Selective Inhibition of Collagen Prolyl 4-Hydroxylase in Human Cells

James D. Vasta, ${ }^{\dagger}$ Kristen A. Andersen, ${ }^{\dagger}$ Kathryn M. Deck, ${ }^{\S}$ Christopher P. Nizzi, ${ }^{\S}$
${ }^{\dagger}$ Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
${ }^{\ddagger}$ Graduate Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison, 1300 University Avenue, Madison, Wisconsin 53706, United States
${ }^{\S}$ Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, Wisconsin 53706, United States
"Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
*E-mail: rtraines@wisc.edu

Section	Contents	Page
I	General	S3
II	Instrumentation	S3
III	Production of Recombinant Human CP4H1	S4
IV	Assay of Human CP4H1 Activity in the Presence of Inhibitors	S4
V	Production of Recombinant Human PHD2	S4
VI	Assay of Human PHD2 Activity in the Presence of Inhibitors	S4
VII	Estimation of the $\mathrm{p} K_{\mathrm{a}}$ Values of Biheteroaryl Ligands	S4
VIII	Assay of Fe(II)-Affinity for Biheteroaryl Ligands	S5
IX	Determination of Fe(II) Complex Stoichiometry	S5
X	General Mammalian Cell Culture	S6
XI	Cytotoxicity Assays	S6
XII	Effect of CP4H Inhibitors on Iron Metabolism and P4HA1 Levels in Human Cells	S7
XIII	Immunoblotting	S7
XIV	Effect of CP4H Inhibitors on the Binding of the Iron-Responsive Element by IRPs	S7
XV	Electrophoretic Mobility Shift Assay for IRE Binding by IRPs	S8
XVI	Effect of CP4H Inhibitors on Collagen Synthesis in Mammalian Cells	S8
XVII	Synthetic Procedures	S8
XVIII	Determination of Compound Purity	S30
XIX	HPLC Chromatograms	S31
XX	NMR Spectra	S50
XXI	Table S1. Estimated LogP and Topological Polar Surface Area (TPSA) Values	S91
XXII	Absorption Spectra of Ligands and Complexes	S92
XXIII	Figure S1. Ligand Titrations to Form Iron Complexes	S94
XXIV	Job's Plots for Fe (II) Complexes	S96
XXV	pH Titration Curves for Biheteroaryl Ligands	S97
XXVI	Figure S2. Screen for Inhibitors of Human CP4H1	S100
XXVII	Figure S3. Competitive Iron-Binding by PyimDC and Ester Derivatives	S101
XXVIII	Figure S4. Screen for Inhibitors of Human PHD2	S101
XXIX	Figure S5. Effect of Biheteroaryl Compounds on Iron Metabolism in Human Breast Cancer Cells	S102
XXX	Figure S6. Effect of Biheteroaryl Compounds and Their Diethyl Esters on Iron Metabolism in Human Embryonic Kidney Cells	S103
XXXI	Figure S7. Effect of Esterified Biheteroaryl Compounds on IRE Binding by IRPs in Human Breast Cancer Cells	S104
XXXII	Figure S8. Effect of Esterified Biheteroaryl Compounds on P4HA1 Levels in Human Breast Cancer Cells	S104
XXXIII	References	S105

EXPERIMENTAL PROCEDURES

I. General

2,4-Pyridinedicarboxylic acid (24PDC), 2,5-pyridinedicarboxylic acid (25PDC), 2,2'-bipyridine (bipy), 2-(1H-imidazol-2-yl)pyridine (pyim), and 2,2'-bipyridine-5,5'-dicarboxylic acid (bipy55'DC) were from Sigma-Aldrich (St. Louis, MO). 2-(1H-Pyrazol-3-yl)pyridine was from Combi-Blocks (San Diego, CA). Phosphine ligands and phosphonium salts were from either Sigma-Aldrich or Strem (Newberryport, MA), stored in a dessicator, and used without further purification. $\mathrm{Pd}(\mathrm{OAc})_{2}$ was from Sigma-Aldrich, stored in a dessicator, and used without further purification. Deferroxamine mesylate was from Santa Cruz Biotechnology (Dallas, TX). Ethyl dihydroxybenzoate (EDHB) was from Combi-Blocks and was recrystallized from EtOAc before use in cell culture experiments. All other reagent chemicals were obtained from commercial sources (Sigma-Aldrich, Acros, Combi-Blocks, Oakwood Products, Enamine, Bachem, or Novabiochem) and used without further purification. HIF-1 α peptide ${ }_{556-575}$ was from AnaSpec (Fremont, CA) and used without further purification.

All glassware was flame- or oven-dried, and reactions were performed under $\mathrm{N}_{2}(\mathrm{~g})$ unless indicated otherwise. DCM and toluene were dried over a column of alumina. Dimethylformamide was dried over alumina and further purified through an isocyanate scrubbing column. Other anhydrous solvents were obtained in septum-sealed bottles. Flash chromatography was performed with columns of 40-63 \AA silica gel, 230-400 mesh from Silicycle (Québec City, Canada). Thin-layer chromatography (TLC) was performed on plates of EMD $250 \mu \mathrm{~m}$ silica $60-\mathrm{F}_{254}$ with visualization by UV light or staining with KMnO_{4}.

The phrase "concentrated under reduced pressure" refers to the removal of solvents and other volatile materials using a rotary evaporator at water aspirator pressure (<20 torr) while maintaining water-bath temperature below $40^{\circ} \mathrm{C}$. Residual solvent was removed from samples at high vacuum (<0.1 torr). The term "high vacuum" refers to vacuum achieved by a mechanical belt-drive oil pump. All reported yields are unoptimized. All procedures were performed at ambient temperature unless indicated otherwise.

II. Instrumentation

NMR spectra were acquired at ambient temperature with a DMX-400 Avance spectrometer or an Avance 500i spectrometer from Bruker (Billerica, MA) at the National Magnetic Resonance Facility at Madison (NMRFAM) and were referenced to TMS or a residual protic solvent. Some compounds exist as either mixtures of rotomers or tautomers that do not interconvert on the NMR timescale at ambient temperature and therefore exhibit multiple sets of NMR signals (as indicated). Electrospray ionization (ESI) and electron ionization (EI) mass spectrometry were performed with a Micromass LCT ${ }^{\circledR}$ or Micromass AutoSpec ${ }^{\circledR}$ instruments, respectively, from Waters (Milford, MA) at the Mass Spectrometry Facility in the Department of Chemistry at the University of Wisconsin-Madison. The progress of reactions catalyzed by prolyl 4-hydroxylases was determined by analytical HPLC (Waters system equipped with a Waters 996 photodiode array detector, Empower 2 software). Preparative HPLC was performed using a Prominence HPLC instrument from Shimadzu (Kyoto, Japan) equipped with two LC-20AP pumps, an SPDM20A photodiode array detector, and a CTO-20A column oven. Iron complexes with biheteroaryl ligands were analyzed by spectrophotometry using a Cary 60 UV-Vis
spectrophotometer from Agilent Technologies (Santa Clara, CA). Protein concentrations were calculated from their absorbance at 280 nm as measured with a NanoVue Plus spectrophotometer from GE Healthcare using an extinction coefficient ${ }^{1}$ of $290,000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ for human $\mathrm{CP}^{2} \mathrm{H}^{1}$ and $36,9000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ for human PHD2. ${ }^{2}$ Values of $\mathrm{IC}_{50}, \mathrm{EC}_{50}$, and LD_{50} were calculated from experimental data with Prism version 6.0 software from GraphPad Software (La Jolla, CA).

III. Production of Recombinant Human CP4H1

Human CP 4 H containing the $\alpha(\mathrm{I})$ isoform was produced heterologously in Origami $\mathrm{B}(\mathrm{DE} 3)$ Escherichia coli cells and purified as described previously. ${ }^{1}$

IV. Assay of Human CP4H1 Activity in the Presence of Inhibitors

The catalytic activity of human CP 4 H 1 was assayed as described previously. ${ }^{1}$ Briefly, activity assays were carried out at $30^{\circ} \mathrm{C}$ in $100 \mu \mathrm{~L}$ Tris- HCl buffer, pH 7.8 , containing human CP4H1 $(100 \mathrm{nM})$, inhibitor $(0-500 \mu \mathrm{M})$, substrate (dansyl-Gly-Pro-Pro-Gly-OEt, $500 \mu \mathrm{M}), \mathrm{FeSO}_{4}$ $(50 \mu \mathrm{M})$, BSA $(1 \mathrm{mg} / \mathrm{mL})$, catalase $(0.1 \mathrm{mg} / \mathrm{mL})$, sodium ascorbate $(2 \mathrm{mM})$, DTT $(100 \mu \mathrm{M})$, and α-ketoglutarate $(100 \mu \mathrm{M})$. Reactions were pre-incubated with or without inhibitor for 2 min at $30^{\circ} \mathrm{C}$, after which the reaction was initiated by the addition of α-ketoglutarate. After 15 min , reactions were quenched by boiling for 45 s and centrifuged at $10,000 \mathrm{~g}$. The supernatant ($20-$ $50 \mu \mathrm{~L}$) was injected into a Nucleodur ${ }^{\circledR}$ C18 Gravity reversed-phase column ($4.6 \times 250 \mathrm{~mm}$, $5-\mu \mathrm{m}$ particle size) from Macherey-Nagel (Bethlehem, PA). The column was eluted at $1 \mathrm{~mL} / \mathrm{min}$ with a linear gradient (20 min) of aqueous acetonitrile ($20-45 \% \mathrm{v} / \mathrm{v}$) containing TFA $(0.1 \% \mathrm{v} / \mathrm{v})$. The absorbance of the eluent was monitored at 289 nm . All assays were performed in triplicate. Data are reported as catalytic activity relative to control reactions lacking inhibitor, where catalytic activity is determined from the percent conversion of substrate to product. Doseresponse curves were generated for each inhibitor by plotting the relative activity versus the log of the inhibitor concentration. IC_{50}-values for each inhibitor were interpolated from the data by non-linear regression to the sigmoidal dose-response equation in Prism software.

V. Production of Recombinant Human PHD2

A cDNA encoding human PHD2 ${ }_{181-426}$ possessing an N -terminal hexahistidine (His_{6}) tag ($\mathrm{NHis}_{6}{ }^{-}$ PHD $2_{181-426}$) was cloned using the Gibson strategy, ${ }^{3}$ and the encoded protein was produced and purified as described previously. ${ }^{2}$

VI. Assay of Human PHD2 Activity in the Presence of Inhibitors

The catalytic activity of human PHD2 was assayed as described previously. ${ }^{2}$ Briefly, activity assays were carried out at $30^{\circ} \mathrm{C}$ in $100 \mu \mathrm{~L}$ Tris- HCl buffer, pH 7.8 , containing human NHis 6^{-} PHD $2_{181-426}(5 \mu \mathrm{M})$, inhibitor $(0-50 \mu \mathrm{M})$, substrate (HIF-1 α peptide $_{556-574,50} 5 \mathrm{M}$), FeSO_{4} $(50 \mu \mathrm{M})$, BSA $(1 \mathrm{mg} / \mathrm{mL})$, catalase $(0.3 \mathrm{mg} / \mathrm{mL})$, sodium ascorbate (2 mM), DTT (1 mM), and α-ketoglutarate $(35 \mu \mathrm{M})$. Reaction mixtures were pre-incubated with or without inhibitor for 2 min at $30^{\circ} \mathrm{C}$, after which the reaction was initiated by the addition of α-ketoglutarate. After 10 min , reactions were quenched by boiling for 60 s and centrifuged at $10,000 \mathrm{~g}$. The supernatant $(50 \mu \mathrm{~L})$ was injected into a Nucleodur ${ }^{\circledR} \mathrm{C} 18$ Gravity reversed-phase column ($4.6 \times 250 \mathrm{~mm}$,
$5-\mu \mathrm{m}$ particle size) from Macherey-Nagel. The column was eluted at $1 \mathrm{~mL} / \mathrm{min}$ with a gradient (34 min) of aqueous acetonitrile ($5-56 \% \mathrm{v} / \mathrm{v}$) containing TFA ($0.1 \% \mathrm{v} / \mathrm{v}$). The absorbance of the eluent was monitored at 218 nm . All assays were performed in triplicate. Data is reported as activity relative to control reactions lacking inhibitor, where activity is determined from the percent conversion of substrate to product.

VII. Estimation of the $\mathrm{p} K_{\mathrm{a}}$ Values of Biheteroaryl Ligands

The $\mathrm{p} K_{\mathrm{a}}$ value of biheteroaryl compounds was estimated with potentiometric titration. Compounds ($5-10 \mathrm{mM}$) were dissolved in water and the pH was adjusted to ~ 12 by adding 10 M NaOH . The pH of the solution was recorded with an Accumet ${ }^{\mathrm{TM}} \mathrm{XL} 500 \mathrm{pH}$ meter equipped with an Orion $912600^{\circledR} \mathrm{pH}$ electrode from Thermo Fisher Scientific while titrating the solution with $\mathrm{HCl}(1 \mathrm{M}$ or $100 \mu \mathrm{M}$, as necessary) until a pH value of ~ 1.75 was achieved. Titration curves were prepared by plotting the solution pH versus the volume of 1 M HCl added, and $\mathrm{p} K_{\mathrm{a}}$ values were estimated from derivative plots of the titration curves using Prism software.

VIII. Assay of Fe(II)-Affinity for Biheteroaryl Ligands

The affinity of biheteroaryl ligands for $\mathrm{Fe}(\mathrm{II})$ was determined comparatively by measuring the half-maximal concentration $\left(\mathrm{EC}_{50}\right)$ required for binding $20 \mu \mathrm{M} \mathrm{Fe}(\mathrm{II})\left(\mathrm{Fe}_{20}-\mathrm{EC}_{50}\right)$ in sodium phosphate buffer at pH 7.0. Stock solutions of ligands were prepared in either water for high affinity ligands (typically, $\mathrm{Fe}_{20}-\mathrm{EC}_{50}<1 \mathrm{mM}$) or DMSO for low affinity ligands (typically, $\mathrm{Fe}_{20}{ }^{-}$ $\mathrm{EC}_{50}>1 \mathrm{mM}$). Stock solutions of FeSO_{4} were prepared in $\mathrm{H}_{2} \mathrm{O}$ and used within 3 h of preparation. Ligand solutions ($3 \mu \mathrm{M}-18 \mathrm{mM}$, depending on affinity) were prepared in 10 mM sodium phosphate buffer, pH 7.0 , after which Fe (II) stock solution was added to initiate complex formation. For high-affinity ligands, solutions were allowed to equilibrate for 15 min , after which the absorbance was recorded at the $\lambda_{\max }$ for the complex under study. For most low affinity ligands, the corresponding Fe (II) complexes were unstable and observed to dissociate over time. Therefore, the absorbance value was determined within 30 s of mixing, where the absorbance was measured at the $\lambda_{\max }$ for the complex under study. Complexes with pyox were not observed under these conditions. Absorbance values were corrected by subtracting the absorbance value in the absence of ligand. Dose-response curves were generated for each ligand by plotting the absorbance versus the \log of the ligand concentration. Values of $\mathrm{Fe}_{20}-\mathrm{EC}_{50}$ for each ligand were interpolated from the dose-response curves by non-linear regression using the sigmoidal dose-response function in Prism software. All experiments were performed in triplicate. Experiments to study pyimDC were performed as described above, except that phosphate buffer was excluded from the assay solution, bipy was added last to a final concentration of $300 \mu \mathrm{M}$, and the absorbance of the $\mathrm{Fe}(\text { bipy })_{3}{ }^{2+}$ complex was measured at 523 nm .

IX. Determination of $\mathbf{F e}$ (II) Complex Stoichiometry

The stoichiometry of biheteroaryl complexes with Fe (II) was estimated with Job's method. Briefly, reactions were prepared such that the total moles of Fe(II) and ligand were kept constant, but the mole fraction of the ligand was varied from 0 to 1 . The total concentration of ligand and Fe(II) used for each individual ligand was based upon the iron affinity and extinction coefficient,
and ranged from 0.4 mM to 2 mM . Stock solutions of ligands were prepared in water. Stock solutions of FeSO_{4} were prepared in water and used within 3 h of preparation. Reaction mixtures were prepared in 10 mM sodium phosphate buffer, pH 7.0 , and complex formation was initiated by the addition of Fe (II) solution. For high-affinity ligands (typically, $\mathrm{Fe}_{20}-\mathrm{EC}_{50}<1 \mathrm{mM}$), solutions were allowed to equilibrate for 15 min , after which the absorbance was recorded at the $\lambda_{\max }$ for the complex under study. For most low-affinity ligands (typically, $\mathrm{Fe}_{20}-\mathrm{EC}_{50}>1 \mathrm{mM}$), the corresponding $\mathrm{Fe}(\mathrm{II})$ complexes were unstable and observed to dissociate over time. Therefore, the absorbance value was determined within 30 s of mixing, where the absorbance was measured at the $\lambda_{\max }$ for the complex under study. Complexes with pyox were not observed under these conditions. Absorbance values were corrected by subtracting the absorbance value of a blank solution in absence of FeSO_{4}, after which the values were normalized relative to the reaction with the highest absorbance value. All experiments were performed in at least duplicate. Job's plots were constructed by plotting the normalized absorbance versus the mole fraction of biheteroaryl ligand, after which the stoichiometry of the complex was estimated from the mole fraction of the reaction with the highest absorbance value. If necessary, blank titrations using only Fe (II) were used to correct the Job's plots.

X. General Mammalian Cell Culture

The HEK293T line of human embryonic kidney cells was from American Type Culture Collection (ATCC, Manassas, VA), and the MDA-MB-231 line of human breast cancer cells was a generous gift from Dr. Beth A. Weaver (University of Wisconsin-Madison). Cell lines were maintained according to the procedures recommended by the ATCC. Cells were grown in a cell culture incubator at $37{ }^{\circ} \mathrm{C}$ under $\mathrm{CO}_{2}(5 \% \mathrm{v} / \mathrm{v})$ in flat-bottomed culture flasks. The culture medium was DMEM supplemented with GIBCO fetal bovine serum (FBS) $(10 \% \mathrm{v} / \mathrm{v})$, penicillin (100 units $/ \mathrm{mL}$), streptomycin ($100 \mu \mathrm{~g} / \mathrm{mL}$) and L-glutamine (2 mM). Cells were counted by hemocytometry with Trypan Blue prior to use in assays.

XI. Cytotoxicity Assays

The toxicity of esterified biheteroaryl compounds for human breast cancer cells was evaluated with the CellTiter 96^{\circledR} AQueous One Solution Cell Proliferation Assay (MTS) from Promega (Madison, WI). Briefly, MDA-MB-231 cells grown as described in Section X were plated at a concentration of 5,000 cells/well in a clear 96 -well plate. The cells were allowed to adhere for 4 h , after which the medium was removed and discarded. Fresh medium was added and the cells were treated with varying concentrations of the test compound at $37^{\circ} \mathrm{C}$ for 24 h . The medium was removed, and cells were washed with Dulbecco's PBS. The MTS reagent was added at a ratio of $1: 5$, and the cells were incubated at $37^{\circ} \mathrm{C}$ for 2 h before measuring the absorbance at 490 nm . The average absorbance was measured in triplicate for each concentration tested, and the entire experiment was repeated in duplicate. The percentage of viable cells was determined by normalizing to a PBS control (100% viable), and a $\mathrm{H}_{2} \mathrm{O}_{2}$ control (0% viable). For all of the compounds tested, the LD_{50}-value could not be measured due to its being higher than the aqueous solubility limit: diethyl bipy55'DC, $\mathrm{LD}_{50}>100 \mu \mathrm{M}$; diethyl pyimDC, $\mathrm{LD}_{50}>1000 \mu \mathrm{M}$; diethyl pythiDC, $\mathrm{LD}_{50}>500 \mu \mathrm{M}$.

XII. Effect of CP4H Inhibitors on Iron Metabolism and P4HA1 Levels in Human Cells

MDA-MB-231 or HEK293T cells were plated at 50,000 cells/well into 12-well plates and grown to confluence ($\sim 24 \mathrm{~h}$) as described in Section X. The cells were washed, and the medium was replaced with 1.0 mL of serum-free medium. Stock solutions of all test compounds were prepared at $100 \times$ in DMSO and added to a final concentration of $1 \times(0.1-0.5 \mathrm{mM})$. After addition of the test compound or DMSO vehicle, cells were incubated for 24 h . The cells were then washed with $100 \mu \mathrm{~L}$ MPER solution from Thermo Fisher Scientific (Waltham, MA) and collected. Protein concentrations were determined by BCA assay (Thermo Fisher Scientific), and samples corresponding to $40 \mu \mathrm{~g}$ total protein were analyzed with an immunoblot.

XIII. Immunoblotting

For all immunoblot analyses, protein samples where boiled in SDS-PAGE buffer, separated by electrophoresis through a Tris-glycine SDS-PAGE gel from Bio-Rad Laboratories (Hercules, CA), and subsequently transferred to a PVDF membrane for immunoblotting. All primary antibodies were used at the working dilution specified by the manufacturer. Primary antibodies were visualized using a complementary secondary antibody fused to horseradish peroxidase (HRP), with detection of HRP by chemiluminescence, imaging using an ImageQuant LAS 4000 (GE Healthcare), and quantification by densitometry (ImageJ software). The anti-rabbit antibody from Promega and the anti-mouse antibody from Abbiotec (San Diego, CA) were used at the working dilution specified by the manufacturer. Statistical comparisons were performed using Student's t-test or one-way ANOVA functions available in Prism.

For investigations of iron metabolism, protein samples ($40 \mu \mathrm{~g}$) were separated by SDSPAGE through a $12 \% \mathrm{w} / \mathrm{v}$ acrylamide gel, and blots were probed with primary antibodies to human ferritin (rabbit monoclonal) from Abcam (Cambridge, MA), human transferrin receptor (mouse monoclonal) from Invitrogen, human HIF-1 α (mouse monoclonal) from BD Biosciences, and human β-actin (rabbit monoclonal) from Cell Signaling Technology (Danvers, MA). Quantifications were normalized to the signal from β-actin, after which treated samples were compared to vehicle-treated controls.

For investigations of P4HA1 levels, protein samples were treated and quantified as described above for iron metabolism except that the blots were probed with primary antibodies to human P4HA1 (rabbit polyclonal) from Thermo Fisher Scientific and human β-actin.

For investigations of collagen secretion, protein samples were separated by SDS-PAGE through a $7.5 \% \mathrm{w} / \mathrm{v}$ acrylamide gel. Blots were first stained for total protein using Ponceau S, after which they were probed with a primary antibody to human type-I collagen ($\alpha 1$) (rabbit polyclonal) from Novus Biologicals (Littleton, CO). Quantifications were normalized to the total protein signal obtained from Ponceau S staining, after which treated samples were compared to vehicle-treated controls.

ph. Effect of CP4H Inhibitors on the Binding of the Iron-Responsive Element by IRPs

MDA-MB-231 cells were plated at 3×10^{6} cells/dish into $100 \mathrm{~mm} \times 20 \mathrm{~mm}$ dishes and grown to confluence ($\sim 24 \mathrm{~h}$) as described in Section X. The cells were washed, and the medium was replaced with 10 mL of serum-free medium. Stock solutions of all test compounds were prepared at $100 \times$ in DMSO and added to a final concentration of $1 \times$ (as denoted). After addition of the test
compound or DMSO vehicle, cells were incubated for 24 h , after which they were harvested by trypsinization and centrifugation. The resultant pellets $(\sim 50 \mu \mathrm{~L})$ were washed with PBS and then lysed using a protocol described previously. ${ }^{4}$ Briefly, cell pellets were resuspended in $200 \mu \mathrm{~L}$ of cell lysis buffer, which was 20 mM Hepes- HCl buffer, pH 7.4 , containing sodium pyrophosphate (10 mM), sodium fluoride $(50 \mathrm{mM})$, β-glycerophosphate (50 mM), EDTA $(5 \mathrm{mM})$, GTP $(1 \mathrm{mM})$, sodium orthovanadate $(1 \mathrm{mM})$, benzamidine hydrochloride $(2 \mathrm{mM})$, Nonidet NP-40 ($0.5 \% \mathrm{v} / \mathrm{v})$, p-nitrophenyl p^{\prime}-guanidinobenzoate $\cdot \mathrm{HCl}(25 \mu \mathrm{~g} / \mathrm{mL})$, DTT (1 mM), leupeptin ($40 \mu \mathrm{~g} / \mathrm{mL}$), pepstatin ($4 \mu \mathrm{~g} / \mathrm{mL}$), SBTI ($100 \mu \mathrm{~g} / \mathrm{mL}$), MG132 ($10 \mu \mathrm{M}$), PMSF $(200 \mu \mathrm{M})$, and BHT ($5 \mu \mathrm{~g} / \mathrm{mL}$) by vortexing and lysed on ice by vortexing every few min. After 15 min , the lysates were centrifuged at $14,000 \mathrm{rpm}$ and the supernatants aliquoted and stored at $-80^{\circ} \mathrm{C}$ until analysis by an electrophoretic mobility shift assay (EMSA).

XV. Electrophoretic Mobility Shift Assay for IRE-Binding by IRPs

EMSAs were performed and quantified essentially as described previously. ${ }^{5}$ Briefly $\left[{ }^{32} \mathrm{P}\right]$-Lferritin IRE (1 nM RNA, specific radioactivity $\sim 7,000 \mathrm{dpm} / \mathrm{fmol}$) was incubated with lysate protein ($2.5 \mu \mathrm{~g}$ as determined by the Bradford assay) in binding buffer for 10 min on ice. Heparin was added (to $0.5 \mathrm{mg} / \mathrm{mL}$), and the reaction mixture was incubated for an additional 5 min on ice before separating bound and free RNA on a nondenaturing polyacrylamide gel at ambient temperature.

XVI. Effect of CP4H Inhibitors on Collagen Production in Mammalian Cells

MDA-MB-231 cells were plated at 50,000 cells/well into 12 -well plates and grown to confluence $(\sim 24 \mathrm{~h})$ as described in Section X. The cells were washed, and the medium was replaced with 1.5 mL of serum-free medium containing sodium ascorbate $(50 \mu \mathrm{~g} / \mathrm{mL})$. Stock solutions of all test compounds were prepared at $100 \times$ in DMSO and added to a final concentration of $1 \times$ (as denoted). After the addition of a test compound or vehicle (DMSO), cells were incubated for 48 h , after which 1.0 mL of conditioned medium was removed and added to 4.0 mL of chilled acetone ($-20{ }^{\circ} \mathrm{C}$). The resultant mixtures were incubated for 3 h at $-20^{\circ} \mathrm{C}$, after which the precipitated protein was pelleted by centrifugation at $10,000 \mathrm{~g}$ for 30 min . The supernatants were discarded and the pellets dried briefly in a fume hood. Pellets were stored at $-20^{\circ} \mathrm{C}$ prior to analysis with an immunoblot.

XVII. Synthetic Procedures

Diethyl 2,2'-Bipyridine-5,5'-dicarboxylate (diethyl bipy55'DC)

Bipy55'DC ($200 \mathrm{mg}, 0.82 \mathrm{mmoles}$) and $\mathrm{EtOH}(13 \mathrm{~mL})$ were added to a dried flask, and the resulting solution was stirred on ice. Thionyl chloride (1.3 mL) was added dropwise on ice, after which the flask was fitted with a reflux condenser and heated at reflux. After 24 h , the reaction mixture was cooled on ice and quenched by the dropwise addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$, and the combined organic
extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated under reduced pressure. The crude product was purified by chromatography on silica ($3 \% \mathrm{v} / \mathrm{v}$ acetone in $1: 1 \mathrm{DCM} / \mathrm{hexanes}$) to afford the title compound ($190 \mathrm{mg}, 77 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$: $9.32(\mathrm{dd}, J=0.5$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{dd}, J=0.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{dd}, J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{q}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 165.2,158.3,150.6,138.1$, 126.6, 121.3, 61.6, 14.3; HRMS (ESI) $m / z 301.1193$ [calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$301.1183].

6-(Pyridin-2-yl)pyridazine-1-oxide

$\mathrm{Pd}(\mathrm{OAc})_{2}(29.0 \mathrm{mg}, 0.13 \mathrm{mmoles}),\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{H}\right] \mathrm{BF}_{4}(113 \mathrm{mg}, 0.39 \mathrm{mmoles})$, pyridazine-1-oxide ($500 \mathrm{mg}, 5.2 \mathrm{mmoles}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(719 \mathrm{mg}, 5.2 \mathrm{mmoles}$) were added to a dried flask. The flask was fitted with a reflux condenser capped with a septum, evacuated, and purged with $\mathrm{N}_{2}(\mathrm{~g})$ (~ 5 times). A degassed solution of 2-bromopyridine ($411 \mathrm{mg}, 2.6 \mathrm{mmoles}$) in dry toluene $(13 \mathrm{~mL})$ was added via syringe, and the reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was then cooled and filtered through Celite ${ }^{\circledR}$, and the filtrate was concentrated under reduced pressure. The crude product was purified by chromatography on silica ($35 \% \mathrm{v} / \mathrm{v}$ acetone in hexanes) to afford the title compound ($206 \mathrm{mg}, 46 \%$) as a grey solid. ${ }^{1} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$) : $8.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.63$ (dd, $J=1.6,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=5.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=5.2$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $149.8,149.5,148.2,142.5,136.7,135.6,125.0$, 124.7, 116.5; HRMS (ESI) $m / z 174.0658$ [calc'd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$174.0662].

2-(Pyridin-2-yl)pyridazine (pypyrid)

' ${ }^{-}$
6-(Pyridin-2-yl)pyridazine-1-oxide ($150 \mathrm{mg}, 0.87 \mathrm{mmoles}$) was dissolved in dry CHCl_{3} (4.3 mL) and cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath, after which $\mathrm{PCl}_{3}(230 \mu \mathrm{~L}, 2.6 \mathrm{mmoles})$ was added dropwise with stirring. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ until the starting material was consumed completely, as judged by TLC. The reaction mixture was quenched by the dropwise addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$ while stirring on ice. The product was extracted with CHCl_{3} $(4 \times 10 \mathrm{~mL})$, and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated under reduced pressure. The crude product was purified by chromatography on silica ($40 \% \mathrm{v} / \mathrm{v}$ EtOAc in hexanes) to afford the title compound ($50 \mathrm{mg}, 37 \%$) as a brown solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $9.19(\mathrm{dd}, J=1.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.70-8.67(\mathrm{~m}, 2 \mathrm{H}), 8.55(\mathrm{dd}, J=1.6,8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.87(\mathrm{td}, J=1.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=4.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (ddd, $J=1.2,4.8$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $158.6,153.5,151.2,149.4,137.2,127.0,124.7$, 124.4, 121.6; HRMS (ESI) $m / z 158.0714$ [calc'd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+}$158.0713].

Methyl Pyridazine-3-carboxylate-1-oxide

Methyl pyridazine-3-carboxylate ($2.0 \mathrm{~g}, 14.5 \mathrm{mmoles}$) and m-chloroperoxybenzoic acid (3.9 g , 17.4 mmoles) were dissolved in dry DCM (29 mL) in a flame-dried flask. The reaction mixture was stirred at ambient temperature for 5 h . The solvent was evaporated under reduced pressure, and the resulting residue was purified by chromatography on silica ($30 \% \mathrm{v} / \mathrm{v}$ acetone in hexanes) to afford the title compound as an off-white solid ($1.97 \mathrm{~g}, 88 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$: $8.28(\mathrm{dd}, J=2.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ס): $162.2,150.2,136.9,134.4,116.8,53.6$; HRMS (ESI) $m / z 155.0452$ [calc'd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}$ $+\mathrm{H})^{+}$155.0452].

Methyl 6-(5-Methoxycarbonylpyridin-2-yl)pyridazine-3-carboxylate-1-oxide

$\operatorname{Pd}(\mathrm{OAc})_{2}(7.3 \mathrm{mg}, 0.033 \mathrm{mmoles}),\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{H}\right] \mathrm{BF}_{4}(28 \mathrm{mg}, 0.098 \mathrm{mmoles}), \mathrm{K}_{2} \mathrm{CO}_{3}(180 \mathrm{mg}$, 1.3 mmoles), ethyl 6-bromonicotinate ($150 \mathrm{mg}, 0.65 \mathrm{mmoles}$), and methyl pyridazine-3-carboxylate-1-oxide ($200 \mathrm{mg}, 1.3 \mathrm{mmoles}$) were added to a dried flask. The flask was fitted with a reflux condenser capped with a septum, evacuated, and purged with $\mathrm{N}_{2}(\mathrm{~g})(\sim 5$ times). Dry dioxane (4 mL) was added via syringe, and the reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was then cooled and filtered through Celite ${ }^{\circledR}$, and the filtrate was concentrated under reduced pressure. The crude product was purified by chromatography on silica ($40 \% \mathrm{v} / \mathrm{v}$ EtOAc in hexanes) to afford the title compound (82 mg) as a pale orange solid. Due to the presence of minor contaminants that were difficult to remove by chromatography or recrystallization, the slightly crude product was used directly in the next reaction before further purification and characterization. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 9.26(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.06$ (d, $J=8.5, \mathrm{~Hz}, 1 \mathrm{H}), 8.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{dd}, J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS (ESI) m / z 304.0931 [calc'd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$304.0928].

Methyl 6-(5-Ethoxycarbonylpyridin-2-yl)pyridazine-3-carboxylate (ethylmethyl pyrpyridDC)

Methyl 6-(5-methoxycarbonylpyridin-2-yl)pyridazine-3-carboxylate-1-oxide (80 mg, 0.28 mmoles) was dissolved in dry $\mathrm{CHCl}_{3}(1.3 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath, after which $\mathrm{PCl}_{3}(370 \mu \mathrm{~L}, 3.7 \mathrm{mmoles})$ was added dropwise with stirring. The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ until the starting material was consumed completely, as judged by TLC. The reaction was quenched by the dropwise addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$ while stirring on ice. The product was extracted with $\mathrm{CHCl}_{3}(4 \times 10 \mathrm{~mL})$, and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated under reduced pressure. The crude product was purified by chromatography on silica ($35 \% \mathrm{v} / \mathrm{v}$ EtOAc in hexanes) to afford the title compound ($37 \mathrm{mg}, 20 \%$ over two steps) as a pale yellow solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$): $9.12(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{dd}, J=2.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 164.7,164.3,158.9,155.5,151.1,150.6,138.2,128.2$, 127.2, 125.3, 121.6, 61.5, 53.3, 14.1; HRMS (ESI) m/z 288.0982 [calc'd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+$ H) ${ }^{+}$288.0979].

6-(5-Carboxypyridin-2-yl)pyridazine-3-carboxylic Acid (pypyridDC)

Methyl 6-(5-ethoxycarbonylpyridin-2-yl)pyridazine-3-carboxylate ($37 \mathrm{mg}, 0.13 \mathrm{mmoles}$) and KOH ($34 \mathrm{mg}, 0.52 \mathrm{mmoles}$) were added to a vial. $\mathrm{MeOH}(1.3 \mathrm{~mL}$) was added to the vial, and the reaction mixture was heated to $60{ }^{\circ} \mathrm{C}$ with stirring until the starting material was consumed completely, as judged by TLC. The reaction mixture was cooled and concentrated under reduced pressure. The crude product was dissolved in water (2 mL). The aqueous layer was washed with EtOAc $(1 \times 2 \mathrm{~mL})$, after which the product was precipitated from the aqueous layer by adjusting to $\mathrm{pH} 3-4$ with 1 M HCl . After cooling to $4^{\circ} \mathrm{C}$, the product was filtered, washed with water ($3 \times$ 1 mL), and dried under high vacuum to afford the title compound ($23 \mathrm{mg}, 73 \%$) as a pale yellow solid. ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta\right): 13.73(\mathrm{bs}, 2 \mathrm{H}), 9.11(\mathrm{dd}, J=1.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.63$ (dd, $J=1.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{dd}, J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , DMSO- d_{6}, δ): $166.2,165.3,158.8,155.7,152.5,150.9$, 139.1, 129.2, 128.2, 126.0, 121.9; HRMS (ESI) $m / z 246.0517$ [calc'd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$ 246.0510].

2-(Pyridin-2-yl)pyrazine-1-oxide

$\mathrm{Pd}(\mathrm{OAc})_{2}(39.0 \mathrm{mg}, 0.17 \mathrm{mmoles}),\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{H}\right] \mathrm{BF}_{4}$ ($151 \mathrm{mg}, 0.52 \mathrm{mmoles}$), pyrazine-1-oxide ($1.0 \mathrm{~g}, 10.4$ mmoles), and $\mathrm{K}_{2} \mathrm{CO}_{3}(959 \mathrm{mg}, 6.9 \mathrm{mmoles})$ were added to a dried flask. The flask was fitted with a reflux condenser capped with a septum, evacuated, and purged with $\mathrm{N}_{2}(\mathrm{~g})$ (~ 5 times). A degassed solution of 2-bromopyridine ($548 \mathrm{mg}, 3.5 \mathrm{mmoles}$) in dry dioxane $(17 \mathrm{~mL})$ was added via syringe, and the reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was then cooled and filtered through Celite ${ }^{\circledR}$, and the filtrate was concentrated under reduced pressure. The crude product was purified by chromatography on silica ($30 \% \mathrm{v} / \mathrm{v}$ acetone in hexanes) to afford the title compound ($312 \mathrm{mg}, 52 \%$) as a pale yellow solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 9.35 (s, 1H), $8.75-8.72$ (m, 2 H), 8.38 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.15 (dd, $J=$ $0.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{ddd}, J=1.6,2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{ddd}, J=0.8,4.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $149.9,149.7,147.3,145.8,142.2,136.5,134.5,125.4,124.8$; HRMS (ESI) $m / z 174.0662$ [calc'd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$174.0662].

2-(Pyridin-2-yl)pyrazine (pypyraz)

2-(Pyridin-2-yl)pyrazine-1-oxide ($200 \mathrm{mg}, 1.2 \mathrm{mmoles}$) was dissolved in dry $\mathrm{CHCl}_{3}(23 \mathrm{~mL}$) and cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath, after which $\mathrm{PCl}_{3}(360 \mu \mathrm{~L}, 4.2$ mmoles) was added dropwise with stirring. The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ until the starting material was consumed completely, as judged by TLC. The reaction mixture was quenched by the dropwise addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$ while stirring on ice. The product was extracted with CHCl_{3} $(4 \times 20 \mathrm{~mL})$, and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated under reduced pressure. The crude product was purified by chromatography on silica ($30 \% \mathrm{v} / \mathrm{v}$ EtOAc in hexanes) to afford the title compound ($103 \mathrm{mg}, 57 \%$) as a pale yellow solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $9.63(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.71-8.69(\mathrm{~m}, 1 \mathrm{H}), 8.60-8.58(\mathrm{~m}, 2 \mathrm{H}), 8.34(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{ddd}, J=1.6,2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{ddd}, J=1.2,4.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 154.2,151.1,149.4,144.4,143.5,143.3,137.0,124.4,121.4$; HRMS (ESI) $m / z 158.0708$ [calc'd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+}$158.0713].

Methyl Pyrazine-3-carboxylate-1-oxide

Methyl pyrazine-2-carboxylate (3.0 g , 21.7 mmoles) and m-chloroperoxybenzoic acid (7.3 g , 32.6 mmoles) were dissolved in dry DCM (43 mL) in a flame-dried flask. The reaction mixture was stirred at ambient temperature for 48 h . The solvent was evaporated under reduced pressure, and the resulting residue was purified by chromatography on silica ($40-50 \% \mathrm{v} / \mathrm{v}$ acetone in hexanes followed by $80-100 \% \mathrm{v} / \mathrm{v}$ EtOAc in hexanes) to afford the title compound as a white solid ($751 \mathrm{mg}, 22 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 8.76 (dd, $J=0.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.57 (dd, J $=0.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{dd}, J=2.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ס): $162.6,147.6,147.3,136.0,135.9,53.7$; HRMS (ESI) $m / z 155.0451$ [calc'd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}$ $+\mathrm{H})^{+}$155.0452].

Methyl 2-(5-Methoxycarbonylpyridin-2-yl)pyrazine-5-carboxylate-1-oxide

$\mathrm{Pd}(\mathrm{OAc})_{2}(21 \mathrm{mg}, 0.09 \mathrm{mmoles}),\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{H}\right] \mathrm{BF}_{4}(81 \mathrm{mg}, 0.28 \mathrm{mmoles}), \mathrm{K}_{2} \mathrm{CO}_{3}(511 \mathrm{mg}$, 3.7 mmoles), methyl 6-bromonicotinate ($400 \mathrm{mg}, 1.9 \mathrm{mmoles}$), and methyl pyrazine-3-carboxylate-1-oxide ($571 \mathrm{mg}, 3.7 \mathrm{mmoles}$) were added to a dried flask. The flask was fitted with a reflux condenser capped with a septum, evacuated, and purged with $\mathrm{N}_{2}(\mathrm{~g})(\sim 5$ times). Dry toluene (9 mL) was added via syringe, and the reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was then cooled and filtered through Celite ${ }^{\circledR}$, and the filtrate was concentrated under reduced pressure. The crude product was purified by chromatography on silica ($45 \% \mathrm{v} / \mathrm{v}$ EtOAc in hexanes) to afford the title compound (100 mg) as a pale orange solid. Due to the presence of minor contaminants that were difficult to remove by chromatography or recrystallization, the slightly crude product was used directly in the next reaction before further purification and characterization. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 9.63(\mathrm{~s}, 1 \mathrm{H}), 9.38(\mathrm{dd}, J=0.4$, $2.0, \mathrm{~Hz}, 1 \mathrm{H}), 9.06(\mathrm{dd}, J=0.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.89(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H})$; HRMS (ESI) $\mathrm{m} / \mathrm{z} 290.0770$ [calc'd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$ 290.0772].

Methyl 2-(5-Methoxycarbonylpyridin-2-yl)pyrazine-5-carboxylate (dimethyl pypyrazDC)

Methyl 2-(5-methoxycarbonylpyridin-2-yl)pyrazine-5-carboxylate-1-oxide (100 mg, 0.35 mmoles) was dissolved in dry $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath, after which $\mathrm{PCl}_{3}(100 \mu \mathrm{~L}, 1.0 \mathrm{mmoles})$ was added dropwise with stirring. The reaction mixture was stirred at $60{ }^{\circ} \mathrm{C}$ until the starting material was consumed completely, as judged by TLC. The reaction was quenched by the dropwise addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$ while stirring on ice. The product was extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$, and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated under reduced pressure. The crude product was recrystallized from CHCl_{3} and then EtOAc to afford the title compound ($28 \mathrm{mg}, 6 \%$ over two steps) as a pale yellow solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 9.84(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.38$ (d, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 9.36 (dd, $J=0.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.58$ (d, $J=0.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.50 (dd, $J=$ $2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 165.4,164.4,156.4$, $152.4,150.8,145.2,143.3,143.0,138.4,126.9,121.9,53.3,52.7$; HRMS (ESI) $m / z 274.0824$ [calc'd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$274.0823].

2-(5-Carboxypyridin-2-yl)pyrazine-5-carboxylic Acid (pypyrazDC)

Methyl 2-(5-methoxycarbonylpyridin-2-yl)pyrazine-5-carboxylate ($28 \mathrm{mg}, 0.10 \mathrm{mmoles}$) and $\mathrm{KOH}(26 \mathrm{mg}, 0.41 \mathrm{mmoles})$ were added to a vial. $\mathrm{MeOH}(3 \mathrm{~mL})$ was added to the vial, and the reaction mixture was heated to $60{ }^{\circ} \mathrm{C}$ with stirring until the starting material was consumed completely, as judged by TLC. The reaction mixture was cooled and concentrated under reduced pressure. The crude product was dissolved in water $(2 \mathrm{~mL})$. The aqueous layer was washed with EtOAc $(1 \times 2 \mathrm{~mL})$, after which the product was precipitated from the aqueous layer by adjusting to $\mathrm{pH} 3-4$ with 1 M HCl . After cooling to $4^{\circ} \mathrm{C}$, the product was filtered, washed with water ($3 \times$ 1 mL), and dried under high vacuum to afford the title compound ($17 \mathrm{mg}, 68 \%$) as a light brown solid. ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, ~ D M S O-d_{6}, \delta\right): 13.84(\mathrm{bs}, 2 \mathrm{H}), 9.69(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.30(\mathrm{~d}, J=$ $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.25(\mathrm{dd}, J=0.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}$, 1 H); ${ }^{13} \mathbf{C}$ NMR (125 MHz, DMSO- d_{6}, δ): $168.8,165.9,156.8,152.1,151.4,146.0,145.3,143.3$, 139.7, 128.7, 122.7; HRMS (ESI) $m / z 246.0505$ [calc'd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 246.0510$].

Methyl 1-Pivaloyloxymethyl-1H-pyrrole-3-carboxylate

$\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{v}$ in mineral oil, $267 \mathrm{mg}, 6.7 \mathrm{mmoles})$ was added to a dry flask. The flask was evacuated and purged with $\mathrm{N}_{2}(\mathrm{~g})(\sim 5$ times). Dry DMF (3 mL) was added, and the flask was cooled on ice. A degassed solution of methyl 1 H -pyrrole-3-carboxylate ($836 \mathrm{mg}, 6.7 \mathrm{mmoles}$) in dry DMF (4 mL) was added dropwise over 5 min with stirring. The reaction mixture was stirred on ice for 45 min until gas evolution was complete, after which chloromethyl pivalate (0.97 mL , 6.7 mmoles) was added dropwise. The reaction mixture was allowed to come to ambient temperature overnight, after which the reaction mixture was concentrated under reduced pressure to a crude oil. The oil was taken up in $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, and the aqueous layer extracted with DCM $(5 \times 25 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated under reduced pressure, after which the crude product was purified by chromatography on silica ($25 \% \mathrm{v} / \mathrm{v}$ EtOAc in hexanes) to afford the title compound ($1.20 \mathrm{~g}, 75 \%$) as a golden oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 7.46 (dd, $J=0.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.79 (dd, $J=0.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.60 (dd, J $=1.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 2 \mathrm{H}), 3.81,(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$: 177.7, 164.9, 126.9, 122.6, 117.4, 111.0, 70.8, 51.2, 38.8, 26.8; HRMS (ESI) m/z 240.1233 [calc'd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$240.1231].

Methyl 2-(4-Methoxycarbonyl-1-pivaloyloxymethyl-1H-pyrrol-2-yl)pyridine-5-carboxylate-1-oxide

$\mathrm{Pd}(\mathrm{OAc})_{2} \quad(9.2 \mathrm{mg}, \quad 0.041 \mathrm{mmoles}), \quad \mathrm{Ag}_{2} \mathrm{CO}_{3} \quad(450 \mathrm{mg}, \quad 1.6 \mathrm{mmoles})$, and 3-methoxycarbonylpyridine-1-oxide ($125 \mathrm{mg}, 0.82 \mathrm{mmoles}$) were added to a dried flask. The flask was fitted with a reflux condenser capped with a septum, evacuated, and purged with $\mathrm{N}_{2}(\mathrm{~g})$ (~ 5 times). A degassed solution of methyl 1-pivaloyloxymethyl-1 H-pyrrole-3-carboxylate ($215 \mathrm{mg}, 0.90 \mathrm{mmoles}$), 2,6-lutidine ($29 \mu \mathrm{~L}, 0.25$ mmoles), and DMSO ($275 \mu \mathrm{~L}, 5 \%[\mathrm{v} / \mathrm{v}]$) in dry dioxane (5.2 mL) was added via syringe, and the reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was then cooled and filtered through Celite ${ }^{\circledR}$, and the filtrate was concentrated under reduced pressure. The crude product was purified by chromatography on silica ($60-100 \% \mathrm{v} / \mathrm{v}$ EtOAC in hexanes) to afford the title compound ($30 \mathrm{mg}, 9.4 \%$) as a yellow solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $8.88(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.87(\mathrm{dd}, J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}$),
$7.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 2 \mathrm{H}), 3.99$ (s, 3 H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 177.1, 164.1, 163.2, 145.5, 141.2, 130.6, 128.9, 128.4, 125.9, 125.4, 117.4, 115.8, 71.5, 53.1, 51.4, 38.6, 26.7; HRMS (ESI) $\mathrm{m} / \mathrm{z} 391.15041$ [calc'd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}$391.1500].

Methyl 2-(4-Methoxycarbonyl-1-pivaloyloxymethyl-1H-pyrrol-2-yl)pyridine-5-carboxylate

Methyl 2-(4-methoxycarbonyl-1-pivaloyloxymethyl-1H-pyrrol-2-yl)pyridine-5-carboxylate-1oxide ($30 \mathrm{mg}, 0.077 \mathrm{mmoles}$) was dissolved in dry $\mathrm{CHCl}_{3}(800 \mu \mathrm{~L})$ and cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath, after which $\mathrm{PCl}_{3}(8.1 \mu \mathrm{~L}, 0.092$ mmoles) was added. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ until starting material was consumed completely, as judged by TLC. The reaction was quenched by the dropwise addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 \mathrm{~mL})$ while stirring on ice. The product was extracted with DCM $(4 \times 3 \mathrm{~mL})$, and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated under reduced pressure to afford the title compound (28 mg , 97%) as a brown solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $9.14(\mathrm{~d}, J=0.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.28 (dd, J $=2.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=0.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $177.5,165.7,164.4,154.2,150.2,137.5,132.1,131.6,123.2,120.3,116.6,114.3,71.5,52.3$, 51.4, 38.7, 26.8; HRMS (ESI) $m / z 375.1550$ [calc'd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$375.1551].

2-(4-Carboxy-1H-pyrrol-2-yl)pyridine-5-carboxylic Acid (pypyrroleDC)

Methyl 2-(4-methoxycarbonyl-1-pivaloyloxymethyl-1H-pyrrol-2-yl)pyridine-5-carboxylate $(28 \mathrm{mg}, 0.075 \mathrm{mmoles})$ and $2 \mathrm{M} \mathrm{NaOH}(1.0 \mathrm{~mL})$ were added to a vial. The reaction mixture was heated to reflux with stirring until the starting material was consumed completely, as judged by TLC. The reaction mixture was cooled and concentrated under reduced pressure. The crude product was dissolved in water $(2 \mathrm{~mL})$. The aqueous layer was washed with EtOAc $(1 \times 2 \mathrm{~mL})$, after which the product was precipitated from the aqueous layer by adjusting to $\mathrm{pH} 3-4$ with 1 M HCl . After cooling to $4^{\circ} \mathrm{C}$, the product was filtered, washed with water $(3 \times 1 \mathrm{~mL})$, and dried under high vacuum to afford the title compound ($20 \mathrm{mg}, 78 \%$) as a grey solid. ${ }^{1} \mathbf{H}$ NMR
(500 MHz , DMSO- d_{6}, δ): 13.23 (bs, 1 H), 12.30 (s, 1 H), 12.13, (bs, 1 H), 9.00 (dd, $J=1.0$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=2.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=2.5,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26(\mathrm{dd}, J=1.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , DMSO- d_{6}, δ): 169.3, 168.4, 156.1, 153.3, 140.8, 134.7, 129.9, 126.8, 121.1 (2 signals), 114.0; HRMS (EI) $m / z 232.0474$ [calc'd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M})^{+}$232.0479].

Ethyl 2-(2-Trimethylsilylethynyl)pyridine-5-carboxylate

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($21 \mathrm{mg}, 0.030 \mathrm{mmoles}$), CuI ($142 \mathrm{mg}, 0.089 \mathrm{mmoles}$), and ethyl 2-bromonicotinate $(532 \mathrm{mg}, 2.3 \mathrm{mmoles})$ were added to a dried flask on ice. The flask was evacuated and purged with $\mathrm{N}_{2}(\mathrm{~g})(\sim 5$ times). A degassed solution of trimethylsilylacetylene ($420 \mu \mathrm{~L}, 3.0 \mathrm{mmoles}$) in DCM (5 mL) was added to the flask with stirring on ice. Triethylamine ($1.4 \mathrm{~mL}, 10.0$ mmoles) was added to the flask with stirring, after which the flask was allowed to come to ambient temperature overnight. The reaction mixture was diluted with hexanes (5 mL) and filtered through Celite ${ }^{\circledR}$, and the filtrate was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated under reduced pressure to afford a solid, which was purified by chromatography on silica ($5 \% \mathrm{v} / \mathrm{v}$ EtOAc in hexanes) to afford the title compound ($544 \mathrm{mg}, 95 \%$) as a pale yellow solid. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $9.17(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 167.5, 153.7, 149.2, 139.8, 129.4, 127.8, 105.8, 101.0, 64.3, 17.0, 2.3; HRMS (ESI) $m / z 248.1102$ [calc'd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$248.1102].

Ethyl 2-Ethynylpyridine-5-carboxylate

Ethyl 2-(2-trimethylsilylethynyl)pyridine-5-carboxylate ($400 \mathrm{mg}, 1.6 \mathrm{mmoles}$) was added to a flame-dried flask. The flask was evacuated and purged with $\mathrm{N}_{2}(\mathrm{~g})$, after which THF (1.6 mL) was added on ice. 1.0 M TBAF in THF $(1.9 \mathrm{~mL})$ was added dropwise with stirring on ice, after which the flask was allowed to come to ambient temperature with stirring. After 20 min , the reaction mixture was concentrated under reduced pressure, and the crude residue was partitioned between EtOAc (10 mL) and $10 \% \mathrm{w} / \mathrm{v} \mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The organic layer was collected, and the aqueous layer was extracted with EtOAc (10 mL). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated under reduced pressure to afford a solid, which was purified by chromatography on silica ($20 \% \mathrm{v} / \mathrm{v}$ EtOAc in hexanes) to afford the title compound (144 mg , 51%) as a pale yellow solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $9.19(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ (dd, $J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 1.43(\mathrm{t}, J$
$=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 164.6, 151.0, 145.7, 137.2, 126.9, 125.6, 82.3, 79.8, 61.7, 14.2; HRMS (ESI) $m / z 176.0708$ [calc'd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}$176.0707].

Ethyl 2-(5-Ethoxycarbonyl-1H-pyrazol-3-yl)pyridine-5-carboxylate (diethyl pypyrDC)

Ethyl 2-ethynylpyridine-5-carboxylate ($91 \mathrm{mg}, 0.52 \mathrm{mmoles}$) was dissolved in toluene (5 mL) in a glass vial, and the resulting solution was chilled on ice with stirring. A $73 \% \mathrm{w} / \mathrm{w}$ solution of ethyl diazoacetate in DCM ($162 \mathrm{mg}, 1.04$ mmoles) was added dropwise, after which the vial was purged with $\mathrm{N}_{2}(\mathrm{~g})$ and stirred at $95^{\circ} \mathrm{C}$. After 24 h , the reaction mixture was chilled on ice, and a second portion of ethyl diazoacetate ($162 \mathrm{mg}, 1.04 \mathrm{mmoles}$) was added. The reaction mixture was stirred at $95{ }^{\circ} \mathrm{C}$ for an addition 24 h , after which the reaction was concentrated under reduced pressure to afford a solid. The crude product was purified by chromatography on silica (30% EtOAc in hexanes) to afford the title compound ($125 \mathrm{mg}, 83 \%$) as a pale yellow solid. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 12.06 (bs, 1 H), 9.29 (dd, $J=0.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.43 (dd, $J=2.0$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 4.483(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.480(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}$), $1.47(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 167.6, 164.0, 154.4, 153.6, 148.4 (br), 144.8 (br), 141.1, 128.3, 122.5, 110.2, 64.3, 64.1, 17.0 (2 signals); HRMS (ESI) m / z 312.0952 [calc'd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 312.0955$].

2-(5-Carboxy-1H-pyrazol-3-yl)pyridine-5-carboxylic Acid (pypyrDC)

Ethyl 2-(5-ethoxycarbonyl-1H-pyrazol-3-yl)pyridine-5-carboxylate (38 mg, 0.13 mmoles) and $\mathrm{KOH}(34 \mathrm{mg}, 0.525 \mathrm{mmoles})$ were added to a vial. $\mathrm{H}_{2} \mathrm{O}(1.75 \mathrm{~mL})$ was added to the vial and the reaction mixture was heated to $80^{\circ} \mathrm{C}$ and stirred for 2 hr . The reaction mixture was cooled and washed with EtOAc $(1 \times 3 \mathrm{~mL})$, after which the product was precipitated from the aqueous layer by adjusting to $\mathrm{pH} 3-4$ with 1 M HCl . After cooling to $4{ }^{\circ} \mathrm{C}$, the product was filtered, washed with water ($3 \times 2 \mathrm{~mL}$), and dried in vacuo to afford the title compound ($24 \mathrm{mg}, 78 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- d_{6}, δ): $14.16-13.60(\mathrm{~m}, 2 \mathrm{H}), 9.10(\mathrm{dd}, J=1.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.33 (dd, $J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , DMSO- $\left.d_{6}, \delta\right): 169.2,164.6$ (br), 161.4 (q, $J=37 \mathrm{~Hz}$, TFA), 160.0 (br), 153.4, 150.4 (br), 143.0 (br), 141.3, 128.6, 122.7, 118.4 (q, $J=287 \mathrm{~Hz}$, TFA), 110.5; HRMS (ESI) $m / z 235.0509$ [calc'd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 234.0509$]. (Note: A small drop of TFA was added to the sample prior to recording the ${ }^{13} \mathrm{C}$ NMR spectrum in order to sharpen the peaks corresponding to the pyrazole C 3 , C4, C5, and carbonyl carbons, as is common with many free NH pyrazoles. ${ }^{6}$)

Dimethyl 2,5-Pyridinedicarboxylate

Thionyl chloride (2.2 mL) was added dropwise to $\mathrm{MeOH}(14 \mathrm{~mL})$ while stirring on ice. 2,5-Pyridinedicarboxylic acid ($1.0 \mathrm{~g}, 6.0 \mathrm{mmoles}$) was added, and the reaction mixture was heated at reflux for 3 h . The reaction mixture was cooled, and the solvent removed under reduced pressure. The resulting residue was dissolved in DCM (15 mL), after which saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(15 \mathrm{~mL})$ was added while stirring on ice. The aqueous layer was extracted with $\mathrm{DCM}(3$ $\times 15 \mathrm{~mL}$), and the combined organic extracts were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times$ 40 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$, and concentrated under reduced pressure to afford the title compound ($915 \mathrm{mg}, 78 \%$) as a pale yellow solid. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 9.32 (dd, $J=$ $0.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.47 (dd, $J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.23 (dd, $J=0.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.06 (s, 3 H), $4.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right) ; 165.0,164.9,150.8,150.8,138.4,128.6,124.7$, 53.3, 52.8; HRMS (ESI) $m / z 196.0600$ [calc'd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$196.0605].

Methyl 6-Formylnicotinate

(2) Dess-Martin periodinane, $\mathrm{DCM}, 0^{\circ} \mathrm{C}$

Dimethyl-2,5-pyridinedicarboxylate ($960 \mathrm{mg}, 4.9 \mathrm{mmoles}$) and CaCl_{2} ($2.198 \mathrm{~g}, 19.7 \mathrm{mmoles}$) were added to a dried flask. THF (11 mL) and EtOH (12 mL) were then added, and the resulting suspension was stirred on ice for $30 \mathrm{~min} . \mathrm{NaBH}_{4}(465 \mathrm{mg}, 12.3 \mathrm{mmoles})$ was added portion-wise with stirring. The reaction mixture was allowed to come to ambient temperature overnight. After 18 h , the reaction was quenched by the dropwise addition of an aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ (20 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ plus 40 mL of $\mathrm{H}_{2} \mathrm{O}$) while stirring on ice. The aqueous layer was extracted with DCM ($4 \times 30 \mathrm{~mL}$), and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated under reduced pressure to afford crude product (678 mg) as a pale yellow solid. The crude product was dissolved in dry DCM (45 mL), after which Dess-Martin periodinane ($2.6 \mathrm{~g}, 6.1 \mathrm{mmoles}$) was added portion-wise with stirring on ice. After 6 h , the reaction was quenched by the dropwise addition of a solution of $5 \% \mathrm{w} / \mathrm{v}_{2} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in halfsaturated $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$. The aqueous layer was extracted with DCM ($3 \times 40 \mathrm{~mL}$), and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated under reduced pressure to afford the title compound ($504 \mathrm{mg}, 62 \%$) as a pale yellow solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta): 10.16(\mathrm{~s}, 1 \mathrm{H}), 9.38(\mathrm{dd}, J=0.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=$ $0.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 192.6,164.8,154.9,151.2$, 138.3, 121.1, 52.9; HRMS (EI) $m / z 165.0415$ [calc'd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$165.0421]

Methyl 2-(5-Trifluoromethyl-1 \boldsymbol{H}-imidazol-2-yl)pyridine-5-carboxylate

(2) $\mathrm{NH}_{4} \mathrm{OH}, \mathrm{MeOH}, \mathrm{rt}$

NaOAc ($277 \mathrm{mg}, 3.4 \mathrm{mmoles}$) and 2,2-dibromo-1,1,1-trifluoroacetone ($454 \mathrm{mg}, 1.7 \mathrm{mmoles}$) were dissolved in $\mathrm{H}_{2} \mathrm{O}(770 \mu \mathrm{~L})$ and stirred at $100{ }^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was cooled to ambient temperature, after which a solution of methyl 6-formylnicotinate ($250 \mathrm{mg}, 1.5$ mmoles) and concentrated $\mathrm{NH}_{4} \mathrm{OH}(1.5 \mathrm{~mL})$ in $\mathrm{MeOH}(4.6 \mathrm{~mL})$, was added dropwise while stirring. The reaction mixture was stirred overnight, after which the solvent was removed under reduced pressure. $\mathrm{CHCl}_{3}(25 \mathrm{~mL})$ and $10 \% \mathrm{v} / \mathrm{v} \mathrm{NaHCO} 3(25 \mathrm{~mL})$ were added to the residue. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(2 \times 25 \mathrm{~mL})$, and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated under reduced pressure. The crude product was purified by chromatography on silica ($25 \% \mathrm{v} / \mathrm{v}$ EtOAc in hexanes) and recrystallized from $1: 1$ hexanes/EtOAc to afford the title compound ($128 \mathrm{mg}, 47 \%$) as a pale yellow crystalline solid. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$): 9.13 (dd, $J=1.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.38 (dd, $J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.15 (dd, $J=1.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}, \delta\right): 165.2,150.5,150.2,146.7,137.9,132.6(\mathrm{q}, J=39 \mathrm{~Hz}), 125.7,121.7(\mathrm{q}, J=265 \mathrm{~Hz})$, 119.3, 119.1, 51.6; HRMS (ESI) $m / z 272.0630$ [calc'd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$272.0642].

2-(5-Methoxycarbonyl-1- H -imidazol-2-yl)pyridine-5-carboxylic Acid

Methyl 2-(5-trifluoromethyl-1H-imidazol-2-yl)pyridine-5-carboxylate ($103 \mathrm{mg}, 0.38 \mathrm{mmoles}$) and $\mathrm{KOH}(147 \mathrm{mg}, 2.28 \mathrm{mmoles})$ were added to a vial. $\mathrm{MeOH}(11 \mathrm{~mL})$ was added to the vial, and the reaction mixture was heated to $60{ }^{\circ} \mathrm{C}$ until the starting material was consumed completely, as judged by TLC. The reaction mixture was cooled, and concentrated under reduced pressure. The crude product was dissolved in water (3 mL). The aqueous layer was washed with EtOAc $(1 \times 3 \mathrm{~mL})$, after which the product was precipitated from the aqueous layer by adjusting to $\mathrm{pH} 3-4$ with 1 M HCl . After cooling to $4^{\circ} \mathrm{C}$, the product was filtered, washed with water ($3 \times$ 1 mL), and dried under high vacuum to afford the title compound ($84 \mathrm{mg}, 94 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left._{6}, \delta\right) ; 13.74(\mathrm{~s}, 1 \mathrm{H}), 13.56(\mathrm{~s}, 1 \mathrm{H}), 9.12(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.40$ (dd, $J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}_{6}, \delta\right)$: 166.4, 163.1, 151.4, 150.5, 146.4, 138.9, 134.2, 126.6 (2 signals), 120.3, 51.7; HRMS (ESI) $m / z 248.0671$ [calc'd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 248.0666$].

2-(5-Carboxy-1-H-imidazol-2-yl)pyridine-5-carboxylic Acid (pyimDC)

2-(5-Methoxycarbonyl-1 H -imidazol-2-yl)pyridine-5-carboxylic acid ($50 \mathrm{mg}, 0.20 \mathrm{mmoles}$), 1 M $\mathrm{NaOH}(400 \mu \mathrm{~L})$, and water $(3.6 \mathrm{~mL})$ were added to a vial. The reaction mixture was heated to $65^{\circ} \mathrm{C}$ with stirring. After 24 h , the reaction mixture was cooled and washed with EtOAc $(1 \times 3$ mL), after which the product was precipitated from the aqueous layer by adjusting to $\mathrm{pH} 3-4$ with 1 M HCl . After cooling to $4{ }^{\circ} \mathrm{C}$, the product was filtered, washed with water ($3 \times 1 \mathrm{~mL}$), and dried under high vacuum to afford the title compound ($44 \mathrm{mg}, 93 \%$) as a pale yellow solid. ${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6}, δ): $13.62(\mathrm{~s}, 1 \mathrm{H}), 13.30(\mathrm{bs}, 1 \mathrm{H}), 12.74(\mathrm{bs}, 1 \mathrm{H}), 9.11(\mathrm{dd}, J=$ $0.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.39 (dd, $J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1$ H); ${ }^{13}$ C NMR (125 MHz, DMSO- d_{6}, δ): $166.4,164.0,151.5,150.5,146.1,138.9,135.3,126.5$, 126.2, 120.2; HRMS (EI) $m / z 233.0432$ [calc'd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M})^{+}$233.18].

Methyl 2-(5-Methoxycarbonyl-1 H -imidazol-2-yl)pyridine-5-carboxylate (dimethyl pyimDC)

2-(5-Methoxycarbonyl-1 H -imidazol-2-yl)pyridine-5-carboxylic acid ($100 \mathrm{mg}, 0.41 \mathrm{mmoles}$) and $\mathrm{MeOH}(7.0 \mathrm{~mL})$ was added to a round-bottom flask and stirred on ice. Thionyl chloride ($750 \mu \mathrm{~L}$) was added dropwise on ice, after which the flask was fitted with a reflux condenser and heated at reflux. After 24 h , the reaction mixture was cooled on ice and quenched by the dropwise addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times$ 20 mL) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$, and concentrated under reduced pressure. The crude product was purified by chromatography on silica ($50 \% \mathrm{v} / \mathrm{v} \mathrm{EtOAc}$ in hexanes), to afford a pale yellow solid. The solid was dissolved in minimal DCM, precipitated by the dropwise addition of cold hexanes, and filtered to afford the title compound ($50 \mathrm{mg}, 48 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \sim 5: 2\right.$ ratio of 2 tautomers, δ); 11.01 (bs, 1.4 H), 9.18-9.15 (m, 1.4 H), 8.44-8.38 (m, 2.4 H), 8.29 (d, $J=8 \mathrm{~Hz}, 0.4 \mathrm{H}$), 7.91 (s, 1 H), 7.84 (s, 0.4 H), 3.99-3.94 (m, 8.4 H); ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \sim 5: 2$ ratio of 2 tautomers, δ): 165.3 (2 signals), 163.2, 160.2, 150.7, 150.4 (2 signals), $150.3,147.8,146.2,138.4$ (2 signals), 136.7, 135.4, 126.1, 125.9, 124.3 (2 signals), 120.2, 120.0, 52.6 (2 signals), 52.1 (2 signals); HRMS (ESI) $m / z 262.0829$ [calc'd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$262.0823].

Ethyl 2-(5-Ethoxycarbonyl-1H-imidazol-2-yl)pyridine-5-carboxylate (diethyl pyimDC)

2-(5-Carboxy-1 H -imidazol-2-yl)pyridine-5-carboxylic acid ($85 \mathrm{mg}, 0.36 \mathrm{mmoles}$) and EtOH $(6.3 \mathrm{~mL})$ were added to a round-bottom flask and stirred on ice. Thionyl chloride $(710 \mu \mathrm{~L})$ was added dropwise on ice, after which the flask was fitted with a reflux condenser and heated at reflux. After 24 h , the reaction mixture was cooled on ice and quenched by the dropwise addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \times$ 10 mL) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated under reduced pressure. The crude product was purified by chromatography on silica ($2 \% \mathrm{v} / \mathrm{v} \mathrm{MeOH}$ in 1:1 DCM/hexanes) to afford the title compound ($95 \mathrm{mg}, 90 \%$) as a pale yellow solid. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \sim 5: 4$ ratio of two tautomers, δ): 11.16 (bs, 1 H), $11.02(\mathrm{bs}, 0.8 \mathrm{H}), 9.19$ (dd, J $=1.0,2.0 \mathrm{~Hz}, 0.8 \mathrm{H}) ; 9.15-9.14(\mathrm{~m}, 1 \mathrm{H}), 8.44-8.38(\mathrm{~m}, 2.8 \mathrm{H}), 8.28(\mathrm{dd}, J=1.0,8.0 \mathrm{~Hz}, 0.8 \mathrm{H})$, $7.90-7.86(\mathrm{~m}, 1.8 \mathrm{H}), 4.48-4.38(\mathrm{~m}, 7.2 \mathrm{H}), 1.46-1.39(\mathrm{~m}, 10.8 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta): 164.9,164.8162 .8,159.8,150.7,150.4$ (2 signals), $150.3,147.8,146.3,138.4,138.3,136.5$, $135.7,126.3,126.1,124.7,124.1,120.1,120.0,61.7$ (2 signals), $61.3,61.0,14.5,14.4,14.3$ (2 signals); HRMS (ESI) $m / z 290.1136$ [calc'd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$290.1132].

Methyl 2-(5-Methoxycarbonyl-1-methyl-1H-imidazol-2-yl)pyridine-5-carboxylate (dimethyl NMe-pyimDC)

$\operatorname{Pd}(\mathrm{OAc})_{2} \quad(32 \mathrm{mg}, \quad 0.14 \mathrm{mmoles}), \quad\left[\mathrm{P}(\mathrm{Cy})_{3} \mathrm{H}\right] \mathrm{BF}_{4} \quad(158 \mathrm{mg}, \quad 0.43 \mathrm{mmoles})$, 1-adamantanecarboxylic acid ($258 \mathrm{mg}, 1.4 \mathrm{mmoles}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.9 \mathrm{~g}, 5.7 \mathrm{mmoles})$, methyl 6-bromonicotinate ($618 \mathrm{mg}, 2.9 \mathrm{mmoles}$) and methyl 1-methyl-1H-imidazole-5-carboxylate ($400 \mathrm{mg}, 2.9$ mmoles) were added to a dried flask. The flask was fitted with a reflux condenser capped with a septum, evacuated, and purged with $\mathrm{N}_{2}(\mathrm{~g})(\sim 5$ times $)$. Dry toluene (4.8 mL) was added via syringe, and the reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was then cooled and filtered through Celite ${ }^{\circledR}$, and the filtrate was concentrated under reduced pressure. The crude product was purified by chromatography on silica ($30 \% \mathrm{v} / \mathrm{v}$ EtOAc in hexanes) to afford the title compound ($40 \mathrm{mg}, 5 \%$) as a pale yellow solid. ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right): 9.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 165.4$, $160.8,153.2,149.8,148.2,137.6,137.3,125.6,125.1,123.8,52.5,51.6,35.0$; HRMS (ESI) m / z 298.0796 [calc'd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$298.0799].

2-(5-Carboxy-1-methyl-1H-imidazol-2-yl)pyridine-5-carboxylic Acid (NMe-pyimDC)

Methyl 2-(5-methoxycarbonyl-1-methyl-1 H -imidazol-2-yl)pyridine-5-carboxylate (30 mg, 0.11 mmoles) and $\mathrm{KOH}(28 \mathrm{mg}, 0.44 \mathrm{mmoles}$) were added to a vial. $\mathrm{MeOH}(3 \mathrm{~mL})$ was added to the vial and the reaction mixture was heated to $60^{\circ} \mathrm{C}$ with stirring until the starting material was consumed completely, as judged by TLC. The reaction mixture was cooled and concentrated under reduced pressure, after which the crude product was dissolved in water (2 mL). The aqueous layer was washed with EtOAc $(1 \times 2 \mathrm{~mL})$, after which the product was precipitated from the aqueous layer by adjusting to $\mathrm{pH} 3-4$ with 1 M HCl . After cooling to $4{ }^{\circ} \mathrm{C}$, the product was filtered, washed with water ($3 \times 1 \mathrm{~mL}$), and dried under high vacuum to afford the title compound ($16 \mathrm{mg}, 58 \%$) as a pale yellow solid. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta$): 13.49 (bs, 1 H), $13.2(\mathrm{bs}, 1 \mathrm{H}), 9.16(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{dd}, J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1$ H), 7.79 (s, 1 H), 4.33 (s, 3 H); ${ }^{13} \mathbf{C}$ NMR (125 MHz , DMSO- d_{6}, δ): 166.4, 161.7, 153.1, 149.9, 148.0, 138.5, 137.2, 126.7, 126.3, 124.3, 35.1; HRMS (EI) $m / z 247.0583$ [calc'd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{4}$ $(\mathrm{M})^{+}$247.0588].

2-(Oxazol-2-yl)pyridine (pyox)

$\operatorname{Pd}(\mathrm{OAc})_{2}$ ($33 \mathrm{mg}, 0.15 \mathrm{mmoles}$), RuPhos ($135 \mathrm{mg}, 0.29 \mathrm{mmoles}$), pivalic acid (119 mg , 1.2 mmoles) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{~g}, 8.7$ mmoles) were added to a dried flask. The flask was fitted with a reflux condenser capped with a septum, evacuated, and purged with $\mathrm{N}_{2}(\mathrm{~g})(\sim 5$ times $)$. A degassed solution of oxazole ($400 \mathrm{mg}, 5.8 \mathrm{mmoles}$) and 2-bromopyridine ($457 \mathrm{mg}, 2.9 \mathrm{mmoles}$) in dry toluene $(14.5 \mathrm{~mL})$ was added via syringe, and the reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was then cooled and filtered through Celite ${ }^{\circledR}$, and the filtrate was concentrated under reduced pressure. The crude product was purified by chromatography on silica ($20-75 \% \mathrm{v} / \mathrm{v}$ EtOAc in hexanes followed by $10 \% \mathrm{v} / \mathrm{v}$ acetone in $1: 1 \mathrm{DCM} / \mathrm{hexanes}$) to afford the title compound ($62 \mathrm{mg}, 7 \%$) as a golden oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.67(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{ddd}, J=1.0,5.0,8.0 \mathrm{~Hz}, 1$ H), $7.25(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 160.7, 149.9, 146.0, 139.8, 137.0, 128.8, 124.7, 122.0; HRMS (EI) $m / z 146.0472$ [calc'd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}(\mathrm{M})^{+}$146.0475].

Methyl 2-(4-Ethoxycarbonyloxazol-2-yl)pyridine-5-carboxylate (methylethyl pyoxDC*)

$\mathrm{Pd}(\mathrm{OAc})_{2}(15.9 \mathrm{mg}, 0.071 \mathrm{mmoles}),\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{H}\right] \mathrm{BF}_{4}(61.8 \mathrm{mg}, 0.21 \mathrm{mmoles})$, pivalic acid ($29.0 \mathrm{mg}, 0.28 \mathrm{mmoles}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($391 \mathrm{mg}, 2.8 \mathrm{mmoles}$), ethyl oxazole-4-carboxylate (200 mg , 1.4 mmoles), and methyl 6-bromonicotinate ($612 \mathrm{mg}, 2.8 \mathrm{mmoles}$) were added to a dried flask. The flask was fitted with a reflux condenser capped with a septum, evacuated, and purged with $\mathrm{N}_{2}(\mathrm{~g})$ (~ 5 times). Dry toluene (7 mL) was added via syringe, and the reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was then cooled and filtered through Celite ${ }^{\circledR}$, and the filtrate was concentrated under reduced pressure. The crude product was purified via chromatography on silica ($2 \% \mathrm{v} / \mathrm{v}$ acetone in DCM followed by $10 \% \mathrm{v} / \mathrm{v}$ acetone in $1: 1$ DCM/hexanes) to afford the title compound ($113 \mathrm{mg}, 29 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right): 9.31(\mathrm{dd}, J=0.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.38$ (dd, $J=0.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $164.9,160.8,160.2,151.1,148.0,145.2,138.3,135.3,127.1,122.3,61.6$, 52.7, 14.3; HRMS (ESI) $m / z 277.0815$ [calc'd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$277.0823].

2-(4-Carboxyoxazol-2-yl)pyridine-5-carboxylic Acid (pyoxDC*)

Methyl 2-(4-ethoxycarbonyloxazol-2-yl)-pyridine-5-carboxylate ($50 \mathrm{mg}, 0.18 \mathrm{mmoles}$) and $\mathrm{KOH}(46.7 \mathrm{mg}, 0.72 \mathrm{mmoles})$ were added to a vial. $\mathrm{MeOH}(5.0 \mathrm{~mL})$ was added to the vial, and the reaction mixture was heated to $60^{\circ} \mathrm{C}$ with stirring until the starting material was consumed completely, as judged by TLC. The reaction mixture was cooled and concentrated under reduced pressure, after which the crude product was dissolved in water (2 mL). The aqueous layer was washed with EtOAc $(1 \times 2 \mathrm{~mL})$, after which the product was precipitated from the aqueous layer by adjusting to $\mathrm{pH} 3-4$ with 1 M HCl . After cooling to $4^{\circ} \mathrm{C}$, the product was filtered, washed with water ($3 \times 1 \mathrm{~mL}$), and dried under high vacuum to afford the title compound ($30 \mathrm{mg}, 71 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6}, δ): $13.72(\mathrm{bs}, 1 \mathrm{H}), 13.40(\mathrm{bs}, 1 \mathrm{H}), 9.19(\mathrm{dd}, J$ $=0.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.02(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{dd} J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=0.5,8.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13}$ C NMR (125 MHz , DMSO- d_{6}, δ): 166.1, 162.2, 160.1, 151.1, 148.0, 147.4, 139.1, 135.4, 128.2, 122.8; HRMS (ESI) $m / z 233.0195$ [calc'd for $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}-\mathrm{H})^{-}$233.0203].

Methyl 2-(5-Ethoxycarbonyloxazol-2-yl)pyridine-5-carboxylate (ethylmethyl pyoxDC)

$\operatorname{Pd}(\mathrm{OAc})_{2} \quad(31.8 \mathrm{mg}, \quad 0.14 \mathrm{mmoles}), \quad\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{H}\right] \mathrm{BF}_{4} \quad(123.2 \quad \mathrm{mg}, \quad 0.42 \quad \mathrm{mmoles})$, 1-adamantanecarboxylic acid ($153 \mathrm{mg}, 0.85 \mathrm{mmoles}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($782 \mathrm{mg}, 5.7 \mathrm{mmoles}$), and methyl 6-bromonicotinate ($918 \mathrm{mg}, 4.3 \mathrm{mmoles}$) were added to a dried flask. The flask was fitted with a reflux condenser capped with a septum, evacuated, and purged with $\mathrm{N}_{2}(\mathrm{~g})$ (~ 5 times). A degassed solution of ethyl oxazole-5-carboxylate ($400 \mathrm{mg}, 2.8$ mmoles) in dry toluene (7 mL) was added via syringe, and the reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was then cooled and filtered through Celite ${ }^{\circledR}$, and the filtrate was concentrated under reduced pressure. The crude product was purified by chromatography on silica ($30 \% \mathrm{EtOAc}$ in hexanes followed by $2 \% \mathrm{v} / \mathrm{v}$ acetone in $1: 1 \mathrm{DCM} /$ hexanes) to afford the title compound (183 mg , 23%) as a white solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $9.37(\mathrm{dd}, J=0.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47$ (dd, $J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{dd}, J=0.8,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.00$ $(\mathrm{s}, 3 \mathrm{H}), 1.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 164.9,161.6,157.5,151.5$, 148.0, 143.8, 138.3, 135.5, 127.3, 122.5, 61.9, 52.7, 14.3; HRMS (ESI) $m / z 277.0823$ [calc'd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$279.0819].

2-(5-Carboxyoxazol-2-yl)pyridine-5-carboxylic Acid (pyoxDC)

Methyl 2-(5-ethoxycarbonyloxazol-2-yl)-pyridine-5-carboxylate (45 mg, 0.16 mmoles) and $\mathrm{KOH}(42 \mathrm{mg}, 0.65 \mathrm{mmoles}) . \mathrm{MeOH}(4.7 \mathrm{~mL})$ was added to the vial, and the reaction mixture was heated to $60^{\circ} \mathrm{C}$ with stirring until the starting material was consumed completely, as judged by TLC. The reaction mixture was cooled and concentrated under reduced pressure. The crude product was dissolved in water $(2 \mathrm{~mL})$. The aqueous layer was washed with EtOAc $(1 \times 2 \mathrm{~mL})$, after which the product was precipitated from the aqueous layer by adjusting to $\mathrm{pH} 3-4$ with 1 M HCl . After cooling to $4{ }^{\circ} \mathrm{C}$, the product was filtered, washed with water $(3 \times 1 \mathrm{~mL})$, and dried under high vacuum to afford the title compound ($24.6 \mathrm{mg}, 64 \%$) as a light green solid. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}, \delta$): 13.96 (bs, 1 H), $13.78(\mathrm{bs}, 1 \mathrm{H}), 9.22$ (dd, $J=1.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.48 (dd, $J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.23 (dd, $J=1.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , DMSO- d_{6}, δ): $166.1,161.6,158.9,151.2,147.9,144.6,139.1,135.7,128.4,123.3$; HRMS (ESI) $m / z 233.0203$ [calc'd for $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}-\mathrm{H})^{-}$233.0203].

2-(Thiazol-2-yl)pyridine (pythi)

$\mathrm{Pd}(\mathrm{OAc})_{2}(35.5 \mathrm{mg}, 0.16 \mathrm{mmoles}),\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{H}\right] \mathrm{BF}_{4}(137.5 \mathrm{mg}, 0.47 \mathrm{mmoles})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(874$ $\mathrm{mg}, 6.3$ mmoles) were added to a dried flask. The flask was fitted with a reflux condenser capped with a septum, evacuated, and purged with $\mathrm{N}_{2}(\mathrm{~g})(\sim 5$ times $)$. A degassed solution of thiazole ($1.08 \mathrm{~g}, 12.7 \mathrm{mmoles}$) and 2-bromopyridine ($500 \mathrm{mg}, 3.2 \mathrm{mmoles}$) in dry DMF (16 mL) was added via syringe, and the reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled, $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$ was added, and the aqueous layer was extracted with ether ($4 \times$ $60 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 100 \mathrm{~mL})$ and brine $(1 \times$ 100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$, and concentrated under reduced pressure. The crude product was purified by silica gel chromatography ($20-40 \% \mathrm{v} / \mathrm{v}$ EtOAc in hexanes followed by $2 \% \mathrm{v} / \mathrm{v}$ acetone in 1:1 DCM/hexanes) to afford the title compound ($142 \mathrm{mg}, 28 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 8.58(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.75$ (td, $J=1.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26 (ddd, $J=1.2,4.8,8.0 \mathrm{~Hz}$, 1 H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 169.3, 151.3, 149.4, 144.0, 137.0, 124.4, 121.4, 119.6; HRMS (EI) $m / z 162.0247$ [calc'd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{~S}(\mathrm{M})^{+} 162.0247$].

Methyl 2-(4-Methoxycarbonylthiazol-2-yl)pyridine-5-carboxylate (dimethyl pythiDC*)

$\mathrm{Pd}(\mathrm{OAc})_{2}(15.7 \mathrm{mg}, 0.070 \mathrm{mmoles}),\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{H}\right] \mathrm{BF}_{4}$ ($60.7 \mathrm{mg}, 0.21 \mathrm{mmoles}$), pivalic acid ($28.5 \mathrm{mg}, 0.28 \mathrm{mmoles}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($386 \mathrm{mg}, 2.8 \mathrm{mmoles}$), methyl thiazole-4-carboxylate (200 mg , 1.4 mmoles), and methyl 6-bromonicotinate ($603 \mathrm{mg}, 2.8 \mathrm{mmoles}$) were added to a dried flask. The flask was fitted with a reflux condenser capped with a septum, evacuated, and purged with $\mathrm{N}_{2}(\mathrm{~g})(\sim 5$ times). Dry DMF (7 mL) was added via syringe, and the reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was then cooled and filtered through Celite ${ }^{\circledR}$, and the filtrate was concentrated under reduced pressure. The crude product was purified by chromatography on silica ($1 \% \mathrm{v} / \mathrm{v}$ acetone in DCM) to afford the title compound ($39 \mathrm{mg}, 10 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $9.18(\mathrm{dd}, J=0.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.41 (dd, $J=$ $2.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{dd}, J=0.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 168.7,165.1,161.7,153.3,150.7,148.3,138.3,130.7,126.9,119.6$, 52.6, 52.6; HRMS (ESI) $m / z 279.0423$ [calc'd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$279.0435].

2-(4-Carboxythiazol-2-yl)pyridine-5-carboxylic Acid (pythiDC*)

Methyl 2-(4-methoxycarbonylthiazol-2-yl)-pyridine-5-carboxylate ($30 \mathrm{mg}, 0.11 \mathrm{mmoles}$) and $\mathrm{KOH}(27.8 \mathrm{mg}, 0.43 \mathrm{mmoles})$ were added to a vial. $\mathrm{MeOH}(3.1 \mathrm{~mL})$ was added to the vial, and the reaction mixture was heated to $60^{\circ} \mathrm{C}$ with stirring until the starting material was consumed completely, judged by TLC. The reaction mixture was cooled and concentrated under reduced pressure. The crude product was dissolved in water $(2 \mathrm{~mL})$. The aqueous layer was washed with EtOAc ($1 \times 2 \mathrm{~mL}$), after which the product was precipitated from the aqueous layer by adjusting to $\mathrm{pH} 3-4$ with 1 M HCl . After cooling to $4^{\circ} \mathrm{C}$, the product was filtered, washed with water ($3 \times$ 1 mL), and dried under high vacuum to afford the title compound ($21 \mathrm{mg}, 78 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR (500 MHz, DMSO- $\left.d_{6}, \delta\right): 13.51(\mathrm{bs}, 2 \mathrm{H}), 9.13(\mathrm{dd}, J=0.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H})$, 8.47 (dd, $J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=0.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathbf{C}$ NMR (125 MHz , DMSO- d_{6}, $\delta): 168.0,166.2,162.5,153.0,151.1,149.4,139.4,132.2,128.6,119.8 ;$ HRMS (ESI) m / z 248.9975 [calc'd for $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$248.9975].

Methyl 2-(5-Methoxycarbonylthiazol-2-yl)pyridine-5-carboxylate (dimethyl pythiDC)

$\operatorname{Pd}(\mathrm{OAc})_{2} \quad(3.9 \mathrm{mg}, \quad 0.017 \mathrm{mmoles}), \quad\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{H}\right] \mathrm{BF}_{4} \quad(10.0 \mathrm{mg}, \quad 0.035 \quad \mathrm{mmoles})$, 1 -adamantanecarboxylic acid ($18.4 \mathrm{mg}, 0.10 \mathrm{mmoles}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(96.5 \mathrm{mg}, 0.70 \mathrm{mmoles})$, methyl thiazole-5-carboxylate ($50 \mathrm{mg}, 0.35 \mathrm{mmoles}$), and methyl 6 -bromonicotinate (113 mg , 0.52 mmoles) were added to a dried flask. The flask was fitted with a reflux condenser capped with a septum, evacuated, and purged with $\mathrm{N}_{2}(\mathrm{~g})(\sim 5$ times). Dry toluene (1.7 mL) was added via syringe, and the reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was then cooled and filtered through Celite ${ }^{\circledR}$, and the filtrate was concentrated under reduced pressure. The crude product was purified by chromatography on silica ($3 \% \mathrm{v} / \mathrm{v}$ acetone in $1: 1$ DCM/hexanes) to afford the title compound ($28 \mathrm{mg}, 29 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 9.22(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 172.7$, 165.1, 161.8, 153.6, 150.9, 149.7, 138.4, 131.7, 127.1, 119.6, 52.6, 52.6; HRMS (ESI) $\mathrm{m} / \mathrm{z} 279.0439$ [calc'd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$279.0435].

Ethyl 2-(5-Ethoxycarbonylthiazol-2-yl)pyridine-5-carboxylate (diethyl pythiDC)

$\mathrm{Pd}(\mathrm{OAc})_{2} \quad(150 \mathrm{mg}, \quad 0.67 \mathrm{mmoles}), \quad\left[\mathrm{P}(t-\mathrm{Bu})_{3} \mathrm{H}\right] \mathrm{BF}_{4} \quad(388 \mathrm{mg}, \quad 1.34 \mathrm{mmoles})$, 1-adamantanecarboxylic acid ($723 \mathrm{mg}, 4.01 \mathrm{mmoles}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($3.7 \mathrm{~g}, 27 \mathrm{mmoles}$), and ethyl 6-bromonicotinate ($4.6 \mathrm{~g}, 20 \mathrm{mmoles}$) were added to a dried flask. The flask was fitted with a reflux condenser capped with a septum, evacuated, and purged with $\mathrm{N}_{2}(\mathrm{~g})(\sim 5$ times $)$. A solution of ethyl thiazole-5-carboxylate ($2.1 \mathrm{~g}, 13 \mathrm{mmoles}$) in dry toluene (65 mL) was added, and the resulting solution was stirred at $110{ }^{\circ} \mathrm{C}$ for 72 h . The reaction mixture was cooled and filtered through Celite ${ }^{\circledR}$, and the filtrate was concentrated under reduced pressure. The crude product was purified by chromatography on silica (25% EtOAc/hexanes followed by $3 \% \mathrm{v} / \mathrm{v}$ acetone in $1: 1$ $\mathrm{DCM} /$ hexanes) and recrystallized from 1:1 EtOAc/hexanes to afford the title compound (1.48 g , 40%) as a white crystalline solid. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 9.22(\mathrm{dd}, J=0.8,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.5(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{dd}, J=0.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.39(\mathrm{~m}, 4 \mathrm{H})$, $1.46-1.40(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 172.6, 164.6, 161.3, 153.6, 150.9, 149.5, 138.3, 132.1, 127.4, 119.5, 61.8, 61.7, 14.27 (2 signals); HRMS (ESI) $m / z 307.0752$ [calc'd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$307.0748].

2-(5-Carboxythiazol-2-yl)pyridine-5-carboxylic Acid (pythiDC)

Methyl 2-(5-methoxycarbonylthiazol-2-yl)-pyridine-5-carboxylate ($70 \mathrm{mg}, 0.25 \mathrm{mmoles}$) and $\mathrm{KOH}(63.1 \mathrm{mg}, 1.0 \mathrm{mmoles})$ were added to a vial. $\mathrm{MeOH}(7.0 \mathrm{~mL})$ was added to the vial, and the reaction mixture was heated to $60{ }^{\circ} \mathrm{C}$ with stirring until the starting material was consumed completely, as judged by TLC. The reaction mixture was cooled and concentrated under reduced pressure. The crude product was dissolved in water (4 mL). The aqueous layer was washed with EtOAc ($1 \times 4 \mathrm{~mL}$), after which the product was precipitated from the aqueous layer by adjusting to pH 2 with 1 M HCl . After cooling to $4{ }^{\circ} \mathrm{C}$, the product was filtered, washed with water ($3 \times$ 1 mL), and dried under high vacuum to afford the title compound ($38 \mathrm{mg}, 61 \%$) as a pale yellow solid. ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, ~ D M S O-d_{6}, \delta\right): 13.80(\mathrm{bs}, 1 \mathrm{H}), 13.73$ (bs, 1 H), 9.15 (dd, $J=0.5$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=0.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $\left.d_{6}, \delta\right): 172.1,166.1,162.6,153.1,151.2,149.9,139.5,133.6,128.6$, 120.1; HRMS (ESI) $m / z 248.9977$ [calc'd for $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$248.9975].

Ethyl 2-(5-Ethoxycarbonylthiazol-2-yl)pyridine-5-carboxylate (diethyl pythiDC)

2-(5-Carboxythiazol-2-yl)pyridine-5-carboxylic acid ($38 \mathrm{mg}, 0.15 \mathrm{mmoles}$) and EtOH (7 mL) were added to a dried flask and stirred on ice. Thionyl chloride ($300 \mu \mathrm{~L}$) was added dropwise on ice, after which the flask was fitted with a reflux condenser and heated at reflux. After 24 h , the reaction mixture was cooled on ice and quenched by the dropwise addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$ and concentrated under reduced pressure. The crude product was purified by chromatography on silica ($2 \% \mathrm{v} / \mathrm{v}$ acetone in $1: 1 \mathrm{DCM} /$ hexanes) to afford the title compound ($40 \mathrm{mg}, 86 \%$) as a pale yellow solid. The spectral data for diethyl pythiDC synthesized by this method matched that reported above for the same compound synthesized by the direct cross coupling described above.

N-(Methoxyoxalyl)glycine Ethyl Ester

N-(Methoxyoxalyl)glycine ethyl ester was synthesized as reported previously. ${ }^{7}$ The spectral data and yield matched that reported previously.

N -Oxalylglycine (NOG)

N-Oxalylglycine was synthesized as described previously. ${ }^{7}$ The spectral data and yield matched that reported previously.
N-Benzyloxycarbonyl-(2S)-prolyl-(2S)-prolylglycine Ethyl Ester (CbzProProGlyOEt)

CBbzProProGlyOEt was synthesized as described previously. ${ }^{7}$ The spectral data and yield matched that reported previously.

N-Dansylglycyl-(2S)-prolyl-(2S)-prolylglycine Ethyl Ester (dansylGlyProProGlyOEt):

DansylGlyProProGlyOEt was synthesized as described previously. ${ }^{7}$ The spectral data and yield matched that reported previously.

XVIII. Determination of Compound Purity

Compounds were analyzed by HPLC to assess their purity. Analyses were performed with a Waters HPLC system equipped with a Nucleodur ${ }^{\circledR}$ C18 Gravity reversed-phase column (4.6 \times $250 \mathrm{~mm}, 5-\mu \mathrm{m}$ particle size) from Macherey-Nagel. Compounds dissolved in $50 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$ were injected onto the column and eluted at $1 \mathrm{~mL} / \mathrm{min}$ over 20 min with a gradient of aqueous acetonitrile ($5-95 \% \mathrm{v} / \mathrm{v}$ containing $0.1 \% \mathrm{v} / \mathrm{v}$ TFA). The maximal absorbance in the range of $210-400 \mathrm{~nm}$ was used as the detection wavelength.

XIX. HPLC Chromatograms

EDHB

Diethyl Bipy55' DC

Pypyrid

PypyridDC

Pypyraz

PypyrazDC

PypyrroleDC

Peak	Retention Time $(\mathbf{m i n})$	Area $\left(\mu \mathbf{V}^{*} \mathbf{s e c}\right)$	\% Area	Height $(\mu \mathbf{V})$
1	19.515	99453	4.40	10429
2	19.797	28183	1.25	2870
3	20.961	1789909	79.25	176621
4	22.454	4889	0.22	588
5	22.732	5495	0.24	482
6	24.919	323630	14.33	31386
7	27.572	2766	0.12	259
8	32.491	4252	0.19	385

PypyrDC

2-(5-Methoxycarbonyl-1H-imidazol-2-yl)pyridine-5-carboxylic Acid

PyimDC

Diethyl PyimDC

Peak	Retention Time $(\mathbf{m i n})$	Area $\left(\mu \mathbf{V}^{*} \mathbf{s e c}\right)$	$\%$ Area	Height $(\mu \mathbf{V})$
1	28.007	19751	0.12	560
2	30.180	9650	0.06	865
3	30.755	46934	0,28	4158
4	31.327	17379	0.11	1513
5	33.101	5461	0.03	448
6	33.854	16407846	99.14	1356438
7	40.711	3385	0.02	240
8	42.632	32365	0.20	2394
9	44.302	7665	0.05	517

NmePyimDC

Pyox

PyoxDC*

PyoxDC

Pythi

PythiDC*

PythiDC

Diethyl PythiDC

XX. NMR Spectra

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Diethyl Bipy55' DC

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of 6-(Pyridin-2-yl)pyridazine-1-oxide

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of 3-(Pyridin-2-yl)pyridazine (pypyrid)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ of Methyl Pyridazine-3-carboxylate-1-oxide

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Crude Methyl 6-(Ethoxycarbonylpyridin-2-yl)pyridazine-3-carboxylate-1-oxide

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Methyl 3-(5-Ethoxycarbonylpyridin-2-yl)pyridazine-6-carboxylate (ethylmethyl pyrpyridDC)

1	1	1	1	1	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1}$ H NMR (DMSO- d_{6}) and ${ }^{13}$ C NMR (DMSO- d_{6}) of 3-(5-Carboxypyridin-2-yl)pyridazine-6-carboxylic Acid (pypyridDC)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of 2-(Pyridin-2-yl)pyrazine-1-oxide

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of 2-(Pyridin-2-yl)pyrazine (pypyraz)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Methyl Pyrazine-3-carboxylate-1-oxide

${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) of Crude Methyl 2-(5-Methoxycarbonylpyridin-2-yl)pyrazine-5carboxylate

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Methyl 2-(5-Methoxycarbonylpyridin-2-yl)pyrazine-5-carboxylate (dimethyl pypyrazDC)

${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) and ${ }^{13}$ C NMR (DMSO- d_{6}) of 2-(5-Carboxypyridin-2-yl)pyrazine-5carboxylic Acid (pypyrazDC)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Methyl 1-Pivaloyloxymethyl- $\mathbf{1 H}$-pyrrole-3carboxylate

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Methyl 2-(4-Methoxycarbonyl-1-pivaloyloxymethyl-1H-pyrrol-2-yl)pyridine-5-carboxylate-1-oxide

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Methyl 2-(4-Methoxycarbonyl-1-pivaloyloxymethyl-1H-pyrrol-2-yl)pyridine-5-carboxylate

${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) and ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) of 2-(4-Carboxy-1H-pyrrol-2-yl)pyridine-5-carboxylic Acid (pypyrroleDC)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Ethyl 2-(2-Trimethylsilylethynyl)pyridine-5-carboxylate

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	150	120	110	100	90	so	70	60	50	40	30	20	10	-

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Ethyl 2-Ethynylpyridine-5-carboxylate

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Ethyl 2-(5-Ethoxycarbonyl-1H-pyrazol-3-yl)pyridine-5-carboxylate (diethyl pypyrDC)

		1	1								1	1	1	1			1	1		1
200	190	130	170	160	150	140	150	120	110	fl^{100} (spm)	90	80	70	60	50	40	30	20	10	\bigcirc

${ }^{1}$ H NMR (DMSO- d_{6}) and ${ }^{13}$ C NMR (DMSO- d_{6}) of 2-(3-Carboxy-1 H-pyrazol-5-yl)pyridine-5-carboxylic Acid (pypyrDC)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Dimethyl 25PDC

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Methyl 2-Formylnicotinate

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right)$ of Methyl 2-(5-Trifluoromethyl-1H-imidazol-2-yl)pyridine-5-carboxylate

T	1	1	1	1	1	T	T	T	1	1	1	1	1	1	1	1	1	1		
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) and ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) of 2-(5-Methoxycarbonyl-1H-imidazol-2-yl)pyridine-5-carboxylic Acid

${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) and ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) of 2-(5-Carboxy-1 H-imidazol-2-yl)pyridine-5-carboxylic Acid (pyimDC)

200	190	180	1\%	160	150	140	130	120	110	100	∞	80	70	60	50	40	30	20	10	。

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Methyl 2-(5-Methoxycarbonyl- $\mathbf{1 H}$-imidazol-2-yl)pyridine-5-carboxylate (dimethyl pyimDC)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Ethyl 2-(5-Ethoxycarbonyl-1 H -imidazol-2-yl)pyridine-5-carboxylate (diethyl pyimDC)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Methyl 2-(5-Methoxycarbonyl-1-methyl-1 H -imidazol-2-yl)pyridine-5-carboxylate (dimethyl NMe-pyimDC)

${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) and ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) of 2-(5-Carboxy-1-methyl-1 H-imidazol-

 2-yl)pyridine-5-carboxylic Acid (NMe-pyimDC)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of 2-(Oxazol-2-yl)pyridine (pyox)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Methyl 2-(4-Ethoxycarbonyloxazol-2-yl)pyridine-5-carboxylate (ethylmethyl pyoxDC*)

1	,	1	1	1	1	1	1		,	,	,	1			s	S0		1	,	1	1	1	1	1	1	
13.0	12.5	12.0	11.5	11.0	10.5	10.0	0.5	0.0	8.5	8.0	7.5	7.0	${ }_{1}^{6.5}$	6.0	¢. 5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	180	120	110	${ }^{1000}$	90	${ }^{3} 0$	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) and ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) of 2-(4-Carboxyoxazol-2-yl)pyridine-5-carboxylic Acid (pyoxDC*)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Methyl 2-(5-Ethoxycarbonyloxazol-2-yl)pyridine-5-carboxylate (ethylmethyl pyoxDC)

1	1	1	1	T	1	1	1	1	T	1	1	1	1	1	T	1	1	1	T	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	26	10	-

${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) and ${ }^{13}$ C NMR (DMSO- d_{6}) of 2-(5-Carboxyoxazol-2-yl)pyridine-5carboxylic Acid (pyoxDC)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ of 2-(Thiazol-2-yl)pyridine (pythi)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) of Methyl 2-(4-Methoxycarbonylthiazol-2-yl)pyridine-5-carboxylate (dimethyl pythiDC*)

${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) and ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) of 2-(4-Carboxythiazol-2-yl)pyridine-5-carboxylic Acid (pythiDC*)

$$
\begin{array}{lll}
\hline 14.0 & 13.5 & 13.0 & 12.5 & 12.0 & 11.5 & 11.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7 & 7 & 7 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0
\end{array}
$$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) of Methyl 2-(5-Methoxycarbonylthiazol-2-yl)pyridine-5-carboxylate (dimethyl pythiDC)

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1}$ H NMR (DMSO- d_{6}) and ${ }^{13}$ C NMR (DMSO- d_{6}) of 2-(5-Carboxythiazol-2-yl)pyridine-5-carboxylic Acid (pythiDC)

T	1	1	1	1	T	1	1	1	1	T	1		T			1	T		1	1		T	1	1	1	T	1	
14.0	13.5	13.0	12.5	12.0	11.5	11.0	10.5	10.0	9.5	0.0	8.5	8. 0	7.5	. 0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	10	0.5	0.0

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ of Ethyl 2-(5-Ethoxycarbonylthiazol-2-yl)pyridine-5-carboxylate (diethyl pythiDC)

XXI. Table S1. Estimated LogP and Topological Polar Surface Area (TPSA) Values

Table Polar Surface Area (TPSA) Values		
Compound	$\log P^{a}$	TPSA $\left(\AA^{2}\right)^{a}$
bipy	1.44	25.8
bipy55'DC	0.56	100.4
diethyl bipy55'DC	1.87	78.4
pypyrid	0.74	38.7
pypyraz	0.76	38.7
pyim	0.90	41.6
pypyr	0.85	41.6
pythi	1.64	25.8
pyox	1.00	38.9
pyimDC	0.29	116.2
diethyl pyimDC	1.56	94.2
pythiDC	1.03	100.4
diethyl pythiDC	2.30	78.4
${ }^{a}$ Values were estimated	with	the
properecular		
properties calculator	from	Molinspiration
(http://www.molinspiration.com).		

XXII. Absorption Spectra of Ligands and Complexes

Pypyrid and $\mathrm{Fe}\left(\right.$ pypyrid) ${ }_{3}$

$300 \mu \mathrm{M}$ pypyrid $\pm 100 \mu \mathrm{M} \mathrm{Fe}(\mathrm{II}) \mathrm{SO}_{4}$ in 10 mM sodium phosphate buffer, pH 7.0

$$
\lambda_{\max }=522 \mathrm{~nm}
$$

Pypyraz and $\mathrm{Fe}(\text { pypyraz })_{3}$

$300 \mu \mathrm{M}$ pypyraz $\pm 100 \mu \mathrm{M} \mathrm{Fe}(\mathrm{II}) \mathrm{SO}_{4}$ in 10 mM sodium phosphate buffer, pH 7.0

$$
\lambda_{\max }=523 \mathrm{~nm}
$$

Pyim and $\mathrm{Fe}(\text { pyim })_{3}$

$600 \mu \mathrm{M}$ pyim $\pm 200 \mu \mathrm{M} \mathrm{Fe}(\mathrm{II}) \mathrm{SO}_{4}$ in 10 mM sodium phosphate buffer, pH 7.0

Pypyr and Its Complex with Fe(II)

$3000 \mu \mathrm{M}$ pypyr $\pm 100 \mu \mathrm{M} \mathrm{Fe}(\mathrm{II}) \mathrm{SO}_{4}$ in 10 mM sodium phosphate buffer, pH 7.0

Pythi and $\mathrm{Fe}\left(\right.$ pythi) ${ }_{3}$

$3000 \mu \mathrm{M}$ pythi $\pm 1000 \mu \mathrm{M} \mathrm{Fe}(\mathrm{II}) \mathrm{SO}_{4}$ in 10 mM sodium phosphate buffer, pH 7.0

Diethyl Bipy55' DC

$100 \mu \mathrm{M}$ diethyl bipy55' $\mathrm{DC} \pm 20 \mu \mathrm{M} \mathrm{Fe}(\mathrm{II}) \mathrm{SO}_{4}$ in 10 mM sodium phosphate buffer, pH 7.0

Diethyl PyimDC and Its Complex with $\mathbf{F e}$ (II)

$600 \mu \mathrm{M}$ diethyl pyimDC $\pm 20 \mu \mathrm{M} \mathrm{Fe}(\mathrm{II}) \mathrm{SO}_{4}$ in 10 mM sodium phosphate buffer, pH 7.0

Diethyl PythiDC

$200 \mu \mathrm{M}$ diethyl pythiDC $\pm 20 \mu \mathrm{M} \mathrm{Fe}(\mathrm{II}) \mathrm{SO}_{4}$ in 10 mM sodium phosphate buffer, pH 7.0

XXIII. Figure S1. Ligand Titrations to Form Iron Complexes

Figure S1. Ligand Titrations to Form Iron Complexes. Data were acquired as described in Section VIII. (A) Biheteroaryl compounds. $R^{2}>0.99$ for all curve fits. The titration curve for bipy in panel A was reproduced from ref. 7. (B) Diethyl pyimDC. Fe(II) ($20 \quad \mu \mathrm{M}$) could not be saturated over the range that diethyl pyimDC remained soluble under the assay conditions. Thus, $\mathrm{Fe}_{20}-\mathrm{EC}_{50}>600 \mu \mathrm{M}$, which is the highest tested concentration.

XXIV. Job's Plots for Fe(II) Complexes

Fe(pypyrid) ${ }_{3}$

Fe(pypyraz) ${ }_{3}$

Fe(pyim) ${ }_{3}$

Fe(pythi) ${ }_{3}$

XXV. pH-Titration Curves for Biheteroaryl Ligands

Water Blank

Pypyrid
$\mathrm{p} K_{\mathrm{a}}<3$

Pypyraz

$\mathrm{p} K_{\mathrm{a}}<3$

Pyim

$\mathrm{p} K_{\mathrm{a}} 5.4$

Pypyr
 $\mathrm{p} K_{\mathrm{a}} 4.1$

Pythi

$\mathrm{p} K_{\mathrm{a}}<3$

Pyox
$\mathrm{p} K_{\mathrm{a}}<3$

XXVI. Figure S2. Screen for Inhibitors of Human CP4H1

Figure S2. Screen for inhibition of human CP4H1. Compounds $(10 \mu \mathrm{M})$ were screened for inhibition of the catalytic activity of human CP4H1 as described in Section IV. Relative activity values are the mean (\pm SD) of three replicates. Data for 25 PDC , bipy $45^{\prime} \mathrm{DC}$, and bipy55'DC are from ref. 7.
XXVII. Figure S3. Competitive Iron-Binding by PyimDC and Ester Derivatives

Figure S3. Competitive Iron-Binding by PyimDC and Ester Derivatives. High concentrations of pyimDC can compete with bipy for complexation with Fe (II), as determined with the assay described in Section VIII. This phenomenon was dose-dependent (A) and confined to the diacid (B). Together, these data are consistent with pyimDC forming the depicted 2:1 complex with iron.
XXVIII. Figure S4. Screen for Inhibitors of Human PHD2

Figure S4. Screen for Inhibition of Human PHD2. Compounds ($10 \mu \mathrm{M}$) were screened for inhibition of the catalytic activity of human PHD2 as described in Section VI. Relative activity values are the mean (\pm SD) of three replicates. Data for NOG, 24PDC, 25PDC, bipy, bipy $45^{\prime} \mathrm{DC}$, and bipy55'DC are from ref. 7.
XXIX. Figure S5. Effect of Biheteroaryl Compounds on Iron Metabolism in Human Breast Cancer Cells

Figure S5. Effect of Biheteroaryl Compounds on Iron Metabolism in Human Breast Cancer Cells. (A) MDA-MB-231 breast cancer cells were treated with deferoxamine (DFO), biheteroaryl compounds, or vehicle (DMSO) as described in Section XII, and analyzed with an immunoblot (*, $p<0.05$).
XXX. Figure S6. Effect of Biheteroaryl Compounds and Their Diethyl Esters on Iron Metabolism in Human Embryonic Kidney Cells

Figure S6. Effect of Biheteroaryl Compounds and Their Diethyl Esters on Iron Metabolism in Human Embryonic Kidney Cells. (A) HEK293T cells were treated with biheteroaryl compounds $(100 \mu \mathrm{M}$), deferoxamine (DFO, $100 \mu \mathrm{M}$), or vehicle (DMSO) as described in Section XII, and analyzed with an immunoblot. (B) HEK293T cells were treated with esterified biheteroaryl compounds, deferoxamine (DFO), ethyl dihydroxybenzoate (EDHB), or vehicle (DMSO) as described in Section XII, and analyzed with an immunoblot.
XXXI. Figure S7. Effect of Esterified Biheteroaryl Compounds on IRE Binding by IRPs in Human Breast Cancer Cells

Figure S7. Effect of Esterified Biheteroaryl Compounds on IRE Binding by IRPs in Human Breast Cancer Cells. MDA-MB-231 cells were treated with esterified biheteroaryl compounds, deferoxamine (DFO), ethyl dihydroxybenzoate (EDHB), or vehicle (DMSO) as described in Section XIV, and analyzed by an electrophoretic mobility shift assay (EMSA) using a ${ }^{32} \mathrm{P}$-labeled RNA ligand for IRPs as described in Section XV. (A) An EMSA representative of 3 replicates. (B) Quantitations of the EMSAs represented in Panel A. Quantitations ($n=3$) were obtained by densitometry and derived from the digital light units using a calibration curve obtained by scintillation counting and normalized to total protein and total RNA. Under these conditions, IRP1- and IRP2bound RNA comigrate in the band labeled "IRP-bound Probe". ${ }^{*} p<0.05,{ }^{* *} p<0.01$, *** $p<0.001$.
XXXII. Figure S8. Effect of Esterified Biheteroaryl Compounds on P4HA1 Levels in Human Breast Cancer Cells

Figure S8. Effect of Esterified Biheteroaryl Compounds on P4HA1 Levels in Human Breast Cancer Cells. MDA-MB-231 cells were treated with esterified biheteroaryl compounds, deferoxamine (DFO), ethyl dihydroxybenzoate (EDHB), or vehicle (DMSO) as described in Section XII, and then analyzed with an immunoblot. Blots are representative of at least 2 replicates.

XXXIII. References

(1) Kersteen, E. A., Higgin, J. J., and Raines, R. T. (2004) Production of human prolyl 4-hydroxylase in Escherichia coli. Protein Expr. Purif. 38, 279-291.
(2) Hewitson, K. S., Schofield, C. J., and Ratcliffe, P. J. (2007) Hypoxia-inducible factor prolyl-hydroxylase: Purification and assays of PHD2. Methods Enzymol. 435, 25-42.
(3) Gibson, D. G. (2011) Enzymatic assembly of overlapping DNA fragments. Methods Enzymol. 498, 349-361.
(4) Eisenstein, R. S., Tuazon, P. T., Schalinske, K. L., Anderson, S. A., and Traugh, J. A. (1993) Iron-responsive element-binding protein. Phosphorylation by protein kinase C. J. Biol. Chem. 268, 27363-27370.
(5) Goforth, J. B., Anderson, S. A., Nizzi, C. P., and Eisenstein, R. S. (2010) Multiple determinants within iron-responsive elements dictate iron regulatory protein binding and regulatory hierarchy. RNA 16, 154-169.
(6) Begtrup, M., Boyer, G., Cabildo, P., Cativiela, C., Claramunt, R. M., Elguero, J., García, J. I., Toiron, C., and Vedsø, P. (1993) ${ }^{13}$ C NMR of pyrazoles. Magn. Reson. Chem. 31, 107-168.
(7) Vasta, J. D., and Raines, R. T. (2015) Selective inhibition of prolyl 4-hydroxylases by bipyridinedicarboxylates. Bioorg. Med. Chem. 23, 3081-3090.

