extracted with 0.05 M HCl (2×). The organic layer 

was dried over Na2SO4(s) and concentrated under reduced pressure. The residue was 

purified by silica gel chromatography (93:6:1, DCM:MeOH:HCO2H) to give 16-

unprotected (23%). 1H NMR (CD3OD, 500 MHz) δ 7.80 (d, J=1.5 Hz, 1H), 7.67 (dd, 

J=8.5, 2 Hz, 1H), 7.34 (d, J=8 Hz, 1H), 5.04 (s, 2H), 3.86 (s, 2H), 1.47 (s, 9H). 13C NMR 

(CD3OD, 125 MHz) δ 170.7, 158.8, 151.1, 138.8, 124.7, 122.8, 122.7, 80.9, 72.3, 45.1, 

28.9. 11B NMR (MeOD-d4, 96 MHz) δ 31.13. HRMS (ESI) calcd. for C9H9BN4O3 [M–H] 

304.1350, found 304.1363.  
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Synthesis of 17. Compound 16 (0.120 g, 0.25 mmol) was dissolved in 3 mL of 4 M HCl 

in anhydrous dioxane, and the reaction mixture was stirred for 30 min. The solution was 

concentrated under reduced pressure, and the residue was suspended in 30 mL of DCM, 

washed with 10% NaOH (2×), dried over Na2SO4(s), and evaporated to dryness. The 

residue was purified by silica gel chromatography (85:14:1, DCM:MeOH:NEt3) to give 

17 (78%). 1H NMR (CDCl3, 500 MHz) δ 8.77 (br s, 1H), 7.78 (d, J=8.5 Hz, 1H), 7.72 

(dd, J=8.5, 2 Hz, 1H), 7.47 (dd, app t, J=8, 8 Hz, 1H), 7.39 (dd, app t, J=8, 8 Hz, 1H), 

7.24 (d, J=7.5 Hz, 1H), 7.13 (dd, J=7.5, 2.5 Hz, 2H), 6.62 (d, J=8 Hz, 1H), 6.04 (br s, 

1H), 5.20 (d, J=13.5 Hz, 1H), 5.11 (d, J=13.5 Hz, 1H), 3.26 (s, 2H), 2.90 (s, 3H), 2.88 (s, 

3H), 2.78 (s, 2H), 1.65 (br s, 2H). 13C NMR (CDCl3, 125 MHz) δ 170.5, 146.4, 145.3, 

143.4, 135.8, 135.6, 128.9, 128.5, 124.8, 120.6, 119.8, 119.6, 117.1, 113.3, 112.7, 105.2, 

72.4, 49.8, 45.8, 45.1, 44.8, 32.3. 11B NMR (CDCl3, 96 MHz) δ 9.13. HRMS (ESI) calcd. 

for C22H25BN4O2 [M+H] 388.2180, found 388.2198.  

 

 

 

Synthesis of 11b from 11c. Compound 11c (0.730 g, 1.88 mmol) was dissolved in 

18 mL of MeOH, and 18 mL of sat. K2CO3(aq) was added. The resulting slurry was 

stirred overnight. The solution was concentrated under reduced pressure, and the residue 

was extracted with DCM (3×), dried over Na2SO4(s), and concentrated under reduced 
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pressure. The residue was purified by silica gel chromatography (95:5 DCM/MeOH) to 

give 11b (80%).  

 

 

 

 

Synthesis of 19. Compound 11b (0.02 mg, 0.058 mmol) was dissolved in DCM (0.6 

mL), and the resulting solution was cooled to 0 °C. Triphenylphospine (0.023 mg, 0.088 

mmol) and CBr4 (0.029 mg, 0.088 mmol) were added, and the reaction mixture was 

allowed to warm to room temperature and stirred for 12 h. The solution was concentrated 

under reduced pressure, and the residue was purified by silica gel chromatography 

(96.5:2.5:1 DCM/MeOH/NEt3) to give 18 (91%). 1H-NMR (400 MHz, CDCl3): d  7.78 (d 

1H), 7.47 (t 1H), 7.39 (t 1H), 7.22 (d 1H), 7.17 (bd 1H), 7.14 (d 2H), 7.10 (d 2H), 6.60 (d 

2H), 6.11 (d 1H), 5.19 (d 1H), 5.10 (d 1H), 4.16 (s 2H), 2.89 (bs 3H), 2.86 (s 3H), 2.73 (s 

3H). 13 C NMR (125 MHz, CDCl3): d  146.46, 143.39, 135.87, 135.52, 129.31, 129.02, 

128.73, 128.58, 127.48, 124.89, 120.66, 119.37, 117.28, 113.53, 112.70, 105.44, 72.57, 

50.11, 44.60, 35.01. 11B NMR (CDCl3, 96 MHz) d  8.91. HRMS (ESI) calcd. for 

C21H22BBrN2O [M+H]+ 408.1118, found 408.1126. 
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Synthesis of 18 from 16. Compound 16 (10 mg, 20 µmol) was dissolved in 2 mL of 0.5 

1:1 AcOH/THF, and the resulting solution was stirred for 12 h. The solution was 

concentrated under reduced pressure, and the residue was dissolved in methanol-d4 for 

analysis by 1H NMR spectroscopy (see: Fig. S32). Compounds 10 and 18 were subjected 

to the same conditions as was compound 16, for comparison.  

	
  

	
  
	
  

Protection of 1a with 19: 8-(dimethylamino)naphthalen-1-ol (0.427 mmol, 80 mg) and 

benzoboroxole (0.5127 mmol, 69 mg) were dissolved in toluene (20 mL) and heated at 

reflux with azeotropic removal of water overnight. The reaction mixture was then 

concentrated in vacuo, and the solid was dissolved in chloroform and washed with 

aqueous base (10% NaOH) to yield MRA 086 as a white precipitate (72%). 1H NMR 

(500 MHz, CDCl3) δ 7.90–7.85 (m, 1H), 7.53–7.44 (m, 2H), 7.36–7.32 (m, 2H), 7.10 (dd, 

J = 7.5, 1.2 Hz, 1H), 6.85 (dd, J = 7.6, 1.2 Hz, 1H), 6.12 (bs, 1H), 5.28 (d, J = 14.0 Hz, 

1H), 5.11 (d, J = 14.1 Hz, 1H), 3.03 (s, 3H), 2.84 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 
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156.87, 150.04, 143.06, 135.42, 129.00, 127.84, 126.79, 126.26, 125.69, 125.20, 120.67, 

118.64, 116.90, 113.97, 110.02, 72.55, 49.35, 46.47. HRMS (ESI) calcd. for C19H18BNO2 

[M+Na]+ 325.1360, found 325.1367. 

 

	
  
	
  

Protection of 1a with 26: Following a previous literature procedure,321 benzoxaborole (1 

mmol, 134 mg) and 10-hydroxybenzo[h]quinoline (1 mmol, 195 mg) were stirred in dry 

hexanes for 2 h. The resulting precipitate was filtered, and rinsed with hexanes. 1H NMR 

(500 MHz, CDCl3) δ 8.49–8.42 (m, 2H), 7.99 (d, J = 8.9 Hz, 1H), 7.78 (t, J = 7.9 Hz, 1H), 

7.74 (d, J = 9.0 Hz, 1H), 7.64 (dd, J = 7.9, 5.6 Hz, 1H), 7.52–7.48 (m, 1H), 7.38 (dd, J = 

8.0, 0.9 Hz, 1H), 7.31–7.28 (m, 2H), 7.19 (d, J = 7.2 Hz, 1H), 7.13–7.09 (m, 1H), 5.35 (d, 

J = 14.0 Hz, 1H), 5.18 (d, J = 13.9 Hz, 1H). 13C NMR (125 MHz, CDCl3): δ 159, 155.9, 

148.8, 142.3, 139.6, 134.5, 132.8, 130.6, 128.4, 127.8, 126.5, 123.4, 121.5, 120.8, 117.9, 

116.9, 72.3. HRMS (ESI) calcd. for C20H14BNO2 [M+Na]+ 333.1047, found 333.1031. 
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Protection of 1a with 28: Benzoxaborole (1.25 mmole, 167 mg) and N,N-

dimethylglycine (1.25 mmole, 129 mg) were dissolved in methanol (5 mL) in a sealed 

vial, heated at reflux for 1.5 h, and then concentrated. The viscous solid was then 

dissolved in THF (5 mL), heated at reflux for 1 h, and concentrated under reduce pressure 

to a white solid (quant.). 1H NMR (500 MHz, CDCl3) δ 7.48 (d, J = 7.2 Hz, 1H), 7.37–

7.32 (t, J = 7.2, 1H), 7.29–7.22 (m, 2H), 5.07 (d, J = 14.0 Hz, 1H), 5.01 (d, J = 14.0 Hz, 

1H), 3.83 (d, J = 15.2 Hz, 1H), 3.50 (d, J = 15.1 Hz, 1H), 2.74 (s, 3H), 2.63 (s, 3H). 13C 

NMR (125 MHz, CDCl3) δ 169.54, 150.52, 130.03, 128.55, 126.45, 120.88, 71.74, 60.95, 

47.57, 44.82. 
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2.2.9 NMR Spectra  

NMR SPECTRA 
	
  
	
  

	
  
1H NMR spectrum of 11a in CDCl3 (500 MHz) 
	
  
	
  
	
  
	
  

	
  
13C NMR spectrum of 11a in CDCl3 (125 MHz) 
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1H NMR spectrum of 11b in CDCl3 (500 MHz). 
	
  
	
  
	
  

	
  
	
  
13C NMR spectrum of 11b in CDCl3 (125 MHz). 
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1H NMR spectrum of 11c in CDCl3 (500 MHz). 
	
  
	
  
	
  
	
  

	
  
	
  
13C NMR spectrum of 11c in CDCl3 (125 MHz). 
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1H NMR spectrum of 11d in CDCl3 (500 MHz). 
 
 

 
 
13C NMR spectrum of 11d in CDCl3 (125 MHz). 
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1H-13C HSQC 2D NMR spectrum of 11d in CDCl3 (500 MHz). 
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1H-1H TOCSY 2D NMR spectrum of 11d in CDCl3 (500 MHz) 
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1H NMR spectrum of 11e in CDCl3 (500 MHz). 
 
 

 
 
13C NMR spectrum of 11e in CDCl3 (125 MHz). 
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1H NMR spectrum of 12 in CD2Cl2 (600 MHz). 
 
 
 

 
 
13C NMR spectrum of 12 in CD2Cl2 (125 MHz). 
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1H NMR spectrum of 13 in CDCl3 (750 MHz). 
 
 
 

 
 
 13C NMR spectrum of 13 in CDCl3 (125 MHz). 
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LC-LRMS trace of 13. 
 

 
 
1H NMR spectrum of 14 in CDCl3 (750 MHz). 
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13C NMR spectrum of 14 in CDCl3 (125 MHz). 
 
 
 

 
 
1H NMR spectrum of 15 in CDCl3 (750 MHz). 
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13C NMR spectrum of 15 in CDCl3 (125 MHz). 
 
 

 
 
1H NMR spectrum of 16 in CDCl3 (500 MHz). 
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13C NMR spectrum of 16 in CDCl3 (125 MHz). 
 
 

 
 
1H NMR spectrum of 18 in CDCl3 (500 MHz). 
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13C NMR spectrum of 18 in CDCl3 (125 MHz). 
 
 

 
 
1H NMR spectrum of 17 in CDCl3 (500 MHz). 
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13C NMR spectrum of 17 in CDCl3 (125 MHz). 
 
 

	
  
	
  
1H NMR spectrum of 19 in CDCl3 (500 MHz). 
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13C NMR spectrum of 19 in CDCl3 (125 MHz). 
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1H NMR spectra (MeOD-d6, 400 MHz) comparing compound 18 (top), compound 10 

(bottom), and the reaction products from compound 16 (middle; for experimental details, 

see: Synthesis section). Colored bars (18, green; 10, orange; solvent, blue) are used to 

indicate that the expected products are indeed present. 
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1H NMR spectrum of the complex of 1a and 19 in CDCl3 (500 MHz). 
 
 
 
 

 
13C NMR spectrum of the complex of 1a and 26 in CDCl3 (125 MHz).
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1H NMR spectrum of the complex of 1a and 26 in CDCl3 (500 MHz). 
 
 
 

 
1H NMR spectrum of the complex of 1a and 28 in CDCl3 (500 MHz). 
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13C NMR spectrum of the complex of 1a and 28 in CDCl3 (125 MHz). 
 
 
 
Photophysical Data for Compound 11a 

abs λmax (nm)a em λmax (nm)a log ε ΦF 
366 424 3.24 0.45 

a In CHCl3. 
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PART 2 

CHAPTER 3 

 

 

Detection of Boronic Acids through Excited-State 

Intramolecular Proton-Transfer Fluorescence 

 

Prepared as: Matthew R. Aronoff, Brett VanVeller, and Ronald T. Raines (2013). Org.	
  
Lett., 15, 5382–5385 

 
 
Contributions: I made the initial discovery of the fluorescent complexes formed by 

HBQ with boronic acids, developed the conditions of the assay, and performed various 

testing and analysis. B.V. investigated materials applications and physical characteristics, 

and I wrote the manuscript with assistance from B.V.  

Note: This chapter was published in part as Matthew R. Aronoff, Brett VanVeller, and 

Ronald T. Raines (2013). Org.	
  Lett., 15, 5382–5385 

 

This work also appears in the following patent: Protecting Groups for Boronic Acids 

P130142US01 Raines, R. T.; VanVeller, B.; Aronoff, M. R. 
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Abstract 

Boronic acids are versatile reagents for the chemical synthesis of organic 

molecules. They and other boron-containing compounds can be detected readily by the 

interruption of the excited-state intramolecular proton transfer (ESIPT) of 

10-hydroxybenzo[h]quinolone. This method is highly sensitive and selective, and useful 

for monitoring synthetic reactions and detecting boron-containing compounds on a solid 

support. 
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2.3.1 Introduction 

Boronic acids are among the most useful reagents in modern synthetic organic 

chemistry.322 Boronic acids also have notable utility in carbohydrate sensing231 and 

medicinal chemistry.323 These applications and underlying synthetic transformations 

could benefit from facile means to detect boronic acid moieties, a task that is now 

problematic.324-326 Neither UV absorption nor common staining reagents (e.g., KMnO4, 

ceric ammonium molybdate, or vanillin) identify boronic acid-containing synthetic 

targets selectively. 323,327,328 Buchwald and coworkers reported the in situ detection of 

boronic acid consumption using dihydroxycoumarins.324 This method does not, however, 

extend to the detection of boronic acids during thin-layer chromatography (TLC). 

Alizarin (ARS) has also been put forth as a boron-selective TLC stain,269-271 but is not 

especially senstitive (vide infra). Here, we present a new approach for the selective and 

sensitive detection of boronic acids based on the photophysical process known as excited-

state intramolecular proton transfer (ESIPT).329  

We were aware that the absorbance of phenols can be modulated by their 

complexation to boronic acids.276,330-332 We also knew that protic solvents interrupt the 

ESIPT of 10-hydroxybenzo[h]quinolone (HBQ)333 by disrupting the intramolecular 

hydrogen bond.334 Accordingly, we envisioned that boronic acids could disrupt the 

ESIPT of HBQ through complexation with its phenolic oxygen and nitrogen.321,335336  

In its ground state, the HBQ chromophore exists as an enol with an intramolecular 

hydrogen bond (A; Figure 2.3.1). At its absorbance maximum (365 nm), singlet-

excitation of HBQ occurs without geometry relaxation, in accord with the Franck–

Condon principle (B). There are two fates for this excited state: (i) relaxation back to the 
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ground state (A) through fluorescence (~400 nm), or (ii) ultrafast ESIPT (~100 fs) to the 

keto tautomer in its singlet excited state (C). The geometry-relaxed keto form C is 

distinct from the enol form B, leading to a large Stokes shift upon emissive relaxation 

(~600 nm) to D, where ground-state reverse proton transfer returns the enol form A. 

ESIPT (B→C) is typically faster than fluorescence relaxation (B→A), and the emission 

from ESIPT tends to dominate. 

 

2.3.2 Results and Discussion 

In initial experiments, we compared the sensitivity of HBQ and ARS as a TLC-

stain for phenylboronic acid. We found that the 365-nm absorbance maximum of HBQ 

(which, conveniently, is the output wavelength of most common bench lamps) and the 

large Stokes shift provided by ESIPT lead HBQ to have ~103-fold greater sensitivity than 

ARS (Figure 2.3.2). 

Encouraged by the high sensitivity of HBQ, we sought to explore the generality of 

the HBQ stain by testing a series of structurally diverse boronic acids. High 

concentrations of aliphatic boronic acids were not visible under a standard short-wave 

UV handheld lamp (Figure 2.3.3). Nonetheless, by immersing the TLC plate in a 1 mM 

solution of HBQ and drying, all spots became brightly fluorescent, with differences in 

emission wavelength related to the substituents on the boronic acid.337 The spots appear 

as bright blue-green (emission from B) against a yellow-orange background (emission 

from C). Both pinacol- and diaminonaphthalene-protected boronic acids possess a vacant 

p-orbital, allowing efficient staining with HBQ according to our proposed mechanism. 

Even a boronic acid protected with N-methyliminodiacetic acid (MIDA) is detectable by 
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the (presumably) small amount of boron with a vacant p-orbital. Trifluoroborates likely 

suffer hydrolysis on the TLC plate338 to form a detectable boronic acid. 

Next, we assessed the selectivity of HBQ for boronic acids. Compounds with a 

wide variety of functional groups (but not a boronic acid) were spotted onto silica plates 

at concentrations visible with a standard short-wave UV handheld lamp, and treated with 

HBQ stain. In general, there was no fluorescence with the functional groups (Figure 

2.3.4). Notably, the dark spots remained visible upon illumination at 254 nm following 

treatment with the HBQ stain. Thus, information from short-wave illumination is retained 

after the stain develops, in marked contrast to other staining methods. Whereas sensitive 

functional groups (e.g., aldehydes, diazos, anhydrides, and epoxides) resisted staining, 

highly electrophilic functional groups (e.g., acyl chlorides and sulfonyl chlorides) gave 

false-positive results, producing a blue fluorescence upon illumination at 365 nm that is 

similar to that observed from boronic acids. These data validate our mechanism, as these 

electrophilic functional groups can react with the phenolic hydroxyl group of HBQ and 

interrupt the ESIPT cycle. Moreover, these false-positive results do not compromise 

selectivity in practice, as TLC is used only rarely to monitor such reactive functional 

groups. 

We reasoned that the detection method could apply to boronic acids bound to a 

solid support. Immobilized boronic acids have found application in glycan-affinity 

chromatography because of their ability to bind to diols.331,339,340 Similarly, boronated 

solid supports are used widely for the immobilization of biomolecules,341-344 

lithography,345 and various glycan-sensing schemes.276,346-348 Using a boronated agarose 

as a model, we observed ESIPT-off fluorescence upon treatment with 10 mM HBQ in 
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EtOH. In contrast, only ESIPT-on fluorescence was observed for unconjugated agarose, 

and no native fluorescence was ascribed to conjugated agarose in the absence of HBQ 

(Figure 2.3.5). Such facile detection could be used to assess boron functionalization 

qualitatively during solid-support device fabrication. 

Lastly, we investigated the potential of HBQ for the quantitative detection of 

boron-containing compounds. A simple plate-reader enabled the detection of nanomoles 

of phenylboronic acid (Figure 2.3.7). Notably, fluorescence intensity correlated linearly 

with the amount of boron.  

 

2.3.3 Conclusions 

In summary, we present a novel method for the sensitive and selective detection 

of boronic acids and other boron-containing compounds. The method, which is based on 

the ability to turn off the ESIPT of HBQ, provides much greater sensitivity than extant 

methods.  Moreover, the resultant HBQ–boron complexes remain fluorescent in the solid 

state. Accordingly, this method could be beneficial to synthetic chemistry and materials 

science. 
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2.3.5 Materials & Methods 

Materials 

Silica-coated thin layer chromatography plates were obtained from Macherey Nagel 

(Duren, Germany). All reagent-grade materials were from Sigma–Aldrich (St. Louis, 

MO) and were used without further purification, except for phenylboronic acid, 

benzoxaborole, and 3-nitrophenylboronic acid, which were from Combi-Blocks (San 

Diego, CA). 

	
  

Image Capture 

The images in Figures 2.3.2 and 2.3.3 were acquired with a Nikon digital SLR camera 

under identical exposure times. Technical details are provided in the Camera Settings 

section. Bright-field and epifluorescent microscopy images of agarose beads were 

performed on an upright microscope equipped with a CCD camera with 4× 

magnification. Epifluorescence images were taken by illuminating at ~365 nm using a 

handheld UV lamp. 

 

Experimental Methods 

 Spotting for Figure 2.3.2. Alizarin Red Stain was prepared and applied according to 

the previous report of Duval and coworkers.325 A 1.0 mM solution was prepared by 

adding 0.10 mmol of Alizarin to 0.10 L of anhydrous acetone. Optimal visualization was 

accomplished by slow immersion of silica-coated glass TLC plates in the alizarin 

solution, removal, and then allowing the stain to dry completely at room temperature. 
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Plates were then viewed by illuminating the beads at ~365 nm using a handheld UV 

lamp. 

 A 1.0 mM solution of HBQ stain was prepared by adding 0.10 mmol of 

10-hydroxybenzo[h]quinoline to 0.10 L of absolute ethanol. Optimal visualization was 

accomplished by immersion of silica-coated glass TLC plates in the HBQ solution, and 

then allowing the stain to dry completely by applying a standard laboratory heat gun. 

Plates were then viewed by illuminating at ~365 nm using a handheld UV lamp. 

 A 10 mM solution of phenylboronic acid was prepared by addition to methanol. 

Subsequent dilutions were prepared in methanol from the original 10 mM stock. 

 Spotting for Figures 2.3.3 and 2.3.4. All positive controls were prepared as solutions 

at 10 mM concentrations in methanol. All compounds tested were applied as 2-µL 

samples to a glass backed TLC plate and allowed to air-dry at room temperature. 

Negative control samples were prepared in methanol at concentrations required for 

sufficient visualization following absorbance at 254 nm, prior to dye treatment, and 

allowed to air-dry at room temperature. 

 A 1.0 mM solution of Alizarin in acetone was prepared. Visualization was 

accomplished by slow immersion of silica-coated glass TLC plates in the alizarin 

solution, removal, and then allowing the stain to dry completely at room temperature. 

Plates were then viewed by illuminating at ~365 nm using a handheld UV lamp 

 HBQ stain was prepared by adding 0.10 mmol of 10-hydroxybenzo[h]quinoline to 

0.10 L of absolute ethanol. Detection was performed by briefly immersing the TLC plate 

in solution, then drying the plate using a standard laboratory heat gun. Plates were viewed 

by illuminating at ~365 nm using a handheld UV lamp. 
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 Detection of Boronic Acids on Agarose Support. The following preparation was 

performed on Agarose beads (6% cross-linking) with and without bound m-

aminophenylboronic acid. Agarose beads (50 mg) were suspended in methanol and 

filtered. The beads were resuspended in 1.0 mL of HBQ stain solution for 1 min and 

filtered and washed with 5 mL EtOH. The beads were dried and imaged using 

microscopy. 

 HBQ fluorescence relationship with phenylboronic acid (Figure 2.3.7). Fluorescence 

intensity was measured with an Infinite M1000 Pro microplate reader (Tecan Group, 

Mannedorf, Switzerland). Phenylboronic acid (PBA) was prepared from a 20 mM stock 

in methanol, as described previously. PBA solution (20 µL) was applied to cover the 

bottom of each well of a sterile 96-well plate (Costar black plate, clear bottom with lid 

from Corning, Tewksbury, MA). To ensure that HBQ stain was in excess, to each sample 

was added 50 µL of a 10 mM HBQ solution in ethanol for 20, 10, and 5 mM PBA, and 

20 µL of a 1 mM HBQ solution in ethanol for other dilutions of PBA. The resulting 

solutions were allowed to dry completely before analysis.  

 Bottom-up fluorescence was measured in triplicate for each dilution. Excitation was 

applied at 365 nm with a 5.0-nm bandwidth. Emission was detected at 500 nm with a 5.0-

nm bandwidth to minimize oversaturation of the detector. Multiple reads per well were 

measured in a 4 × 4 filled circle with a 100-µm border, and then averaged for each 

sample well. Average values of fluorescence intensity were plotted with the program 

Prism from GraphPad (La Jolla, CA). Error bars were determined based on standard 

deviation from average values. 
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Figure 2.3.1 Excited-State Intramolecular Proton Transfer (ESIPT) cycle of 10-

hydroxybenzo[h]quinoline (HBQ). 
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Figure 2.3.1 Excited-State Intramolecular Proton Transfer (ESIPT) cycle of 10-

hydroxybenzo[h]quinoline (HBQ). A Lewis acidic boronic acid or other boron-containing 

compound can coordinate to A and B, which interrupts the cycle by shutting down long 

wavelength emission (S1′→S0′) and activating short wavelength emission (S1→S0). 
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Figure 2.3.2 Comparison of the sensitivity of HBQ and ARS for the detection of a 

boronic acid. 
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Figure 2.3.2 Comparison of the sensitivity of HBQ and ARS for the detection of a 

boronic acid. Serial dilutions of phenylboronic acid (PBA) were spotted on a silica gel 

thin-layer chromatography plate, stained with HBQ or ARS, and illuminated at 365 nm 

with a standard handheld lamp. 
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Figure 2.3.3 Detection of boronic acids and other boron-containing compounds with 

HBQ. 
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Figure 2.3.3 Detection of boronic acids and other boron-containing compounds with 

HBQ. Whereas most compounds at 10 mM concentrations were not visible upon 

illumination at 254 nm, all produced a brilliant blue ESIPT-off fluorescence after staining 

with HBQ. 
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Figure 2.3.4 Selectivity of HBQ for functional groups. 
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Figure 2.3.4 Selectivity of HBQ for functional groups. Compounds visible upon 

illumination at 254 nm retained this quality following staining with HBQ. 

 

  



	
  

	
  
	
  

378	
  

Figure 2.3.5 Detection of a boronic acid on a solid support. 
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Figure 2.3.5 Detection of a boronic acid on a solid support. Agarose beads (6% cross-

linking) were modified covalently with m-aminophenylboronic acid and visualized under 

a microscope upon excitation at 365 nm (top) and in a bright field (bottom). 
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Figure 2.3.6 Agarose beads viewed “in vial” by illuminating at ~365 nm using a 

handheld UV lamp without (left image) supplemental lights, and with (right image) 

overhead lighting. 
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Figure 2.3.6 Agarose beads viewed “in vial” by illuminating at ~365 nm using a 

handheld UV lamp without (left image) supplemental lights, and with (right image) 

overhead lighting. Non-functionalized agarose treated with HBQ (left, “orange”), 5-

amino phenylboronic acid crosslinked agarose, untreated (center), and 5-amino 

phenylboronic acid functionalized agarose following treatment with HBQ (right, “blue-

green fluorescent”). 
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Figure 2.3.7 Relationship between phenylboronic acid concentration and emitted 

fluorescence following staining with HBQ. 
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Figure 2.3.7 Relationship between phenylboronic acid concentration and emitted 

fluorescence following staining with HBQ. Fluorescence was detected using a standard 

plate-reader and expressed as relative fluorescence units (RFU). Slope = (462 ± 7) 

RFU/µmol by linear regression analysis (R2 = 0.9973). 
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Figure 2.3.8 Comparison of 10-hydroxybenzo[h]quinolone (HBQ) to 

2-(2′-hydroxyphenyl)benzimidazole. 
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Figure 2.3.8 Comparison of 10-hydroxybenzo[h]quinolone (HBQ) to 

2-(2′-hydroxyphenyl)benzimidazole.335 Phenylboronic acid in methanol (2 µL of a 10 

mM solution) was spotted onto two halves of a glass-backed TLC silica plate and air-

dried. The plate was dipped on one side into a 1 mM solution of HBQ in ethanol (A), or a 

1 mM solution of 2-(2′-hydroxyphenyl)benzimidazole in ethanol (B). The plate was then 

dried using a heating gun, and visualized by illuminating at a short (~254 nm) or long 

(~365 nm) wavelength using a handheld UV lamp. 2-(2′-Hydroxyphenyl)benzimidazole 

was judged to be inferior as a stain due to the mildly discernable small stokes shift 

between the ESIPT-on and ESIPT-off emissions compared to those of HBQ. 
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Figure 2.3.9 Absorption and emission spectra of HBQ and its complex with 

benzoxaborole. 
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Figure 2.3.9 Absorption and emission spectra of HBQ and its complex with 

benzoxaborole. Fluorescence spectra were recorded in CHCl3 with a Photon Technology 

International 810 fluorometer using right-angle detection. Ultraviolet–visible absorption 

spectra were measured with a Varian Cary 300 Bio diode array spectrophotometer and 

corrected for background signal with a solvent-filled cuvette. The instability of the HBQ–

benzoxaborole precluded determination of its quantum yield.321,349 
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PART 3 

FUTURE DIRECTIONS 
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Part 1 Chapter 2: Diazo Groups as Chemical Reporters 

 The diazo group has tremendous potential as a chemoselective group in the field 

of chemical biology. In Part 1 Chapter 2, I discuss the first application of a diazo group as 

a chemical reporter. The newness of this field opens many avenues of exploration, 

especially as we have proven that a stabilized diazo group can survive cellular 

metabolism and undergo a chemoselective reaction with a cyclooctyne. It is unusual that 

the diazo group allows for multiple component labeling with CuAAC, unlike its azido 

equivalent. This selectivity is possible through the use of a strong ligand for Cu(I) that 

reacts with the azido group but does not react the diazo group. As the origin for 

chemoselectivity with the diazo group, this compelling discovery begs exploration. The 

metabolic transformations of the diazo reporter also require further investigation. We 

assume that due to inherent similarities the mannosamine appended with a diazo group 

will undergo the same enzymatic transformations as the parent azido derivative,106 but we 

did not explore this reactivity in detail. 

 A multicomponent, three-color cellular glycan labeling experiment that includes 

alkynyl, azido, and diazo group chemical reporters can be accomplished using current 

chemical technology.97,350 This labeling necessitates the use of CuAAC to label the 

alkyne derivative and SPAAC to label the diazo group, and will require a phosphine to 

perform a Staudinger ligation with the azido group reporter.54,115 This type of experiment 

has never been performed on three different types of glycans in the glycocalyx. The diazo 

group can also be utilized with reporters of other posttranslational modifications, building 

on previous investigations with the azido group.75,98 One possible application is to 

incorporate a stabilized diazo group as a non-natural amino acid. This approach has been 
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explored in detail for other chemoselective functional groups, including the azido 

group.222 

 

Part 1 Chapter 3: Diazo Specific Dipolar Cycloadditions 

 The ability to perform a diazo group-selective 1,3-dipolar cycloaddition in the 

presence of other 1,3-dipoles will be valuable for the development of the diazo group in 

chemical biology. As an extension of Part 1 Chapter 2, this chemistry adds a further 

degree of chemoselectivity to existing reactions when the diazo group is applied as a 

chemical reporter. Insights provided suggest that an optimal balance of strain and 

electronic activation can provide both the reactivity and selectivity required for biological 

applications that are not yet possible. Still, some applications exist using currently known 

dipolarophiles that are specific to the diazo group. Nonnatural amino acid-bearing 

proteins have been reported that display an acrylamide sidechain.198,199 The diazo group 

is a good reactant for this functionality (vide infra), and can be used for conjugation with 

an acrylamide derivative for a number of appendages, including possible 

heterodimerization with a diazo-bearing protein.  

The diazo-specific dipolar cycloaddition reactions explored in this thesis have 

potential for in vitro applications in their current form. Installation of a diazo group onto 

a protein surface would allow for site-selective functionalization. This installation is 

possible, albeit without selectivity, using the N-hydroxysuccinimide ester of the diazo 

group.351,352 In contrast, using the water soluble azide deimidogenation reagent developed 

in the Raines laboratory,25 a stabilized diazo group could be generated selectively on the 

protein from an azido group at the N-terminus.  Azido groups could be installed non-
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genetically by a Regitz diazo-transfer reaction, but this reaction would occur on all 

amines including lysine residues.353 Some selectivity might be afforded through the 

deimidogenation process, but an excess of the phosphine would lead to reaction with the 

diazo group.24 If some azido groups remain, the diazo group-selective cycloaddition 

reaction described in this chapter would provide differential labeling between the protein 

N-terminus and other sites on the protein. 

 

Part 1 Chapter 4: Uncharged Water-Soluble Phosphinothioesters for the Traceless 

Staudinger Ligation  

 Two major goals for this project require completion before ubiquitin dimerization 

can be performed. First, the effect of electronics on phosphorous must be interrogated to 

determine the optimal reagent to perform the traceless Staudinger ligation. This 

interrogation requires completion of the synthesis of an isomer of the para-CH2OMEM 

that is instead conjugated to the aryl ring (Figure 3.1.2). This phenolic derivative will be 

prepared by a route similar to the one used to access its non-conjugated isomer. Once 

prepared, these reagents will need to be tested for amide-bond formation in aqueous 

buffer in comparison to that from known phosphinothioesters. The optimal reagent would 

then be applied in the formation of ubiquitin dimers via isopeptide linkages, as described 

in Part 1 Chapter 4. 
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Part 2 Chapter 2: A Divalent Protecting Group for Benzoxaboroles 

 In the future, it will be possible to use the benzoxaborole protecting group for a 

number of synthetic transformations. This method for benzoxaborole protection is also 

compatible with the reagents involved in Fmoc-mediated solid-phase peptide synthesis. 

This use allows for the preparation of a peptide that bears benzoxaborole functionalities 

for applications in carbohydrate recognition and protein delivery.354 It was shown 

recently that a phenylboronic acid-appended peptide demonstrates a strong affinity for 

sugars in aqueous conditions.355 Benzoxaborole has a higher affinity than phenylboronic 

acid for many saccharides present at the cellular surface,354 and a peptide with pendant 

benzoxaborole functionalities should be prepared and tested in relevant assays. 

 

Part 2 Chapter 3: Detection of Boronic Acids through ESIPT 

 The detection of boronic acids through ESIPT-off fluorescence is more sensitive 

than by other methods. In chemical biology studies, this high sensitivity permits detection 

of boron at lower concentrations. Still, in order to perform these experiments, the ESIPT 

sensor must have an efficient ESIPT fluorescence in water, and the fluorophore requires 

aqueous solubility. HBQ is unique among ESIPT fluorophores because solvation 

interactions will not inhibit the ESIPT process. Most ESIPT fluorophores are 

benzoxazole-based and possess a freely rotating bond that connects the two aromatic 

systems (Figure 3.1.3 A1). These fluorophores must remain mostly planar to optimize 

both conjugation and hydrogen bonding. In a polar protic solvent like water, these 



	
  

	
  
	
  

393	
  

interactions are disrupted significantly.356,357 The lack of any rotation with HBQ produces 

a stable bond, and an ESIPT fluorescence that is not diminished in polar protic solvents 

(Figure 3.1.3 A2).  

 HBQ has very poor solubility in water. Its solubility can, however, be enhanced 

through sulfonylation of the backbone. The preparation of a sulfonated HBQ, HBQ-S, is 

shown in Figure 3.1.3 B. The sulfonyl group should not interfere with boron detection, 

and will facilitate the use of the HBQ in aqueous conditions (Figure 3.1.3 C). HBQ was 

sensitive to picomolar concentrations of boron in ethanol. HBQ-S should retain this 

sensitivity, allowing for the detection of trace quantities of boron in aqueous conditions. 

In particular, HBQ-S can be used to detect boronic acids within biological applications 

for carbohydrate recognition using a dye-displacement assay. This includes the 

interactions of boron-appended peptides and proteins with various carbohydrates. This 

process should be sensitive to both monomeric carbohydrates in solution, as well as those 

present on biomolecules such as proteins or the cellular glycocalyx.358 
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Figure 3.1.2 Phosphinothioesters investigated for efficiency during the traceless 

Staudinger ligation 
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Figure 3.1.2 Phosphinothioesters investigated for efficiency during the traceless 

Staudinger ligation bearing different substitutions at the meta and para positions on the 

aryl rings.  
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Figure 3.1.3 Water soluble HBQ-S for the ESIPT detection of boronic acids 
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Figure 3.1.3 Water soluble HBQ-S for the ESIPT detection of boronic acids: A. ESIPT 

emission is problematic with benzoxazole	
  fluorophores such as (1) in polar protic 

solutions from intermolecular hydrogen bonds with solvent resulting in decreased 

fluorescence. HBQ (2) has a very strong intramolecular hydrogen bond due to the rigidity 

of the backbone and is unaffected by solvation. B. Sulfonylation conditions for the 

conversion of HBQ (2) into the water-soluble derivative HBQ-S (3). C. Coordination of 

HBQ-S to phenylboronic acid in aqueous conditions produces a similar fluorescent 

ESIPT-off emission for detection of boron. 
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APPENDIX 

	
  

Investigations Toward Orthogonal Reactivity Between the Azido and Diazo Groups 
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Reacts selectively with the diazo 
through cycloaddition without an
ester product at this pH
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diazo-mannosamine and 
azido-mannosamine. 
The reaction did not produce
effective labeling of the cells.

The product mass from a single
esterification was observed by LCMS
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diazo-mannosamine and 
azido-mannosamine. 
The reaction did not produce
effective labeling of the cells. 
It is hypothesized that the negative 
charge on the cellular surface repelled
the label.

Rapid reaction with both azides
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preferential for the diazo group.

Reacts selectively and rapidly
with the diazo group, but the
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cyclopropanation product or
the dimerization of two diazo-group
generated carbenes. Rh(II) is selective
for the diazo group and does not react
with the azide.

No copper-mediated click reaction was observed,
and some hydrolysis to the diazo group from
carbene generation occurred. The presence of a
stronger ligand such as THTPA will hinder any reaction
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with the azide. This reaction should be selective in 
a biological context with higher loading of the ligand.

No reaction
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