Human Collagen Prolyl 4-Hydroxylase is Activated by Ligands for its Iron Center

James D. Vasta and Ronald T. Raines*

*E-mail: rtraines@wisc.edu.

General

Biphenyl-4-carboxylic acid, biphenyl-3-carboxylic acid, 3-(pyridin-2-yl)benzoic acid, 4-(pyridin-2-yl)benzoic acid, 2-phenylisonicotinic acid, 6-phenylnicotinic acid, 5-(pyridin-2-yl)-1*H*-pyrazole-3-carboxylic acid, and 2-(pyridin-2-yl)thiazole-4-carboxylic acid were from Combi-Blocks (San Diego, CA). 2-(Pyridin-2-yl)thiazole-5-carboxylic acid was from Enamine (Monmouth Junction, NJ). 2,2'-Bipyridine-5,5'-dicarboxylate was from Sigma–Aldrich (St. Louis, MO). Phosphine ligands, phosphonium salts, and Pd(OAc)₂ were from either Sigma– Aldrich or Strem (Newberryport, MA), stored in a dessicator, and used without further purification. All other reagent chemicals were obtained from commercial sources (Sigma– Aldrich, Acros, Combi-Blocks, Oakwood Products, Enamine, Bachem, or Novabiochem) and used without further purification. HIF-1 α peptide_{556–575} was from AnaSpec (Fremont, CA) and was used without further purification.

All glassware was flame- or oven-dried, and reactions were performed under $N_2(g)$ unless indicated otherwise. DCM and toluene were dried over a column of alumina. Dimethylformamide was dried over alumina and purified further by passage through an isocyanate scrubbing column. Other anhydrous solvents were obtained in septum-sealed bottles. Flash chromatography was performed with columns of 40–63 Å silica gel, 230–400 mesh (Silicycle, Québec City, Canada). Thin-layer chromatography (TLC) was performed on plates of EMD 250-µm silica 60-F₂₅₄ with visualization by UV light or staining with KMnO₄.

The phrase "concentrated under reduced pressure" refers to the removal of solvents and other volatile materials using a rotary evaporator at water aspirator pressure (<20 torr) while maintaining water-bath temperature below 40 °C. Residual solvent was removed from samples at high vacuum (<0.1 torr). The term "high vacuum" refers to vacuum achieved by a mechanical belt-drive oil pump. All reported yields are unoptimized.

To assess their purity, new final compounds were analyzed by HPLC using a system from Waters (Milford, MA) equipped with a Waters 996 photodiode array detector, Empower 2 software, and a Nucleodur[®] C18 Gravity reversed-phase column (4.6×250 mm, 5-µm particle size) from Macherey–Nagel (Bethlehem, PA). Samples (50μ L) dissolved in H₂O were injected into the column and eluted at 1 mL/min with a linear gradient ($34 \min$) of aqueous acetonitrile (5-56% v/v) containing TFA (0.1% v/v). The maximal absorbance in the range of 210–400 nm was used as the detection wavelength.

Synthetic Procedures

3-Methoxycarbonylpyridine N-oxide

3-Methoxycarbonylpyridine *N*-oxide was prepared by oxidation of methyl nicotinate as described previously.¹ The spectral data and yields matched those reported previously.

4-Methoxycarbonylpyridine N-oxide

4-Methoxycarbonylpyridine *N*-oxide was prepared by oxidation of methyl isonicotinate as described previously¹. The spectral data and yield matched those reported previously.

5-Methoxycarbonyl-2-(pyridin-2-yl)pyridine N-oxide

To a dried flask was added Pd(OAc)₂ (9 mg, 0.04 mmoles), $[P(t-Bu)_3H]BF_4$ (36 mg, 0.12 mmoles), K₂CO₃ (226 mg, 1.6 mmoles), and 3-methoxycarbonylpyridine *N*-oxide (500 mg, 3.3 mmoles). The flask was fitted with a reflux condenser that was capped with a septum, and the system was evacuated and purged with N₂(g) (~5 times). A degassed solution of 2-bromopyridine (129 mg, 0.82 mmoles) in dry toluene (5 mL) was added via syringe, and the reaction mixture was stirred at 110 °C for 18 h. The cooled reaction mixture was filtered through Celite[®], and the filtrate was concentrated under reduced pressure. The crude product was then purified by chromatography on silica (40% v/v acetone in hexanes) to afford the title compound (100 mg, 53%) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃, δ): 9.00 (dt, *J* = 1.0, 8.0 Hz, 1 H), 8.89 (dd, *J* = 0.4, 1.6 Hz, 1 H), 8.75 (ddd, *J* = 0.8, 1.6, 4.8 Hz, 1 H), 8.32 (d, *J* = 8.4 Hz, 1 H), 7.90 (dd, *J* = 1.6, 8.4 Hz, 1 H), 7.85 (td, *J* = 2.0, 8.0 Hz, 1 H), 7.39 (ddd, *J* = 0.8, 4.8, 7.6 Hz, 1 H), 3.98 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, δ): 163.5, 150.1 (2 signals), 149.6, 148.7, 141.9, 136.4, 128.5, 127.6, 125.7, 124.9, 53.0; HRMS (ESI) *m/z* 231.0766 [calculated for C₁₂H₁₁N₂O₃ (M + H)⁺ 231.0765].

Methyl 2-(Pyridin-2-yl)pyridine-5-carboxylate (methyl bipy5C)

5-Methoxycarbonyl-2-(pyridin-2-yl)pyridine *N*-oxide (75 mg, 0.33 mmoles) was dissolved in dry CHCl₃ (3.3 mL), after which PCl₃ (34 μ L, 0.39 mmoles) was added. The reaction mixture was stirred at 60 °C until the starting material was consumed completely, as judged by TLC. The reaction was quenched by the dropwise addition of saturated aqueous Na₂CO₃ (5 mL) while stirring on ice. The product was extracted with DCM (4 × 5 mL), and the combined organics were dried over Na₂SO₄(s) and concentrated under reduced pressure to afford the title compound (67 mg, 96%) as a tan solid. ¹H NMR (400 MHz, CDCl₃, δ): 9.29 (d, *J* = 1.2 Hz, 1 H), 8.76 (bs, 1 H), 8.57 (d, *J* = 8.4 Hz, 1 H), 8.53 (d, *J* = 8.0 Hz, 1 H), 8.44 (dd, *J* = 2.0, 8.0 Hz, 1 H), 7.92 (t, *J* = 7.6 Hz, 1 H), 7.43 (dd, *J* = 4.8, 6.8 Hz, 1 H), 4.00 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, δ): 165.7, 158.6, 154.5, 150.5, 148.8, 138.2, 137.8, 125.9, 124.7, 122.3, 120.8, 52.5; HRMS (ESI) *m/z* 215.0814 [calculated for C₁₂H₁₁N₂O₂ (M + H)⁺ 215.0816].

2-(Pyridin-2-yl)pyridine-5-carboxylic Acid (bipy5C) 0 MeO N N 1. KOH, MeOH, 60 °C 2. HCl, H₂O HO NN

To a vial was added methyl bipy5C (50 mg, 0.23 mmoles) and KOH (60 mg, 0.83 mmoles). MeOH (2.3 mL) was added to the vial, and the reaction mixture was heated to 60 °C until complete the starting material was consumed completely, as judged by TLC. The reaction mixture was cooled and concentrated under reduced pressure, after which the crude product was dissolved in water (2 mL). The aqueous layer was washed with EtOAc (1 × 2 mL), and the product was precipitated from the aqueous layer by adjusting to pH 3–4 with 1 M HCl. After cooling to 4°C, the product was removed by filtration, washed with water (2 × 2 mL), and dried in vacuo to afford the title compound (28 mg, 60%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆, δ): 13.39 (bs, 1 H), 9.03 (dd, *J* = 0.5, 2.0 Hz, 1 H), 8.60 (dq, *J* = 1.0, 4.5 Hz, 1 H), 8.38 (dd, *J* = 0.5, 8.0 Hz, 1 H), 8.32 (d, *J* = 8.0 Hz, 1 H), 8.27 (dd, *J* = 2.0, 8.0 Hz, 1 H), 7.39 (ddd, *J* = 1.0, 5.0, 7.5 Hz, 1 H); ¹³C NMR (100 MHz, DMSO-*d*₆, δ): 166.5, 158.7, 154.5, 150.5, 149.9, 138.6, 137.9, 126.9, 125.3, 121.6, 120.6; HRMS (EI) *m/z* 200.0577 [calculated for C₁₁H₈N₂O₂ (M)⁺ 200.0581].

4-Methoxycarbonyl-2-(pyridin-2-yl)pyridine N-oxide

To a dried flask was added Pd(OAc)₂ (9 mg, 0.04 mmoles), [P(*t*-Bu)₃H]BF₄ (36 mg, 0.12 mmoles), K₂CO₃ (226 mg, 1.6 mmoles), and 3-methoxycarbonylpyridine *N*-oxide (500 mg, 3.3 mmoles). The flask was fitted with a reflux condenser that was capped with a septum, and the system was evacuated and purged with N₂(g) (~5 times). A degassed solution of 2-bromopyridine (129 mg, 0.82 mmoles) in dry toluene (5 mL) was added via syringe, and the reaction mixture was stirred at 110 °C for 18 h. The cooled reaction mixture was filtered through Celite[®], and the filtrate concentrated under reduced pressure. The crude product was purified by chromatography on silica (40% v/v acetone in hexanes) to afford the title compound (128 mg, 68%) as a solid. ¹H NMR (400 MHz, CDCl₃, δ): 8.94–9.76 (m, 3 H), 8.33 (d, *J* = 6.8 Hz, 1 H), 7.87–7.83 (m, 2 H), 7.38 (ddd, *J* = 1.2, 4.8, 7.6 Hz, 1 H), 3.97 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, δ): 164.1, 149.6, 148.9, 147.4, 141.0, 136.4, 128.4, 126.4, 125.2, 125.0, 124.6, 52.8; HRMS (ESI) *m/z* 231.0766 [calculated for C₁₂H₁₁N₂O₃ (M + H)⁺ 231.0765].

Methyl 2-(Pyridin-2-yl)pyridine-4-carboxylate (methyl bipy4C)

4-Methoxycarbonyl-2-(pyridin-2-yl)pyridine *N*-oxide (100 mg, 0.43 mmoles) was dissolved in dry CHCl₃ (4.0 mL), and PCl₃ (45 μ L, 0.52 mmoles) was added. The reaction mixture was stirred at 60 °C until the starting material was consumed completely, as judged by TLC. The reaction was quenched by the dropwise addition of saturated aqueous Na₂CO₃ (10 mL) while stirring on ice. The product was extracted with DCM (5 × 10 mL), and the combined organics were dried over Na₂SO₄(s) and concentrated under reduced pressure. The crude product was purified by chromatography on silica (30% v/v acetone in hexanes) to afford the title compound (83 mg, 89%) as a white solid. ¹H NMR (400 MHz, CDCl₃, δ): 8.95 (q, *J* = 0.8 Hz, 1 H), 8.83 (dd, *J* = 0.8, 4.8 Hz, 1 H), 8.73 (dq, *J* = 0.8, 4.8 Hz, 1 H), 8.43 (dt, *J* = 0.8, 8.0 Hz, 1 H), 7.88–7.82 (m, 2 H), 7.35 (ddd, *J* = 1.0, 4.8, 7.2 Hz, 1 H), 3.99 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, δ): 165.7, 157.3, 155.3, 149.9, 149.3, 138.4, 137.0, 124.1, 122.8, 121.2, 120.4, 52.7; HRMS (ESI) *m*/*z* 205.0818 [calculated for C₁₂H₁₁N₂O₂ (M + H)⁺ 215.0816].

2-(Pyridin-2-yl)pyridine-4-carboxylic Acid (bipy4C)

To a vial was added methyl bipy4C (50 mg, 0.23 mmoles) and KOH (60 mg, 0.83 mmoles). MeOH (2.3 mL) was added to the vial, and the reaction mixture was heated to 60 °C until the starting material was consumed completely, as judged by TLC. The reaction mixture was cooled and concentrated under reduced pressure, and the crude product was dissolved in water (2 mL). The aqueous layer was washed with EtOAc (1 × 2 mL), and product was precipitated from the aqueous layer by adjusting the pH to 3–4 with 1 M HCl. After cooling to 4 °C, the product was removed by filtration, washed with water (2 × 2 mL), and dried in vacuo to afford the title compound (30 mg, 64%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆, δ): 13.81 (bs, 1 H), 8.89 (dd, *J* = 0.5, 5.0 Hz, 1 H), 8.84 (dd, *J* = 0.5, 1.0 Hz, 1 H), 8.74 (ddd, *J* = 0.5, 1.0, 4.5 Hz, 1 H), 8.00 (td, *J* = 1.5, 8.0 Hz, 1 H), 7.88 (dd, *J* = 1.5, 5.0 Hz, 1 H), 7.52 (ddd, *J* = 1.0, 4.5, 7.5 Hz, 1 H); ¹³C NMR (100 MHz, DMSO-*d*₆, δ): 166.6, 156.8, 154.8, 150.9, 150.0, 139.8, 138.0, 125.2, 123.5, 121.1, 119.9; HRMS (EI) *m/z* 200.0583 [calculated for C₁₁H₈N₂O₂ (M)⁺ 200.0581].

4-Methoxycarbonyl-2-(pyridin-3-yl)pyridine N-oxide

To a dried flask was added Pd(OAc)₂ (9 mg, 0.040 mmoles), $[P(t-Bu)_3H]BF_4$ (36 mg, 0.12 mmoles), K_2CO_3 (226 mg, 1.63 mmoles), and 4-methoxycarbonylpyridine *N*-oxide (500 mg, 3.26 mmoles). The flask was fitted with a reflux condenser that was capped with a septum, and the system was evacuated and purged with $N_2(g)$ (~5 times). A degassed solution of 3-bromopyridine (129 mg, 0.82 mmoles) in dry toluene (5 mL) was added via syringe, and the reaction mixture was stirred at 110 °C for 18 h. The cooled reaction mixture was filtered through

Celite[®], and the filtrate was concentrated under reduced pressure. The crude product was further purified by chromatography on silica (4% v/v MeOH in EtOAc) to afford the title compound (100 mg) as a white solid. Due to the presence of minor contaminants that were difficult to remove by chromatography or recrystallization, the slightly crude product was used directly in the next reaction before further purification and characterization. ¹H NMR (400 MHz, CDCl₃, δ): 8.95 (d, J = 1.6 Hz, 1 H), 8.71 (d, J = 0.8, 4.8 Hz, 1 H), 8.35 (d, J = 6.8 Hz, 1 H), 8.30 (dt, J = 1.6, 7.6 Hz, 1 H), 8.10 (d, J = 2.4 Hz, 1 H), 7.87 (dd, J = 2.4, 6.8 Hz, 1 H), 7.44 (dd, J = 5.2, 8.0 Hz, 1 H), 3.97 (s, 3 H); HRMS (ESI) *m*/*z* 231.0761 [calculated for C₁₂H₁₁N₂O₃ (M + H)⁺ 231.0765].

Methyl 2-(Pyridin-3-yl)pyridine-4-carboxylate

4-Methoxycarbonyl-2-(pyridin-3-yl)pyridine *N*-oxide (75 mg, 0.33 mmoles) was dissolved in dry CHCl₃ (3.3 mL), and PCl₃ (68 μ L, 0.78 mmoles) was added. The reaction mixture was stirred at 60 °C until the starting material was consumed completely, as judged by TLC. The reaction was quenched by the dropwise addition of saturated aqueous Na₂CO₃ (5 mL) while stirring on ice. The product was extracted with DCM (4 × 5 mL), and the combined organics were dried over Na₂SO₄(s) and concentrated under reduced pressure. The crude product was purified by chromatography on silica (60% v/v acetone in hexanes) to afford the title compound (40 mg, 31% over 2 steps) as a white solid. ¹H NMR (400 MHz, CDCl₃, δ): 9.27 (d, *J* = 1.6 Hz, 1 H), 8.87 (dd, *J* = 0.8, 4.8 Hz, 1 H), 8.69 (dd, *J* = 1.2, 4.8 Hz, 1 H), 8.36 (ddd, *J* = 2.0, 2.4, 8.0 Hz, 1 H), 8.31 (dd, *J* = 0.8, 1.2 Hz, 1 H), 7.83 (dd, *J* = 1.6, 5.2 Hz, 1 H), 7.43 (ddd, *J* = 0.4, 4.8, 8.0 Hz, 1 H), 4.00 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, δ): 165.4, 155.9, 150.8, 150.4, 148.3, 138.4, 134.3, 134.0, 123.6, 121.9, 119.7, 52.8; HRMS (ESI) *m*/*z* 205.0815 [calculated for C₁₂H₁₁N₂O₂ (M + H)⁺ 215.0816].

2-(Pyridin-3-yl)pyridine-4-carboxylic Acid

To a vial was added methyl 2-(pyridin-3-yl)pyridine-4-carboxylate (32 mg, 0.15 mmoles) and KOH (38 mg, 0.6 mmoles). MeOH (1.5 mL) was added to the vial and the reaction mixture was heated to 60 °C until the starting material was consumed completely, as judged by TLC. The reaction mixture was cooled and concentrated under reduced pressure, and the crude product was dissolved in water (2 mL). The aqueous layer was washed with EtOAc (1 × 1 mL), and the product was precipitated from the aqueous layer by adjusting to pH 3–4 with 1 M HCl. After cooling to 4°C, the product was removed by filtration, washed with water (2 × 1 mL), and dried in vacuo to afford the title compound (24 mg, 82%) as a white solid. ¹H NMR (500 MHz, DMSO- d_6 , δ): 13.71 (bs, 1 H), 9.17 (d, J = 2.5 Hz, 1 H), 8.77 (dd, J = 0.5, 5.0 Hz, 1 H), 8.54 (dd, J = 1.5, 5.0 Hz, 1 H), 8.36 (ddd, J = 1.5, 3.5, 8.0 Hz, 1 H), 8.24 (s, 1 H), 7.71 (dd, J = 1.5, 5.0

Hz, 1 H), 7.41 (ddd, J = 0.5, 4.5, 8.0 Hz, 1 H); ¹³C NMR (125 MHz, DMSO- d_6 , δ): 166.5, 155.4, 151.4, 150.7, 148.3, 140.0, 134.7, 133.8, 124.3, 122.6, 119.9; HRMS (EI) m/z 200.0580 [calculated for C₁₁H₈N₂O₂ (M)⁺ 200.0581].

Bipy45'DC

Bipy45'DC was synthesized in 4 steps as described previously,¹ with matching spectral data and yields for all synthetic transformations.

PythiDC

PythiDC was synthesized in 2 steps as described previously,² with matching spectral data and yields for all synthetic transformations.

N-Dansylglycyl-(2S)-prolyl-(2S)-prolylglycine Ethyl Ester (DansylGlyProProGlyOEt)

Dansyl

DansylGlyProProGlyOEt was synthesized as described previously.¹ The spectral data and yield matched those reported previously.

NMR Spectra

400 MHz¹H NMR Spectrum of 5-Methoxycarbonyl-2-(pyridin-2-yl)pyridine N-oxide in CDCl₃

100 MHz¹³C NMR Spectrum of 5-Methoxycarbonyl-2-(pyridin-2-yl)pyridine N-oxide in CDCl₃

400 MHz¹H NMR Spectrum of Methyl Bipy5C in CDCl₃

100 MHz¹³C NMR Spectrum of Methyl Bipy5C in CDCl₃

400 MHz¹H NMR Spectrum of Bipy5C in DMSO-d₆

100 MHz¹³C NMR Spectrum of Bipy5C in DMSO-d₆

400 MHz¹H NMR Spectrum of 4-Methoxycarbonyl-2-(pyridin-2-yl)pyridine N-Oxide in CDCl₃

100 MHz¹³C NMR Spectrum of 4-Methoxycarbonyl-2-(pyridin-2-yl)pyridine N-Oxide in CDCl₃

400 MHz¹H NMR Spectrum of Methyl Bipy4C in CDCl₃

100 MHz¹³C NMR Spectrum of Methyl Bipy4C in CDCl₃

400 MHz¹H NMR Spectrum of Bipy4C in DMSO-d₆

100 MHz¹³C NMR Spectrum of Bipy4C in DMSO-d₆

400 MHz¹H NMR Spectrum of Methyl 2-(pyridin-3-yl)pyridine-4-carboxylate N-Oxide (Impure) in CDCl₃

400 MHz¹H NMR Spectrum of Methyl 2-(pyridin-3-yl)pyridine-4-carboxylate in CDCl₃

100 MHz¹³C NMR Spectrum of Methyl 2-(pyridin-3-yl)pyridine-4-carboxylate in CDCl₃

14.0 13.5 13.0 12.5 12.0 13.5 13.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 17.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl(ppm)

125 MHz¹³C NMR Spectrum of 2-(Pyridin-3-yl)pyridine-4-carboxylic Acid in DMSO-d₆

HPLC Chromatograms of Final Compounds

References

(1) Vasta, J. D., and Raines, R. T. (2015) Selective inhibition of prolyl 4-hydroxylases by bipyridinedicarboxylates, *Bioorg. Med. Chem.* 23, 3081–3090.

(2) Vasta, J. D., Andersen, K. A., Deck, K. M., Nizzi, C. P., Eisenstein, R. S., and Raines, R. T. (2016) Selective inhibition of collagen prolyl 4-hydroxylase in human cells, *ACS Chem. Biol. 11*, 193–199.