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ABSTRACT: Ribonuclease inhibitor (RNH1) is a
cytosolic protein that binds with femtomolar affinity to
human ribonuclease 1 (RNase 1) and homologous
secretory ribonucleases. RNH1 contains 32 cysteine
residues and has been implicated as an antioxidant. Here,
we use CRISPR-Cas9 to knock out RNH1 in HeLa cells.
We find that cellular RNH1 affords marked protection
from the lethal ribonucleolytic activity of RNase 1 but not
from oxidants. We conclude that RNH1 protects cytosolic
RNA from invading ribonucleases.

Ribonuclease inhibitor (RNH11,2) is a highly conserved
cytosolic protein of micromolar abundance that binds to

human ribonuclease 1 (RNase 1), bovine RNase A,3 and other
pancreatic-type ribonucleases4 with femtomolar affinity.5,6

Although many of the physical properties of RNH1 are well-
understood, its biological function is subject to debate. Because
of its high affinity for pancreatic-type ribonucleases, which are
secretory enzymes, RNH1 has been called a cellular “sentry”
that protects cytosolic RNA from degradation by endocytosed
ribonucleases.7 This hypothesis is supported by RNase 1
variants with decreased affinity for RNH1 being toxic to human
cells, unlike wild-type RNase 1,6,8,9 yet when RNAi has been
used to diminish levels of RNH1,10−15 the results have been
used to advance the hypothesis that RNH1 acts as a cytosolic
antioxidant.10,11,14 As RNH1 contains 32 cysteine residues and
its concentration in the cytosol is ∼4 μM,7 RNH1 provides
∼0.1 mM thiol groups. For comparison, the intracellular
concentration of reduced glutathione ranges from ∼0.1 to 15
mM depending on the subcellular compartment, cell type, and
organism.16

Distinguishing between these two hypotheses with RNAi is
difficult. By mediating gene expression at the level of
transcription, RNAi suffers from incomplete and often transient
knockdowns, as well as off-target effects.17 The task with RNH1
is a special challenge. As RNH1 binds to RNase 1 with
extraordinary affinity and the entry of RNase 1 into the cytosol
is inefficient,18−20 even a low level of RNH1 could protect a
cell.1 In contrast to RNAi, methods that employ CRISPR-Cas9
act at the genomic level.21−24 Differences in phenotypes arising
from knockdowns by RNAi and knockouts by CRISPR-Cas9

have been reported, as have identical RNAi-mediated knock-
downs in different genetic backgrounds.25−27 Here, we report
on a CRISPR-Cas9 knockout of RNH1 in a human cell,
allowing for an unambiguous assessment of its biological role.
We created a CRISPR-edited knockout of RNH1 in HeLa

cells.28 The most successful knockout clone (ΔRNH1)
contained a five-nucleotide deletion in exon 2. ΔRNH1 cells
exhibited no detectable production of RNH1 protein (Figure
1A), but proliferated at a rate indistinguishable from that of

wild-type HeLa cells (Figure 1B). These coinciding cell growth
curves from wild-type and knockout cells conflict with results
from RNAi-mediated knockdown experiments.13,14 This
concurrence indicates that any leakage of nascent RNase 1
from the secretory pathway of an ΔRNH1 cell into its cytosol is
inconsequential. Lastly, the growth medium from each cell line
contained an equivalent (small) amount of ribonucleolytic
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Figure 1. Characterization of RNH1-knockout HeLa cells. (A)
Immunoblot of an extract from wild-type and ΔRNH1 cells. (B)
Proliferation of wild-type and ΔRNH1 cells in serum-free Dulbecco’s
modified Eagle’s medium containing a penicillin/streptomycin
solution [1% (v/v)] at 37 °C.
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activity (Figure S1), suggesting that the production of RNase 1
is not linked to that of RNH1.
RNH1 protects HeLa cells from RNase 1. RNH1-knockout

cells were much more vulnerable to wild-type RNase 1 than
were wild-type cells (Figure 2A). Indeed, no deleterious
consequences on wild-type cells were apparent with RNase 1
at 17 μM, which is the EC50 value for RNH1-knockout cells. In
contrast, RNH1-knockout cells and wild-type cells were equally
vulnerable to QBI-139 (Figure 2B), which is an RNase 1 variant
that has been engineered to evade RI and is in clinical trials as a
cancer chemotherapeutic agent.29,30 Finally, neither RNH1-
knockout cells nor wild-type cells are vulnerable to H12A
RNase 1 (Figure 2C), which is a variant having a substitution in
a key active-site residue and thus low catalytic activity.31,32

These cell viability data (Table 1) provide strong support for
the hypothesis that RNH1 modulates the toxicity of RNase 1
by inhibiting its ribonucleolytic activity.
RNH1 affords little protection from oxidative stress. HeLa

cells were subjected to three well-known inducers of oxidative
stress: hydrogen peroxide (H2O2), diethyl maleate (DEM), and
sodium arsenite (NaAsO2). RNH1-knockout cells and wild-type
cells were equally vulnerable to H2O2 and DEM (Figure 2D,E).
RNH1-knockout cells appeared to be slightly more vulnerable
to NaAsO2 than were wild-type cells (Figure 2F), but the
corresponding ratio of EC50 values was equal to only 2 (Table
1). Thus, the marked protection afforded by RNH1 to the
potential toxicity of RNase 1 was not replicated with inducers
of oxidative stress.
RNase 1 exists in all bodily fluids. Endothelial cells have been

shown to secrete up to 100 ng of RNase 1 per 106 cells on a
daily basis.33−35 This enzyme can re-enter endothelial cells by
endocytosis, suggesting that the cytosol is assaulted constantly

by a potent catalyst of RNA degradation.32,36−38 By binding
and inactivating RNase 1,6 RNH1 can protect cytosolic RNA
from degradation and promote cell survival.
The observed EC50 value for RNase 1 (17 μM) is much

greater than the concentration of RNase 1 in human serum
(480 ng/mL = 33 nM).39 HeLa cells are, however, nearly 102-
fold less vulnerable to ribonucleases than are other cell
lines.12,40 Moreover, even modest cytotoxicity could be
intolerable in a physiological context.
Although the 32 cysteine residues of RNH1 contribute little

to cellular oxidation resistance, they might have evolved for
another purpose. RNH1 is sensitive to oxidation, and oxidized
RNH1 is incapable of binding to a ribonuclease.41−43 This
sensitivity extends to RNH1·ribonuclease complexes, which
release active enzyme upon oxidation.2,44 All vertebrates have
intracellular RNH1. The human protein is, however, more

Figure 2. Effect of (A) human RNase 1, (B and C) its variants, and (D−F) oxidizing agents on the viability of wild-type and RNH1-knockout HeLa
cells. Cell viability was measured with a tetrazolium dye-based assay for metabolic activity. EC50 values are listed in Table 1.

Table 1. Effect of Human RNase 1, Its Variants, and
Oxidizing Agents on the Viability of Wild-Type and RNH1-
Knockout HeLa Cellsa

reagent wild-type HeLa cells ΔRNH1 HeLa cells

RNase 1 >100b 17 ± 2
QBI-139 18 ± 2 19 ± 6
H12A RNase 1 >100b >100b

H2O2 32 ± 6 30 ± 2
DEM 130 ± 17 140 ± 13
NaAsO2 6.2 ± 0.5 3.1 ± 0.2

aData are values (±standard error) of EC50 (micromolar) for cell
viability as measured with a tetrazolium dye-based assay for metabolic
activity. bProtein concentrations of >100 μM resulted in >75% cell
viability.
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sensitive to oxidation than is that of other mammals, a bird, or a
lizard.2 Together, these data suggest that human RNH1 might
have evolved to be a highly sensitive trigger for unleashing
lethal ribonucleolytic activity in response to oxidative stress,
which would otherwise inflict heritable genomic damage.
The clinical efficacy of an RNase 1 variant, QBI-139, relies on

its ability to evade RNH1.29,30 The viability of HeLa cells is
affected by QBI-139 regardless of the presence of RNH1
(Figure 2B and Table 1). Moreover, the viability of HeLa cells
that lack RNH1 is affected equivalently by QBI-139 and wild-
type RNase 1. These data suggest that QBI-139 is an optimized
cytotoxin. Still, enhancing cellular uptake and endosomal
escape could render QBI-139 even more effective.9,18 The
RNH1-knockout cells described herein provide a powerful
means of exploring such approaches without confounding
effects from inactivation by RNH1. Experiments along these
lines are ongoing in our laboratory.
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