Electronic and Steric Effects on the Rate of the Traceless Staudinger Ligation

Departments of Chemistry and Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706

Page	Contents	Page	Contents
S1	Table of Contents	S43	${ }^{31} \mathrm{P}$ NMR Spectrum of Compound 40
S2-S10	Experimental Procedures	S44	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 41
S10	References	S45	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 41
S10	Scheme S1: Synthetic route to 15, 17, 18	S46	${ }^{31}$ P NMR Spectrum of Compound 41
S11	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 9	S47	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 42
S12	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 9	S48	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 42
S13	${ }^{31}$ P NMR Spectrum of Compound 9	S49	${ }^{31}$ P NMR Spectrum of Compound 42
S14	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 11	S50	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 43
S15	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 11	S51	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 43
S16	${ }^{31}$ P NMR Spectrum of Compound 11	S52	${ }^{31}$ P NMR Spectrum of Compound 43
S17	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 12	S53	${ }^{1}$ H NMR Spectrum of Compound 44
S18	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 12	S54	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 44
S19	${ }^{31}$ P NMR Spectrum of Compound 12	S55	${ }^{31}$ P NMR Spectrum of Compound 44
S20	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 15	S56	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 45
S21	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 15	S57	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 45
S22	${ }^{31}$ P NMR Spectrum of Compound 15	S58	${ }^{31}$ P NMR Spectrum of Compound 45
S23	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 17	S59	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 46
S24	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 17	S60	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 46
S25	${ }^{31}$ P NMR Spectrum of Compound 17	S61	${ }^{31}$ P NMR Spectrum of Compound 46
S26	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 18	S62	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 47
S27	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 18	S63	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 47
S28	${ }^{31}$ P NMR Spectrum of Compound 18	S64	${ }^{31}$ P NMR Spectrum of Compound 47
S29	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 35	S65	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 48
S30	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 35	S66	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 48
S31	${ }^{31}$ P NMR Spectrum of Compound 35	S67	${ }^{31}$ P NMR Spectrum of Compound 48
S32	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 37	S68	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 49
S33	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 37	S69	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 49
S34	${ }^{31}$ P NMR Spectrum of Compound 37	S70	${ }^{31}$ P NMR Spectrum of Compound 49
S35	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 38	S71	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 51
S36	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 38	S72	${ }^{31}$ P NMR Spectrum of Compound 51
S37	${ }^{31}$ P NMR Spectrum of Compound 38	S73	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 52
S38	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 39	S74	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 52
S39	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 39	S75	${ }^{31}$ P NMR Spectrum of Compound 52
S40	${ }^{31}$ P NMR Spectrum of Compound 39	S76	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 53
S41	${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 40	S77	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 53
S42	${ }^{13} \mathrm{C}$ NMR Spectrum of Compound 40	S78	${ }^{31}$ P NMR Spectrum of Compound 53

General. Reagent chemicals were obtained from commercial suppliers, and reagent grade solvents were used without further purification. Anhydrous THF, DMF, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were from a CYCLE-TAINER ${ }^{\circledR}$ solvent delivery system (Baker). Procedures were performed at room temperature ($<23{ }^{\circ} \mathrm{C}$) unless indicated otherwise. Reactions were monitored by thin-layer chromatography with visualization by UV light or staining with KMnO_{4}, ninhydrin, or I_{2}. Compound purification was carried out with flash chromatography on silica gel, which had a mesh of $230-400$ (ASTM) and a pore size of $60 \AA$. The removal of solvents and other volatile materials "under reduced pressure" refers to the use of a rotary evaporator at water-aspirator pressure (<20 torr) and a water bath of $<40^{\circ} \mathrm{C}$.

Instrumentation. NMR spectra were acquired at ambient temperature with a Bruker AC-300 spectrometer (${ }^{1} \mathrm{H}, 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 75 \mathrm{MHz} ;{ }^{31} \mathrm{P}, 121 \mathrm{MHz}$) at the University of Wisconsin Chemistry Department Nuclear Magnetic Resonance Facility or a Bruker DMX-400 Avance spectrometer (${ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 100.6 \mathrm{MHz} ;{ }^{31} \mathrm{P}, 161 \mathrm{MHz}$) or Bruker Avance DMX-500 spectrometer (${ }^{1} \mathrm{H}, 500 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 125.7 \mathrm{MHz} ;{ }^{31} \mathrm{P}, 202 \mathrm{MHz}$) at the National Magnetic Resonance Facility at Madison (NMRFAM) or a Varian Inova $500\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 125.7\right.$ $\mathrm{MHz} ;{ }^{31} \mathrm{P}, 202 \mathrm{MHz}$) spectrometer at the University of Wisconsin Nuclear Magnetic Resonance Facility. Carbon-13 and phosphorus-31 spectra were proton-decoupled, and phosphorus-31 spectra were referenced against an external standard of deuterated phosphoric acid (0 ppm).

Mass spectrometry was performed with a Micromass LCT (electrospray ionization, ESI) in the Mass Spectrometry Facility in the Department of Chemistry.
$\mathbf{H P}(\mathbf{O})\left(p-\mathbf{O C H}\left(\mathbf{C H}_{3}\right)_{2}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{2} \mathbf{(3 5)}$. Bromide $34(4 \mathrm{~g}, 18.6 \mathrm{mmol})$ was dissolved in anhydrous THF (50 mL) under $\operatorname{Ar}(\mathrm{g})$ in a flame-dried round-bottom flask equipped with a reflux condenser. To facilitate generation of the Grignard reagent, a catalytic amount of I_{2} was added to the solution. Crushed magnesium turnings ($678 \mathrm{mg}, 27.9 \mathrm{mmol}$) were then added to this solution, and the resulting solution was heated to reflux for 2 h to generate the Grignard reagent. In a separate flame-dried round-bottom flask, diethyl phosphite ($718 \mu \mathrm{~L}, 5.58 \mathrm{mmol}$) was dissolved in anhydrous THF (2 mL), and cooled to $0^{\circ} \mathrm{C}$ with an ice/water bath. The solution of Grignard reagent was added dropwise to this solution, and the resulting mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was then quenched with water $(2 \mathrm{~mL})$, and the solvent was removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the resulting solution was washed with water and brine. The combined organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, $1: 1 \mathrm{v} / \mathrm{v}$ acetone: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give phosphine-borane complex 35 as a colorless oil in 67% yield. Spectra data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.62-7.56(\mathrm{~m}, 4 \mathrm{H}), 8.01(\mathrm{~d}, J=476.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 4 \mathrm{H}), 4.62(\mathrm{sept}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 161.51,132.94(\mathrm{~d}$, $J=12.7 \mathrm{~Hz}), 122.65(\mathrm{~d}, J=108 \mathrm{~Hz}), 116.08(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 70.21,22.07 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz$) \delta 20.79 \mathrm{ppm}$; MS (ESI) $m / z 637.2827\left(2 \mathrm{MNa}^{+}\right.$ $\left[\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{PNa}^{+}\right]=637.2848$).
$\mathbf{H P}(\mathbf{O})\left(p-\mathrm{NMe}_{2}-\mathrm{C}_{6} \mathbf{H}_{4}\right)_{2}$ (36). Phosphine oxide 36 was synthesized according to reports published previously. ${ }^{1}$ Spectral data. Spectral data were as reported previously. ${ }^{1}$
$\mathbf{B H}_{3} \cdot \mathbf{H P}\left(\boldsymbol{p}-\mathbf{O C H}\left(\mathbf{C H}_{3}\right)_{2}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{\mathbf{2}}$ (37). Phosphine oxide $\mathbf{3 5}(1.18 \mathrm{~g}, 3.7 \mathrm{mmol})$ was dissolved in $1: 1 \mathrm{v} / \mathrm{v} \mathrm{THF} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$. DIBAL (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 18.5 \mathrm{~mL}$) was added to the solution dropwise over a period of 5 min , and the resulting mixture was stirred for 20 min at room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added, and the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$ with an ice/water bath. $\mathrm{NaOH}(2 \mathrm{~N}, 10 \mathrm{~mL})$ was added dropwise, followed by brine $(6 \mathrm{~mL})$. The solution
was stirred for 5 min , then poured into a separatory funnel and the organic layer was separated and dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure to a 30 mL volume. This solution was cooled to $0^{\circ} \mathrm{C}$ with an ice/water bath, and borane dimethyl sulfide complex (10 M in THF, $444 \mu \mathrm{~L}$) was added dropwise to the reaction mixture. The resulting solution was allowed to warm to room temperature and stirred overnight. Solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give phosphine-borane complex 37 as a colorless oil in 97% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.58-7.53(\mathrm{~m}, 4 \mathrm{H}), 6.94-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.24(\mathrm{dq}, J=377.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.59(\mathrm{sept}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.48-0.57(\mathrm{bm}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 160.91,134.86(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 116.97(\mathrm{~d}, J=108 \mathrm{~Hz}), 116.40(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}), 70.20,22.12 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz$) \delta 1.56 \mathrm{ppm}$; MS (ESI) $m / z 339.1649\left(\mathrm{MNa}^{+}\left[\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BO}_{2} \mathrm{PNa}^{+}\right]=339.1661\right)$.
$\mathbf{B H}_{3} \cdot \mathbf{H P}\left(\boldsymbol{p} \text { - } \mathbf{N M e}_{2}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{\mathbf{2}}$ (38). Bis-[4-dimethylaminophenyl]-phosphine was synthesized from phosphine oxide $\mathbf{3 6}$ according to previously published reports. ${ }^{1}$ Bis-[4-dimethylaminophenyl]-phosphine ($2.88 \mathrm{~g}, 10.56 \mathrm{mmol}$) was then dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(85 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ with an ice/water bath. Borane•dimethyl sulfide complex (10 M in THF, 3.2 mL) was added dropwise, and the resulting solution was allowed to warm to room temperature and stirred overnight. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica gel, 1:1:3 v/v/v dichloromethane:ethyl acetate:hexane) to give phosphine-borane complex 38 as a white solid in 62% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.51-7.46(\mathrm{~m}, 4 \mathrm{H}), 6.71-6.66(\mathrm{~m}, 4 \mathrm{H}), 5.75(\mathrm{q}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.99(\mathrm{~s}, 12 \mathrm{H}), 1.40-0.50(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 152.34,134.27$, 134.17, 112.20, $40.28 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz$) \delta-4.74 \mathrm{ppm}$; MS (ESI) $m / z 309.1660\left(\mathrm{MNa}^{+}\left[\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BN}_{2} \mathrm{PNa}^{+}\right]=309.1668\right)$.
$\mathbf{B H}_{3} \cdot \mathbf{H P}\left(\boldsymbol{p}-\mathbf{C H}_{3}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{2}$ (39). Di- p-tolylphosphine $(10 \mathrm{~g}, 46.7 \mathrm{mmol})$ was dissolved in anhydrous THF (100 mL), and the resulting solution was cooled to $0^{\circ} \mathrm{C}$ with an ice/water bath. Borane THF complex (1 M in THF, 51.3 mL) was added dropwise to the solution, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , warmed to room temperature and stirred for an additional 1 h . Solvent was removed under reduced pressure, and the residue was purified by flash chromatography (silica gel, $50 \% \mathrm{v} / \mathrm{v} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexane) to give phosphinothioester 39 as a white solid in 95% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.56-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.24$ $(\mathrm{m}, 4 \mathrm{H}), 6.25(\mathrm{bq}, J=378 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H}), 1.48-0.54(\mathrm{bm}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 142.28,133.09(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 130.02(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 123.18(\mathrm{~d}, J=$ $60.7 \mathrm{~Hz}), 21.74 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 161 \mathrm{MHz}\right) \delta-0.50 \mathrm{ppm}$; MS (ESI) $m / z 251.1129\left(\mathrm{MNa}^{+}\right.$ $\left.\left[\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BPNa}^{+}\right]=251.1137\right)$.
$\mathbf{B H}_{3} \cdot \mathrm{HOCH}_{2} \mathbf{P}\left(\boldsymbol{p}-\mathbf{O C H}\left(\mathbf{C H}_{3}\right)_{2}-\mathrm{C}_{6} \mathbf{H}_{4}\right)_{2}$ (40). Phosphine-borane complex 37 (1.15 g, 3.62 mmol) was dissolved in THF (30 mL). Formaldehyde ($37 \% \mathrm{v} / \mathrm{v}$ in $\mathrm{H}_{2} \mathrm{O} ; 2.21 \mathrm{~mL}$) was added to this solution, followed by potassium hydroxide ($207 \mathrm{mg}, 3.69 \mathrm{mmol}$). The resulting solution was stirred overnight at room temperature, after which the organic solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (15 mL), and the organic layer was washed with brine. The combined organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give phosphine-borane complex $\mathbf{4 0}$ as a pale yellow oil in 70% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.64-7.60(\mathrm{~m}, 4 \mathrm{H}), 6.95-6.93(\mathrm{~m}$, $4 \mathrm{H}), 4.60$ (sept, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.35 (d, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 12 \mathrm{H}), 1.40-0.40(\mathrm{bm}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 160.94$, $134.65(\mathrm{~d}, J=9.5$
$\mathrm{Hz}), 116.33(\mathrm{~d}, J=61.0 \mathrm{~Hz}), 116.22(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 70.20,61.04(\mathrm{~d}, J=43.3 \mathrm{~Hz}), 22.13 \mathrm{ppm} ;$
${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz$) \delta 14.78 \mathrm{ppm}$; MS (ESI) $m / z 369.1776\left(\mathrm{MNa}^{+}\right.$ $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{BO}_{3} \mathrm{PNa}^{+}\right]=369.1767$).
$\mathbf{B H}_{3} \cdot \mathbf{H O C H}_{2} \mathbf{P}\left(\boldsymbol{p}-\mathrm{NMe}_{2}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{\mathbf{2}}$ (41). Phosphine-borane complex $38(1.89 \mathrm{~g}, 6.59 \mathrm{mmol})$ was dissolved in THF (50 mL). Formaldehyde ($37 \% \mathrm{v} / \mathrm{v}$ in $\mathrm{H}_{2} \mathrm{O} ; 4.03 \mathrm{~mL}$) was added to this solution, followed by potassium hydroxide ($380 \mathrm{mg}, 6.79 \mathrm{mmol}$). The resulting solution was stirred overnight at room temperature, after which the organic solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (25 mL), and the organic layer was washed with brine. The combined organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:1:3 v/v/v dichloromethane:ethyl acetate:hexane) to give phosphine-borane complex 41 as a pale green solid in 92% yield. Spectral data. ${ }^{1}$ H NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.57-7.52(\mathrm{~m}, 4 \mathrm{H}), 6.73-6.70(\mathrm{~m}, 4 \mathrm{H}), 4.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~s}$, $12 \mathrm{H}), 2.05(\mathrm{bs}, 1 \mathrm{H}), 1.35-0.50(\mathrm{bm}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 152.34,133.99$ (d, $J=10.3 \mathrm{~Hz}$), $112.17(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 111.33(\mathrm{~d}, J=64.6 \mathrm{~Hz}), 61.13(\mathrm{~d}, J=41.4 \mathrm{~Hz}), 40.19$ ppm; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz$) \delta 12.80 \mathrm{ppm}$; MS (ESI) m/z 339.1764 $\left(\mathrm{MNa}^{+}\left[\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BN}_{2} \mathrm{OPNa}^{+}\right]=339.1774\right)$.
$\mathbf{B H}_{3} \cdot \mathbf{H O C H}_{2} \mathbf{P}\left(\boldsymbol{p}-\mathbf{C H}_{\mathbf{3}}-\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}}\right)_{\mathbf{2}} \mathbf{(4 2)}$. Phosphine-borane complex $\mathbf{3 9}(2.29 \mathrm{~g}, 10.04 \mathrm{mmol})$ was dissolved in THF (84 mL). Formaldehyde ($37 \% \mathrm{v} / \mathrm{v}$ in $\mathrm{H}_{2} \mathrm{O} ; 6.13 \mathrm{~mL}$) was added to this solution, followed by potassium hydroxide ($573 \mathrm{mg}, 10.24 \mathrm{mmol}$). The resulting mixture was stirred overnight at room temperature, after which the organic solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (30 mL), and the organic layer was washed with brine. The combined organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give phosphine-borane complex 42 as a colorless oil in 83% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.62-7.57(\mathrm{~m}, 4 \mathrm{H}), 6.28-6.26(\mathrm{~m}, 4 \mathrm{H}), 4.38(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 2H), 2.39 (s, 6H), 2.11-2.09 (bm, 1H), 1.39-0.49 (bq, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ $\delta 142.36,132.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 129.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 123.49(\mathrm{~d}, J=57.1 \mathrm{~Hz}), 60.69(\mathrm{~d}, J=$ 42.1 Hz), $21.71 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR (CDCl_{3} with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz) $\delta 16.50 \mathrm{ppm}$; MS (ESI) $m / z 281.1246\left(\mathrm{MNa}^{+}\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{BOPNa}^{+}\right]=281.1243\right)$.
$\mathbf{B H}_{3} . \mathbf{M s O C H}_{2} \mathbf{P}\left(\boldsymbol{p} \mathbf{- O C H}\left(\mathbf{C H}_{3}\right)_{2}-\mathbf{C}_{\mathbf{6}} \mathbf{H}_{4}\right)_{\mathbf{2}}$ (43). Triethylamine ($531 \mu \mathrm{~L}, 3.81 \mathrm{mmol}$) was added to a solution of phosphine-borane $40(879 \mathrm{mg}, 2.54 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL})$, and this solution was cooled to $0^{\circ} \mathrm{C}$ with an ice/water bath. Methanesulfonyl chloride ($275 \mu \mathrm{~L}, 3.55 \mathrm{mmol}$) was added dropwise, and the resulting solution was allowed to warm slowly to room temperature overnight. The solution was washed with 0.5 N HCl and brine, and the combined organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give phosphine-borane complex 43 as a yellow oil in 83% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $7.66-7.61(\mathrm{~m}, 4 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 4 \mathrm{H}), 4.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.61$ (sept, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.89 (s, 3H), $1.35(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 12 \mathrm{H}), 1.40-0.40(\mathrm{bm}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta$ $161.32,134.85(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 116.38(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 115.48(\mathrm{~d}, J=63 \mathrm{~Hz}), 70.27,65.40(\mathrm{~d}, J$ $=39 \mathrm{~Hz}), 37.59,22.07 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz$) \delta 15.49 \mathrm{ppm}$; MS (ESI) $m / z 447.1546\left(\mathrm{MNa}^{+}\left[\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{BO}_{5} \mathrm{PSNa}^{+}\right]=447.1542\right)$.
$\mathbf{B H}_{3} \cdot \mathbf{M s O C H}_{2} \mathbf{P}\left(\boldsymbol{p}-\mathrm{NMe}_{2}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{\mathbf{2}}$ (44). Triethylamine ($1.25 \mathrm{~mL}, 9.0 \mathrm{mmol}$) was added to a solution of phosphine-borane $41(1.90 \mathrm{~g}, 6.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(55 \mathrm{~mL})$, and this solution was cooled to $0{ }^{\circ} \mathrm{C}$ with an ice/water bath. Methanesulfonyl chloride ($651 \mu \mathrm{~L}, 8.4 \mathrm{mmol}$) was added
dropwise, and the resulting solution was allowed to warm slowly to room temperature overnight. The solution was washed with 0.1 N HCl and brine, and the combined organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:1:3 $\mathrm{v} / \mathrm{v} / \mathrm{v}$ dichloromethane:ethyl acetate:hexane) to give phosphine-borane complex 44 as a white solid in 95% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.60-7.55(\mathrm{~m}, 4 \mathrm{H}), 6.77-6.75(\mathrm{~m}, 4 \mathrm{H}), 4.78(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.02(\mathrm{~s}, 12 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 1.40-0.50(\mathrm{bm}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta$ 152.47, $134.15(\mathrm{~d}, J=11.8 \mathrm{~Hz}), 111.99(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 109.48(\mathrm{~d}, J=67.6 \mathrm{~Hz}), 66.23(\mathrm{~d}, J=$ $38.9 \mathrm{~Hz}), 40.49,37.66 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz$) \delta 13.39 \mathrm{ppm}$; MS (ESI) $m / z 417.1567\left(\mathrm{MNa}^{+}\left[\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{BN}_{2} \mathrm{O}_{3} \mathrm{PSNa}^{+}\right]=417.1549\right)$.
$\left.\mathbf{B H}_{3} \cdot \mathbf{M s O C H}_{2} \mathbf{P}\left(\boldsymbol{p}-\mathbf{C H}_{3}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{2} \mathbf{(4 5}\right)$. Triethylamine ($1.74 \mathrm{~mL}, 12.5 \mathrm{mmol}$) was added to a solution of phosphine-borane $42(2.15 \mathrm{mg}, 8.33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$, and this solution was cooled to $0^{\circ} \mathrm{C}$ with an ice/water bath. Methanesulfonyl chloride ($903 \mu \mathrm{~L}, 11.67 \mathrm{mmol}$) was added dropwise, and the resulting solution was allowed to warm slowly to room temperature overnight. The solution was washed with 0.5 N HCl and brine, and the combined organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give phosphine-borane complex 45 as a colorless oil in 93% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $7.63-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 4 \mathrm{H}), 4.86(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H})$, $1.47-0.48(\mathrm{bm}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 143.42,133.12(\mathrm{~d}, J=8.7 \mathrm{~Hz})$, $130.19(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 121.98(\mathrm{~d}, J=60.7 \mathrm{~Hz}), 65.05(\mathrm{~d}, J=38.7 \mathrm{~Hz}), 37.71,21.86 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz$) \delta 17.26 \mathrm{ppm}$; MS (ESI) $m / z 359.1002\left(\mathrm{MNa}^{+}\right.$ $\left[\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{BO}_{3} \mathrm{PSNa}^{+}\right]=359.1018$).
$\mathbf{B H}_{3} \cdot \mathbf{A c S C H}_{2} \mathbf{P}\left(\boldsymbol{p} \mathbf{- O C H}\left(\mathbf{C H}_{3}\right)_{2}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{2} \mathbf{(4 6)}$. Potassium thioacetate ($290 \mathrm{mg}, 2.54 \mathrm{mmol}$) was added to a solution of phosphine-borane complex $\mathbf{4 3}(898 \mathrm{mg}, 2.12 \mathrm{mmol})$ in anhydrous DMF $(20 \mathrm{~mL})$ under $\operatorname{Ar}(\mathrm{g})$. The resulting solution was stirred overnight at room temperature, after which the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate $(10 \mathrm{~mL})$, and the resulting solution was washed with water and brine. The combined organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, $50 \% \mathrm{v} / \mathrm{v} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in hexanes) to give phosphine-borane complex 46 as a yellow oil in 53% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.62-7.57(\mathrm{~m}, 4 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 4 \mathrm{H}), 4.59$ (sept, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.63(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.40-0.50(\mathrm{bm}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 193.81,161.36,134.84(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 116.37(\mathrm{~d}, J=10.3 \mathrm{~Hz})$, $115.52(\mathrm{~d}, J=63.0 \mathrm{~Hz}), 70.30,65.49(\mathrm{~d}, J=38.9 \mathrm{~Hz}), 37.62,22.09 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 161\right.$ $\mathrm{MHz}) \delta 15.75 \mathrm{ppm}$; MS (ESI) $m / z 427.1656\left(\mathrm{MNa}^{+}\left[\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{BO}_{3} \mathrm{PSNa}^{+}\right]=427.1644\right)$.
$\left.\mathbf{B H}_{3} \cdot \mathbf{A c S C H}_{\mathbf{2}} \mathbf{P}\left(\boldsymbol{p}-\mathrm{NMe}_{\mathbf{2}}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{\mathbf{2}} \mathbf{(4 7}\right)$. Potassium thioacetate ($780 \mathrm{mg}, 6.83 \mathrm{mmol}$) was added to a solution of phosphine-borane complex $44(2.24 \mathrm{~g}, 5.69 \mathrm{mmol})$ in anhydrous DMF (50 mL) under $\operatorname{Ar}(\mathrm{g})$. The resulting solution was stirred overnight at room temperature, after which the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (30 mL), and the resulting solution was washed with water and brine. The combined organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:1:3 v/v/v dichloromethane:ethyl acetate:hexane) to give phosphine-borane complex 47 as a pale yellow oil in 24% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.55-7.50(\mathrm{~m}, 4 \mathrm{H}), 6.71-6.68(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 12 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.40-0.50(\mathrm{bm}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100.6\right.$

[^0]$\mathrm{MHz}) \delta 194.09,152.16,133.53(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 112.32(\mathrm{~d}, J=65 \mathrm{~Hz}), 111.81(\mathrm{~d}, J=12.7 \mathrm{~Hz})$, $40.02,30.22,25.01(\mathrm{~d}, J=35.8 \mathrm{~Hz}) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz$) \delta$ $12.38 \mathrm{ppm} ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 397.1646\left(\mathrm{MNa}^{+}\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{BN}_{2} \mathrm{OPSNa}^{+}\right]=397.1651\right)$.
$\mathbf{B H}_{\mathbf{3}} \cdot \mathbf{A c S C H} \mathbf{2} \mathbf{P}\left(\boldsymbol{p}-\mathbf{C H}_{\mathbf{3}}-\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}\right)_{\mathbf{2}} \mathbf{(4 8)}$. Potassium thioacetate ($1.06 \mathrm{mg}, 9.25 \mathrm{mmol}$) was added to a solution of phosphine-borane complex 45 ($2.59 \mathrm{mg}, 7.71 \mathrm{mmol}$) in anhydrous DMF (70 mL) under $\operatorname{Ar}(\mathrm{g})$. The resulting solution was stirred overnight at room temperature, after which the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (30 mL), and the resulting solution was washed with water and brine. The combined organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give phosphine-borane complex 48 as an orange solid in 62% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.60-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H}), 2.25$ $(\mathrm{s}, 3 \mathrm{H}), 1.47-0.44(\mathrm{bm}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 193.62,142.37,132.52(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}), 129.79(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 124.47(\mathrm{~d}, J=57.2 \mathrm{~Hz}), 30.23,24.15(\mathrm{~d}, J=36.6 \mathrm{~Hz}), 21.70$ $\mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 161 \mathrm{MHz}\right) \delta 17.65 \mathrm{ppm} ; \mathrm{MS}$ (ESI) m/z $339.1118\left(\mathrm{MNa}^{+}\right.$ $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BOPSNa}^{+}\right]=339.1120$).
$\mathbf{A c S C H}_{2} \mathbf{P}\left(\boldsymbol{p}-\mathbf{O C H}\left(\mathbf{C H}_{3}\right)_{2}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{2}$ (49). Phosphine-borane complex 46 ($549 \mathrm{mg}, 1.36 \mathrm{mmol}$) was dissolved in degassed toluene (12 mL) under $\operatorname{Ar}(\mathrm{g})$. DABCO ($183 \mathrm{mg}, 1.63 \mathrm{mmol}$) was added, and the resulting solution was heated to $40^{\circ} \mathrm{C}$ for 4 h . The solvent was removed under reduced pressure, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 1 N HCl and brine. The organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:1:18 $\mathrm{v} / \mathrm{v} / \mathrm{v}$ dichloromethane:ethyl acetate:hexane) to give phosphinothioester 49 as a colorless oil in 98% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.36-7.32(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 4 \mathrm{H}), 4.56$ (sept, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 195.26,159.07,134.48(\mathrm{~d}, J=20.2 \mathrm{~Hz}), 127.71(\mathrm{~d}, J=10.8 \mathrm{~Hz})$, $116.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 69.93,30.54,26.73(\mathrm{~d}, J=23.2 \mathrm{~Hz}), 22.34 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 161\right.$ $\mathrm{MHz}) \delta-18.51 \mathrm{ppm}$.

AcGlySCH$_{2} \mathbf{P}\left(\boldsymbol{p}-\mathrm{CH}_{3}-\mathrm{C}_{6} \mathbf{H}_{4}\right)_{2}$ (9). Phosphine $51(250 \mathrm{mg}, 0.82 \mathrm{mmol})$ was dissolved in degassed $\mathrm{MeOH}(8 \mathrm{~mL}) . \mathrm{NaOH}(33 \mathrm{mg}, 0.82 \mathrm{mmol})$ was added to the solution, and the resulting mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 1.5 h . The solvent was then removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and this solution was washed with 1 M HCl and brine. The organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The resulting residue was used without further purification in the coupling with N-acetylglycine. In a separate round-bottom flask, N-acetylglycine (101 mg, 0.86 mmol) was dissolved in anhydrous DMF (8 mL). HOBT ($111 \mathrm{mg}, 0.82 \mathrm{mmol}$) was added, followed by N, N^{\prime}-diisopropylcarbodiimide ($128 \mu \mathrm{~L}, 0.82 \mathrm{mmol}$). The resulting mixture was stirred for 20 min , and freshly deprotected phosphinothiol from above was added (0.82 mmol). The reaction mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 4 h . The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:2:7 EtOAc:hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give phosphinothioester 9 as a colorless oil in 78% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.00(\mathrm{bm}$, $1 \mathrm{H}), 4.17(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 6 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 196.40,170.42,139.47,133.32(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 132.83(\mathrm{~d}, J=20.1 \mathrm{~Hz})$, $129.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 49.25,25.75(\mathrm{~d}, J=24.1 \mathrm{~Hz}), 23.12,21.50 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz$) \delta-16.80 \mathrm{ppm}$.
$\mathbf{A c G l y S C H}_{\mathbf{2}} \mathbf{P}\left(\boldsymbol{p} \mathbf{- O C H}\left(\mathbf{C H}_{\mathbf{3}}\right)_{\mathbf{2}} \mathbf{-} \mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}\right)_{\mathbf{2}} \mathbf{(1 1)} \mathbf{.} \mathbf{N a O H}(42.4 \mathrm{mg}, 1.06 \mathrm{mmol})$ was added to a solution of phosphine $49(414 \mathrm{mg}, 1.06 \mathrm{mmol})$ dissolved in degassed $\mathrm{MeOH}(10 \mathrm{~mL})$. The resulting mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 1.5 h . The solvent was then removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and this solution was washed with 1 N HCl and brine. The organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The resulting residue was used without further purification. In a separate round-bottom flask, N-acetylglycine ($128 \mathrm{mg}, 1.09 \mathrm{mmol}$) was dissolved in anhydrous DMF (10 mL). HOBT ($141 \mathrm{mg}, 1.04 \mathrm{mmol}$) was added, followed by 1,3-diisopropylcarbodiimide ($163 \mu \mathrm{~L}, 1.04 \mathrm{mmol}$). The resulting mixture was stirred for 20 min , and freshly deprotected phosphinothiol from above was added ($363 \mathrm{mg}, 1.04 \mathrm{mmol}$). The reaction mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 4 h . The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, 3:3:4 v/v/v ethyl acetate: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexane) to give phosphinothioester 11 as a colorless oil in 78% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 4 \mathrm{H}), 5.96(\mathrm{bs}, 1 \mathrm{H}), 4.56$ (sept, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J$ $=6.1 \mathrm{~Hz}, 12 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 196.46,170.47,159,04,134.39(\mathrm{~d}, J=$ $20.8 \mathrm{~Hz}), 127.34(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 116.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 69.88,49.27,26.16(\mathrm{~d}, J=22.7 \mathrm{~Hz})$, 23.08, $22.13 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 161 \mathrm{MHz}\right) \delta-18.42 \mathrm{ppm}$.
$\mathbf{A c G l y S C H}_{2} \mathbf{P}\left(\boldsymbol{p}-\mathrm{NMe}_{2}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{2}$ (12). To deprotect the phosphine, phosphine-borane complex $47(746 \mathrm{mg}, 1.99 \mathrm{mmol})$ was dissolved in degassed toluene (19 mL) under $\operatorname{Ar}(\mathrm{g})$. DABCO ($268 \mathrm{mg}, 2.39 \mathrm{mmol}$) was added, and the resulting solution was heated to $40^{\circ} \mathrm{C}$ for 4 h . The solvent was removed under reduced pressure, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 1 M citrate buffer (pH 4.0). The organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. To deprotect the thiol, the crude phosphine was dissolved in degassed $\mathrm{MeOH}(15 \mathrm{~mL}) . \mathrm{NaOH}(76 \mathrm{mg}, 1.89 \mathrm{mmol})$ was added, and the resulting solution was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 1.5 h . The solvent was then removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and this solution was washed with 1 M citrate buffer (pH 4.0). The organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The resulting residue was used without further purification in the coupling with N-acetylglycine. In a separate round-bottom flask, N-acetylglycine ($233 \mathrm{mg}, 1.99 \mathrm{mmol}$) was dissolved in anhydrous DMF (15 mL). HOBT ($255 \mathrm{mg}, 1.89 \mathrm{mmol}$) was added, followed by N, N^{\prime}-diisopropylcarbodiimide ($297 \mu \mathrm{~L}$, $1.89 \mathrm{mmol})$. The resulting mixture was stirred for 20 min , and freshly deprotected phosphinothiol from above was added $(1.89 \mathrm{mmol})$. The reaction mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 4 h . The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, $4 \% \mathrm{v} / \mathrm{v} \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give phosphinothioester 12 as a colorless oil in 70% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 7.33-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.70-6.68(\mathrm{~m}, 4 \mathrm{H}), 5.96(\mathrm{bs}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~d}, J$ $=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 12 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 196.67,151.60$, $134.09,124.58,112.44,111.43,49.30,40.40,26.51(\mathrm{~d}, J=23 \mathrm{~Hz}), 23.23 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz$) \delta-19.35 \mathrm{ppm}$.

AcAlaSCH $_{\mathbf{2}} \mathbf{P}\left(\boldsymbol{p}-\mathbf{C H}_{\mathbf{3}}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{\mathbf{2}}$ (15). Phosphine $51(287 \mathrm{mg}, 0.95 \mathrm{mmol})$ was dissolved in degassed $\mathrm{MeOH}(9 \mathrm{~mL}) . \mathrm{NaOH}(38 \mathrm{mg}, 0.95 \mathrm{mmol})$ was added to the solution, and the resulting mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 1.5 h . The solvent was then removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and this solution was washed with 1 M HCl and brine. The organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated
under reduced pressure. The resulting residue was used without further purification in the coupling with N-acetylalanine. In a separate round-bottom flask, N-acetylalanine (131 mg , $1.0 \mathrm{mmol})$ was dissolved in anhydrous DMF (9 mL). HOBT ($128 \mathrm{mg}, 0.95 \mathrm{mmol}$) was added to the resulting solution, followed by N, N^{\prime}-diisopropylcarbodiimide ($149 \mu \mathrm{~L}, 0.95 \mathrm{mmol}$). The resulting mixture was stirred for 20 min , and freshly deprotected phosphinothiol from above was added (0.95 mmol). The reaction mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 4 h . The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:2:7 EtOAc:hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give phosphinothioester $\mathbf{1 5}$ as a colorless oil in 75% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $4 \mathrm{H}), 6.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dq}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.44(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 1.98$ (s, $3 \mathrm{H}), 1.29(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 200.17$, 169.87, 139.34, 133.45 (d, $J=10.7 \mathrm{~Hz}$), 132.86 (d, $J=19.2 \mathrm{~Hz}$), 129.51 (d, $J=5.8 \mathrm{~Hz}$), 55.07, 25.81 (d, $J=24.1$ $\mathrm{Hz}), 23.26,21.46,19.01 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 161 \mathrm{MHz}\right) \delta-16.35 \mathrm{ppm}$.

AcAlaSCH $_{\mathbf{2}} \mathbf{P}\left(\boldsymbol{p}-\mathbf{O C H}\left(\mathbf{C H}_{3}\right)_{2}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{2} \mathbf{(1 7)} . \mathrm{NaOH}(53.3 \mathrm{mg}, 1.33 \mathrm{mmol})$ was added to a solution of phosphine $49(521 \mathrm{mg}, 1.33 \mathrm{mmol})$ dissolved in degassed $\mathrm{MeOH}(13 \mathrm{~mL})$. The resulting mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 1.5 h . The solvent was then removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and this solution was washed with 1 N HCl and brine. The organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The resulting residue was used without further purification. In a separate round-bottom flask, N-acetylalanine ($174 \mathrm{mg}, 1.33 \mathrm{mmol}$) was dissolved in anhydrous DMF (11 mL). HOBT (171 mg , 1.27 mmol) was added, followed by 1,3-diisopropylcarbodiimide ($198 \mu \mathrm{~L}, 1.27 \mathrm{mmol}$). The resulting mixture was stirred for 20 min , and freshly deprotected phosphinothiol from above was added ($441 \mathrm{mg}, 1.27 \mathrm{mmol}$). The reaction mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 4 h . The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, 3:3:4 v/v/v ethyl acetate: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexane) to give phosphinothioester 17 as a colorless oil in 72% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.35-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 4 \mathrm{H}), 5.88(\mathrm{~d}, 1 \mathrm{H}), 4.69$ (q, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{sept}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.44-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 12 \mathrm{H}), 1.31(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 200.27,170.05$, 158.88, 134.21 (d, $J=21.4 \mathrm{~Hz}$), 127.32, 158.85 (d, $J=7.3 \mathrm{~Hz}$), 69.74, 55.00, 26.09 (d, $J=22.9$ $\mathrm{Hz}), 23.07,22.03,18.63 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz$) \delta-17.77 \mathrm{ppm}$.

AcAlaSCH $_{2} \mathbf{P}\left(\boldsymbol{p}-\mathrm{NMe}_{2}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{2} \mathbf{(1 8)}$. Phosphine-borane complex 47 ($581 \mathrm{mg}, 1.55 \mathrm{mmol}$) was dissolved in degassed toluene (14 mL) under $\operatorname{Ar}(\mathrm{g})$. DABCO ($209 \mathrm{mg}, 1.86 \mathrm{mmol}$) was added, and the resulting solution was heated to $40{ }^{\circ} \mathrm{C}$ for 4 h . The solvent was removed under reduced pressure, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 1 M citrate buffer (pH 4.0). The organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. To deprotect the thiol, the crude phosphine was dissolved in degassed $\mathrm{MeOH}(14 \mathrm{~mL}) . \mathrm{NaOH}(59.2 \mathrm{mg}, 1.48 \mathrm{mmol})$ was added, and the resulting mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 1.5 h . The solvent was then removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and this solution was washed with 1 M citrate buffer (pH 4.0). The organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The resulting residue was used without further purification. In a separate round-bottom flask, N-acetylalanine ($203.7 \mathrm{mg}, 1.55 \mathrm{mmol}$) was dissolved in anhydrous DMF (19 mL). HOBT ($200 \mathrm{mg}, 1.48 \mathrm{mmol}$) was added, followed by 1,3-diisopropylcarbodiimide ($232 \mu \mathrm{~L}, 1.48 \mathrm{mmol}$). The resulting mixture was stirred for 20 min , and freshly deprotected phosphinothiol from above was added ($574 \mathrm{mg}, 1.48 \mathrm{mmol}$). The reaction mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 4 h .

The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, $4 \% \mathrm{v} / \mathrm{v} \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give phosphinothioester $\mathbf{1 8}$ as a white solid in 65% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.34-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.72-6.69$ (m, 4H), $5.91(\mathrm{bd}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{q}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 12 \mathrm{H})$, $2.01(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 200.34,169.62$, $150.88,133.81(\mathrm{~d}, J=19.4 \mathrm{~Hz}), 122.08,112.19(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 54.90,41.99,40.20,26.48(\mathrm{~d}, J$ $=34.1 \mathrm{~Hz}), 19.06 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz$) \delta-19.06 \mathrm{ppm}$.
$\mathbf{A c S C H}_{\mathbf{2}} \mathbf{P}\left(\boldsymbol{p}-\mathbf{C H}_{\mathbf{3}}-\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}}\right)_{\mathbf{2}} \mathbf{(5 1)}$. Phosphine-borane complex $48(300 \mathrm{mg}, 0.95 \mathrm{mmol})$ was dissolved in degassed toluene (9 mL) under $\operatorname{Ar}(\mathrm{g})$. DABCO ($117 \mathrm{mg}, 1.04 \mathrm{mmol}$) was added, and the resulting solution was heated to $40^{\circ} \mathrm{C}$ for 4 h . The solvent was removed under reduced pressure, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 1 M HCl and brine. The organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The residue (51) was a colorless oil (98% yield) and was judged to be sufficiently pure by NMR spectroscopy. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H})$, $7.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.48(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 161 \mathrm{MHz}\right) \delta-17.032 \mathrm{ppm}$.

AcGlySCH$_{\mathbf{2}} \mathbf{P}\left(\boldsymbol{p}-\mathrm{Cl}_{\mathbf{C}} \mathbf{C H}_{\mathbf{6}}\right)_{\mathbf{2}} \mathbf{(5 2)}$. The thioacetate of phosphine $\mathbf{3}^{2}(373 \mathrm{mg}, 1.09 \mathrm{mmol})$ was dissolved in degassed $\mathrm{MeOH}(10 \mathrm{~mL}) . \mathrm{NaOH}(44 \mathrm{mg}, 1.09 \mathrm{mmol})$ was added to the solution, and the resulting mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 1.5 h . The solvent was then removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and this solution was washed with 1 M HCl and brine. The organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The resulting residue was used without further purification in the coupling with N-acetylglycine. In a separate round-bottom flask, N-acetylglycine (141 mg , 1.2 mmol) was dissolved in anhydrous DMF (10 mL). HOBT ($147 \mathrm{mg}, 1.09 \mathrm{mmol}$) was added, followed by N, N^{\prime}-diisopropylcarbodiimide ($170 \mu \mathrm{~L}, 1.09 \mathrm{mmol}$). The resulting mixture was stirred for 20 min , and freshly deprotected phosphinothiol from above was added (1.09 mmol). The reaction mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 4 h . The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:2:7 EtOAc:hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give phosphinothioester 52 as a colorless oil in 81% yield. Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.30(\mathrm{bm}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.46(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta$ 196.08, 170.54, $135.98,134.80(\mathrm{~d}, J=15.8 \mathrm{~Hz}), 134.13(\mathrm{~d}, J=20.7 \mathrm{~Hz}), 129.16(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 49.19,25.32(\mathrm{~d}$, $J=24.4 \mathrm{~Hz}$), $23.08 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$ with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz$) \delta-16.27 \mathrm{ppm}$.
$\left.\mathbf{A c G l y S C H}_{\mathbf{2}} \mathbf{P}\left(\boldsymbol{p}-\mathbf{O C H}_{3}-\mathbf{C}_{6} \mathbf{H}_{4}\right)_{\mathbf{2}} \mathbf{(5 3}\right)$. The thioacetate of phosphine $\mathbf{2}^{2}$ ($668 \mathrm{mg}, 2.0 \mathrm{mmol}$) was dissolved in degassed $\mathrm{MeOH}(20 \mathrm{~mL}) . \mathrm{NaOH}(80 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added to the solution, and the resulting mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 1.5 h . The solvent was then removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and this solution was washed with 1 M HCl and brine. The organic extracts were dried over anhydrous $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtered, and concentrated under reduced pressure. The resulting residue was used without further purification in the coupling with N-acetylglycine. In a separate round-bottom flask, N acetylglycine ($211 \mathrm{mg}, 1.8 \mathrm{mmol}$) was dissolved in anhydrous DMF $(18 \mathrm{~mL})$. HOBT (236 mg , 1.8 mmol) was added, followed by N, N^{\prime}-diisopropylcarbodiimide ($281 \mu \mathrm{~L}, 1.8 \mathrm{mmol}$). The resulting mixture was stirred for 20 min , and freshly deprotected phosphinothiol from above was added (1.8 mmol). The reaction mixture was allowed to stir under $\operatorname{Ar}(\mathrm{g})$ for 4 h . The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, $70 \% \mathrm{v} / \mathrm{v}$ EtOAc in hexanes) to give phosphinothioester 53 as a white solid in 85% yield.

Spectral data. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H})$, $4.15(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.45(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 196.42,170.47,160.73,134.31(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 127.72(\mathrm{~d}, J=9.1 \mathrm{~Hz})$, $114.57(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 55.41,49.25,26.14(\mathrm{~d}, J=23.8 \mathrm{~Hz}), 23.15 \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR (CDCl_{3} with $\mathrm{D}_{3} \mathrm{PO}_{4}$ standard, 161 MHz) $\delta-18.26 \mathrm{ppm}$.

References

1. C. A. Busacca, J. C. Lorenz, N. Grinberg, N. Haddad, M. Hrapchak, B. Latli, H. Lee, P. Sabila, A. Saha, M. Sarvestani, S. Shen, R. Varsolona, X. D. Wei and C. H. Senanayake, Org. Lett., 2005, 7, 4277-4280.
2. M. B. Soellner, A. Tam and R. T. Raines, J. Org. Chem., 2006, 71, 9824-9830.

Scheme S1. Synthetic route to phosphinothioesters 15, 17, and 18.

Phosphorus-31 NMR, 121 MHz CDCl_{3}

の

Phosphorus-31 NMR, 121 MHz
CDCl_{3}

Proton NMR, 400 MHz CDCl_{3}

12
\qquad ,
Carbon-13 NMR, 100.6 MHz CDCl_{3}

12

Phosphorus-31 NMR, 121 MHz CDCl_{3}

Proton NMR, 400 MHz CDCl_{3}

15

Phosphorus-31 NMR, 121 MHz CDCl_{3}

Carbon-13 NMR, 100.6 MHz
CDCl_{3}

Phosphorus-31 NMR, 121 MHz CDCl_{3}

$\stackrel{\infty}{-}$

Proton NMR, 400 MHz CDCl_{3}

n

Carbon-13 NMR, 100.6 MHz CDCl_{3}

Phosphorus-31 NMR, 121 MHz CDCl_{3}

Phosphorus-31 NMR, 121 MHz CDCl_{3}

$\angle \varepsilon$

Carbon-13 NMR, 100.6 MHz
CDCl_{3}

Carbon-13 NMR, 100.6 MHz CDCl_{3}

Phosphorus-31 NMR, 121 MHz CDCl_{3}

Proton NMR, 400 MHz
 CDCl_{3}
 z

Phosphorus-31 NMR, 121 MHz CDCl_{3}

Proton NMR, 400 MHz
CDCl_{3}

Carbon-13 NMR, 100.6 MHz CDCl_{3}

Carbon-13 NMR, 100.6 MHz CDCl_{3}

Proton NMR, 400 MHz

 CDCl_{3}

$\stackrel{\leftarrow}{\circ}$

Carbon-13 NMR, 100.6 MHz
CDCl_{3}

Phosphorus-31 NMR, 121 MHz CDCl_{3}

ท

Phosphorus-31 NMR, 121 MHz CDCl_{3}

Phosphorus-31 NMR, 121 MHz CDCl_{3}

$\stackrel{N}{*}$

Proton NMR, 400 MHz CDCl_{3}

Phosphorus-31 NMR, 121 MHz CDCl_{3}

Phosphorus-31 NMR, 121 MHz CDCl_{3}

Proton NMR, 400 MHz

CDCl_{3}

Phosphorus-31 NMR, 121 MHz CDCl_{3}

\qquad

N

[^0]: Supplementary Material for Organic \& Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

