Electronic and Steric Effects on the Rate of the Traceless Staudinger Ligation

Annie Tam, Matthew B. Soellner, and Ronald T. Raines*

Departments of Chemistry and Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706

Page	Contents	Page	Contents
S1	Table of Contents	S43	³¹ P NMR Spectrum of Compound 40
S2–S10	Experimental Procedures	S44	¹ H NMR Spectrum of Compound 41
S10	References	S45	¹³ C NMR Spectrum of Compound 41
S10	Scheme S1: Synthetic route to 15, 17, 18	S46	³¹ P NMR Spectrum of Compound 41
S11	¹ H NMR Spectrum of Compound 9	S47	¹ H NMR Spectrum of Compound 42
S12	¹³ C NMR Spectrum of Compound 9	S48	¹³ C NMR Spectrum of Compound 42
S13	³¹ P NMR Spectrum of Compound 9	S49	³¹ P NMR Spectrum of Compound 42
S14	¹ H NMR Spectrum of Compound 11	S50	¹ H NMR Spectrum of Compound 43
S15	¹³ C NMR Spectrum of Compound 11	S51	¹³ C NMR Spectrum of Compound 43
S16	³¹ P NMR Spectrum of Compound 11	S52	³¹ P NMR Spectrum of Compound 43
S17	¹ H NMR Spectrum of Compound 12	S53	¹ H NMR Spectrum of Compound 44
S18	¹³ C NMR Spectrum of Compound 12	S54	¹³ C NMR Spectrum of Compound 44
S19	³¹ P NMR Spectrum of Compound 12	S55	³¹ P NMR Spectrum of Compound 44
S20	¹ H NMR Spectrum of Compound 15	S56	¹ H NMR Spectrum of Compound 45
S21	¹³ C NMR Spectrum of Compound 15	S57	¹³ C NMR Spectrum of Compound 45
S22	³¹ P NMR Spectrum of Compound 15	S58	³¹ P NMR Spectrum of Compound 45
S23	¹ H NMR Spectrum of Compound 17	S59	¹ H NMR Spectrum of Compound 46
S24	¹³ C NMR Spectrum of Compound 17	S60	¹³ C NMR Spectrum of Compound 46
S25	³¹ P NMR Spectrum of Compound 17	S61	³¹ P NMR Spectrum of Compound 46
S26	¹ H NMR Spectrum of Compound 18	S62	¹ H NMR Spectrum of Compound 47
S27	¹³ C NMR Spectrum of Compound 18	S63	¹³ C NMR Spectrum of Compound 47
S28	³¹ P NMR Spectrum of Compound 18	S64	³¹ P NMR Spectrum of Compound 47
S29	¹ H NMR Spectrum of Compound 35	S65	¹ H NMR Spectrum of Compound 48
S30	¹³ C NMR Spectrum of Compound 35	S66	¹³ C NMR Spectrum of Compound 48
S31	³¹ P NMR Spectrum of Compound 35	S67	³¹ P NMR Spectrum of Compound 48
S32	¹ H NMR Spectrum of Compound 37	S68	¹ H NMR Spectrum of Compound 49
S33	¹³ C NMR Spectrum of Compound 37	S69	¹³ C NMR Spectrum of Compound 49
S34	³¹ P NMR Spectrum of Compound 37	S70	³¹ P NMR Spectrum of Compound 49
S35	¹ H NMR Spectrum of Compound 38	S71	¹ H NMR Spectrum of Compound 51
S36	¹³ C NMR Spectrum of Compound 38	S72	³¹ P NMR Spectrum of Compound 51
S37	³¹ P NMR Spectrum of Compound 38	S73	¹ H NMR Spectrum of Compound 52
S38	¹ H NMR Spectrum of Compound 39	S74	¹³ C NMR Spectrum of Compound 52
S39	¹³ C NMR Spectrum of Compound 39	S75	³¹ P NMR Spectrum of Compound 52
S40	³¹ P NMR Spectrum of Compound 39	S76	¹ H NMR Spectrum of Compound 53
S41	¹ H NMR Spectrum of Compound 40	S77	¹³ C NMR Spectrum of Compound 53
S42	¹³ C NMR Spectrum of Compound 40	S78	³¹ P NMR Spectrum of Compound 53

General. Reagent chemicals were obtained from commercial suppliers, and reagent grade solvents were used without further purification. Anhydrous THF, DMF, and CH_2Cl_2 were from a CYCLE-TAINER[®] solvent delivery system (Baker). Procedures were performed at room temperature (<23 °C) unless indicated otherwise. Reactions were monitored by thin-layer chromatography with visualization by UV light or staining with KMnO₄, ninhydrin, or I₂. Compound purification was carried out with flash chromatography on silica gel, which had a mesh of 230–400 (ASTM) and a pore size of 60 Å. The removal of solvents and other volatile materials "under reduced pressure" refers to the use of a rotary evaporator at water-aspirator pressure (<20 torr) and a water bath of <40 °C.

Instrumentation. NMR spectra were acquired at ambient temperature with a Bruker AC-300 spectrometer (¹H, 300 MHz; ¹³C, 75 MHz; ³¹P, 121 MHz) at the University of Wisconsin Chemistry Department Nuclear Magnetic Resonance Facility or a Bruker DMX-400 Avance spectrometer (¹H, 400 MHz; ¹³C, 100.6 MHz; ³¹P, 161 MHz) or Bruker Avance DMX-500 spectrometer (¹H, 500 MHz; ¹³C, 125.7 MHz; ³¹P, 202 MHz) at the National Magnetic Resonance Facility at Madison (NMRFAM) or a Varian Inova 500 (¹H, 500 MHz; ¹³C, 125.7 MHz; ³¹P, 202 MHz) spectrometer at the University of Wisconsin Nuclear Magnetic Resonance Facility. Carbon-13 and phosphorus-31 spectra were proton-decoupled, and phosphorus-31 spectra were referenced against an external standard of deuterated phosphoric acid (0 ppm).

Mass spectrometry was performed with a Micromass LCT (electrospray ionization, ESI) in the Mass Spectrometry Facility in the Department of Chemistry.

 $HP(O)(p-OCH(CH_3)_2-C_6H_4)_2$ (35). Bromide 34 (4 g, 18.6 mmol) was dissolved in anhydrous THF (50 mL) under Ar(g) in a flame-dried round-bottom flask equipped with a reflux condenser. To facilitate generation of the Grignard reagent, a catalytic amount of I₂ was added to the solution. Crushed magnesium turnings (678 mg, 27.9 mmol) were then added to this solution, and the resulting solution was heated to reflux for 2 h to generate the Grignard reagent. In a separate flame-dried round-bottom flask, diethyl phosphite (718 µL, 5.58 mmol) was dissolved in anhydrous THF (2 mL), and cooled to 0 °C with an ice/water bath. The solution of Grignard reagent was added dropwise to this solution, and the resulting mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was then quenched with water (2 mL), and the solvent was removed under reduced pressure. The residue was dissolved in CH₂Cl₂, and the resulting solution was washed with water and brine. The combined organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:1 v/v acetone:CH₂Cl₂) to give phosphine-borane complex 35 as a colorless oil in 67% yield. Spectra data. ¹H NMR (CDCl₃, 400 MHz) δ 7.62–7.56 (m, 4H), 8.01 (d, J = 476.2 Hz, 1H), 6.98–6.95 (m, 4H), 4.62 (sept, J = 6.0 Hz, 2H), 1.36 (d, J = 6.1 Hz, 12H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 161.51, 132.94 (d, J = 12.7 Hz), 122.65 (d, J = 108 Hz), 116.08 (d, J = 13.4 Hz), 70.21, 22.07 ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ 20.79 ppm; MS (ESI) m/z 637.2827 (2MNa⁺ $[C_{18}H_{23}O_{3}PNa^{+}] = 637.2848).$

 $HP(O)(p-NMe_2-C_6H_4)_2$ (36). Phosphine oxide 36 was synthesized according to reports published previously.¹ Spectral data. Spectral data were as reported previously.¹

BH₃.HP(*p***-OCH(CH₃)₂-C₆H₄)₂ (37).** Phosphine oxide **35** (1.18 g, 3.7 mmol) was dissolved in 1:1 v/v THF/ CH₂Cl₂ (11 mL). DIBAL (1 M in CH₂Cl₂, 18.5 mL) was added to the solution dropwise over a period of 5 min, and the resulting mixture was stirred for 20 min at room temperature. CH₂Cl₂ (25 mL) was added, and the resulting solution was cooled to 0 °C with an ice/water bath. NaOH (2 N, 10 mL) was added dropwise, followed by brine (6 mL). The solution

was stirred for 5 min, then poured into a separatory funnel and the organic layer was separated and dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure to a 30 mL volume. This solution was cooled to 0 °C with an ice/water bath, and borane-dimethyl sulfide complex (10 M in THF, 444 µL) was added dropwise to the reaction mixture. The resulting solution was allowed to warm to room temperature and stirred overnight. Solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica gel, CH₂Cl₂) to give phosphine–borane complex **37** as a colorless oil in 97% yield. **Spectral data.** ¹H NMR (CDCl₃, 400 MHz) δ 7.58–7.53 (m, 4H), 6.94–6.91 (m, 4H), 6.24 (dq, *J* = 377.7 Hz, 1H), 4.59 (sept, *J* = 6.1 Hz, 2H), 1.34 (d, *J* = 5.9 Hz, 12H), 1.48–0.57 (bm, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 160.91, 134.86 (d, *J* = 11.3 Hz), 116.97 (d, *J* = 108 Hz), 116.40 (d, *J* = 10.0 Hz), 70.20, 22.12 ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ 1.56 ppm; MS (ESI) *m/z* 339.1649 (MNa⁺ [C₁₈H₂₆BO₂PNa⁺] = 339.1661).

 BH_3 . HP(p-NMe₂-C₆H₄)₂ (38). Bis-[4-dimethylaminophenyl]-phosphine was synthesized phosphine oxide 36 according to previously published reports.¹ **Bis**from [4-dimethylaminophenyl]-phosphine (2.88 g, 10.56 mmol) was then dissolved in anhydrous CH₂Cl₂ (85 mL) and cooled to 0 °C with an ice/water bath. Borane dimethyl sulfide complex (10 M in THF, 3.2 mL) was added dropwise, and the resulting solution was allowed to warm to room temperature and stirred overnight. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica gel, 1:1:3 v/v/v dichloromethane:ethyl acetate:hexane) to give phosphine-borane complex 38 as a white solid in 62% yield. Spectral **data.** ¹H NMR (CDCl₃, 400 MHz) δ 7.51–7.46 (m, 4H), 6.71–6.66 (m, 4H), 5.75 (q, J = 6.5 Hz, 1H), 2.99 (s, 12H), 1.40–0.50 (m, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 152.34, 134.27, 134.17, 112.20, 40.28 ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ -4.74 ppm; MS (ESI) m/z 309.1660 (MNa⁺ [C₁₆H₂₄BN₂PNa⁺] = 309.1668).

BH₃·HP(*p***-CH₃-C₆H₄)₂ (39).** Di-*p*-tolylphosphine (10 g, 46.7 mmol) was dissolved in anhydrous THF (100 mL), and the resulting solution was cooled to 0 °C with an ice/water bath. Borane THF complex (1 M in THF, 51.3 mL) was added dropwise to the solution, and the mixture was stirred at 0 °C for 1 h, warmed to room temperature and stirred for an additional 1 h. Solvent was removed under reduced pressure, and the residue was purified by flash chromatography (silica gel, 50% v/v CH₂Cl₂ in hexane) to give phosphinothioester **39** as a white solid in 95% yield. **Spectral data.** ¹H NMR (CDCl₃, 400 MHz) δ 7.56–7.50 (m, 4H), 7.26–7.24 (m, 4H), 6.25 (bq, *J* = 378 Hz, 7.1 Hz, 1H), 2.38 (s, 6H), 1.48–0.54 (bm, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 142.28, 133.09 (d, *J* = 10.7 Hz), 130.02 (d, *J* = 9.9 Hz), 123.18 (d, *J* = 60.7 Hz), 21.74 ppm; ³¹P NMR (CDCl₃, 161 MHz) δ –0.50 ppm; MS (ESI) *m/z* 251.1129 (MNa⁺ [C₁₄H₁₈BPNa⁺] = 251.1137).

BH₃·HOCH₂P(*p***-OCH(CH₃)₂-C₆H₄)₂ (40). Phosphine–borane complex 37 (1.15 g, 3.62 mmol) was dissolved in THF (30 mL). Formaldehyde (37% v/v in H₂O; 2.21 mL) was added to this solution, followed by potassium hydroxide (207 mg, 3.69 mmol). The resulting solution was stirred overnight at room temperature, after which the organic solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (15 mL), and the organic layer was washed with brine. The combined organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, CH₂Cl₂) to give phosphine–borane complex 40 as a pale yellow oil in 70% yield. Spectral data.** ¹H NMR (CDCl₃, 400 MHz) δ 7.64–7.60 (m, 4H), 6.95–6.93 (m, 4H), 4.60 (sept, *J* = 5.8 Hz, 2H), 4.35 (d, *J* = 6.5 Hz, 2H), 2.00–1.96 (m, 1H), 1.35 (d, *J* = 6.0 Hz, 12H), 1.40–0.40 (bm, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 160.94, 134.65 (d, *J* = 9.5

Hz), 116.33 (d, J = 61.0 Hz), 116.22 (d, J = 10.6 Hz), 70.20, 61.04 (d, J = 43.3 Hz), 22.13 ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ 14.78 ppm; MS (ESI) m/z 369.1776 (MNa⁺ [C₁₉H₂₈BO₃PNa⁺] = 369.1767).

BH₃·HOCH₂P(*p***-NMe₂-C₆H₄)₂ (41). Phosphine–borane complex 38** (1.89 g, 6.59 mmol) was dissolved in THF (50 mL). Formaldehyde (37% v/v in H₂O; 4.03 mL) was added to this solution, followed by potassium hydroxide (380 mg, 6.79 mmol). The resulting solution was stirred overnight at room temperature, after which the organic solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (25 mL), and the organic layer was washed with brine. The combined organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:1:3 v/v/v dichloromethane:ethyl acetate:hexane) to give phosphine–borane complex **41** as a pale green solid in 92% yield. **Spectral data.** ¹H NMR (CDCl₃, 400 MHz) δ 7.57–7.52 (m, 4H), 6.73–6.70 (m, 4H), 4.28 (d, *J* = 6.0 Hz, 2H), 2.99 (s, 12H), 2.05 (bs, 1H), 1.35–0.50 (bm, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 152.34, 133.99 (d, *J* = 10.3 Hz), 112.17 (d, *J* = 11.4 Hz), 111.33 (d, *J* = 64.6 Hz), 61.13 (d, *J* = 41.4 Hz), 40.19 ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ 12.80 ppm; MS (ESI) *m/z* 339.1764 (MNa⁺ [C₁₇H₂₆BN₂OPNa⁺] = 339.1774).

BH₃.**HOCH**₂**P**(*p*-**CH**₃-**C**₆**H**₄)₂ (**42**). Phosphine–borane complex **39** (2.29 g, 10.04 mmol) was dissolved in THF (84 mL). Formaldehyde (37% v/v in H₂O; 6.13 mL) was added to this solution, followed by potassium hydroxide (573 mg, 10.24 mmol). The resulting mixture was stirred overnight at room temperature, after which the organic solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (30 mL), and the organic layer was washed with brine. The combined organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, CH₂Cl₂) to give phosphine–borane complex **42** as a colorless oil in 83% yield. **Spectral data.** ¹H NMR (CDCl₃, 400 MHz) δ 7.62–7.57 (m, 4H), 6.28–6.26 (m, 4H), 4.38 (d, *J* = 6.6 Hz, 2H), 2.39 (s, 6H), 2.11–2.09 (bm, 1H), 1.39–0.49 (bq, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 142.36, 132.85 (d, *J* = 8.3 Hz), 129.95 (d, *J* = 9.2 Hz), 123.49 (d, *J* = 57.1 Hz), 60.69 (d, *J* = 42.1 Hz), 21.71 ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ 16.50 ppm; MS (ESI) *m/z* 281.1246 (MNa⁺ [C₁₅H₂₀BOPNa⁺] = 281.1243).

BH₃.MsOCH₂P(*p*-OCH(CH₃)₂-C₆H₄)₂ (43). Triethylamine (531 μL, 3.81 mmol) was added to a solution of phosphine–borane 40 (879 mg, 2.54 mmol) in CH₂Cl₂ (23 mL), and this solution was cooled to 0 °C with an ice/water bath. Methanesulfonyl chloride (275 μL, 3.55 mmol) was added dropwise, and the resulting solution was allowed to warm slowly to room temperature overnight. The solution was washed with 0.5 N HCl and brine, and the combined organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, CH₂Cl₂) to give phosphine–borane complex 43 as a yellow oil in 83% yield. Spectral data. ¹H NMR (CDCl₃, 400 MHz) δ 7.66–7.61 (m, 4H), 6.98–6.95 (m, 4H), 4.81 (d, *J* = 2.0 Hz, 2H), 4.61 (sept, *J* = 6.0 Hz, 2H), 2.89 (s, 3H), 1.35 (d, *J* = 6.1 Hz, 12H), 1.40–0.40 (bm, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 161.32, 134.85 (d, *J* = 9.7 Hz), 116.38 (d, *J* = 10.3 Hz), 115.48 (d, *J* = 63 Hz), 70.27, 65.40 (d, *J* = 39 Hz), 37.59, 22.07 ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ 15.49 ppm; MS (ESI) *m/z* 447.1546 (MNa⁺ [C₂₀H₃₀BO₅PSNa⁺] = 447.1542).

BH₃.MsOCH₂P(p-NMe₂-C₆H₄)₂ (44). Triethylamine (1.25 mL, 9.0 mmol) was added to a solution of phosphine–borane 41 (1.90 g, 6.0 mmol) in CH₂Cl₂ (55 mL), and this solution was cooled to 0 °C with an ice/water bath. Methanesulfonyl chloride (651 μ L, 8.4 mmol) was added

dropwise, and the resulting solution was allowed to warm slowly to room temperature overnight. The solution was washed with 0.1 N HCl and brine, and the combined organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:1:3 v/v/v dichloromethane:ethyl acetate:hexane) to give phosphine–borane complex **44** as a white solid in 95% yield. **Spectral data.** ¹H NMR (CDCl₃, 400 MHz) δ 7.60–7.55 (m, 4H), 6.77–6.75 (m, 4H), 4.78 (d, *J* = 2.3 Hz, 2H), 3.02 (s, 12H), 2.86 (s, 3H), 1.40–0.50 (bm, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 152.47, 134.15 (d, *J* = 11.8 Hz), 111.99 (d, *J* = 9.5 Hz), 109.48 (d, *J* = 67.6 Hz), 66.23 (d, *J* = 38.9 Hz), 40.49, 37.66 ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ 13.39 ppm; MS (ESI) *m*/*z* 417.1567 (MNa⁺ [C₁₈H₂₈BN₂O₃PSNa⁺] = 417.1549).

BH₃.**MsOCH**₂**P**(*p*-**CH**₃-**C**₆**H**₄)₂ (45). Triethylamine (1.74 mL, 12.5 mmol) was added to a solution of phosphine–borane 42 (2.15 mg, 8.33 mmol) in CH₂Cl₂ (75 mL), and this solution was cooled to 0 °C with an ice/water bath. Methanesulfonyl chloride (903 µL, 11.67 mmol) was added dropwise, and the resulting solution was allowed to warm slowly to room temperature overnight. The solution was washed with 0.5 N HCl and brine, and the combined organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, CH₂Cl₂) to give phosphine–borane complex **45** as a colorless oil in 93% yield. **Spectral data.** ¹H NMR (CDCl₃, 400 MHz) δ 7.63–7.59 (m, 4H), 7.32–7.29 (m, 4H), 4.86 (d, *J* = 2.2 Hz, 2H), 2.89 (s, 3H), 2.41 (s, 6H), 1.47–0.48 (bm, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 143.42, 133.12 (d, *J* = 8.7 Hz), 130.19 (d, *J* = 10.1 Hz), 121.98 (d, *J* = 60.7 Hz), 65.05 (d, *J* = 38.7 Hz), 37.71, 21.86 ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ 17.26 ppm; MS (ESI) *m/z* 359.1002 (MNa⁺ [C₁₆H₂₂BO₃PSNa⁺] = 359.1018).

BH₃.**AcSCH**₂**P**(*p*-**OCH(CH**₃)₂-C₆H₄)₂ (46). Potassium thioacetate (290 mg, 2.54 mmol) was added to a solution of phosphine–borane complex 43 (898 mg, 2.12 mmol) in anhydrous DMF (20 mL) under Ar(g). The resulting solution was stirred overnight at room temperature, after which the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (10 mL), and the resulting solution was washed with water and brine. The combined organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, 50% v/v CH₂Cl₂ in hexanes) to give phosphine–borane complex 46 as a yellow oil in 53% yield. Spectral data. ¹H NMR (CDCl₃, 400 MHz) δ 7.62–7.57 (m, 4H), 6.93–6.91 (m, 4H), 4.59 (sept, *J* = 6.1 Hz, 2H), 3.63 (d, *J* = 6.8 Hz, 2H), 2.26 (s, 3H), 1.34 (d, *J* = 5.9 Hz, 12H), 1.40–0.50 (bm, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 193.81, 161.36, 134.84 (d, *J* = 9.6 Hz), 116.37 (d, *J* = 10.3 Hz), 115.52 (d, *J* = 63.0 Hz), 70.30, 65.49 (d, *J* = 38.9 Hz), 37.62, 22.09 ppm; ³¹P NMR (CDCl₃, 161 MHz) δ 15.75 ppm; MS (ESI) *m/z* 427.1656 (MNa⁺ [C₂₁H₃₀BO₃PSNa⁺] = 427.1644).

BH₃.AcSCH₂P(*p***-NMe₂-C₆H₄)₂ (47). Potassium thioacetate (780 mg, 6.83 mmol) was added to a solution of phosphine–borane complex 44 (2.24 g, 5.69 mmol) in anhydrous DMF (50 mL) under Ar(g). The resulting solution was stirred overnight at room temperature, after which the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (30 mL), and the resulting solution was washed with water and brine. The combined organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:1:3 v/v/v dichloromethane:ethyl acetate:hexane) to give phosphine–borane complex 47 as a pale yellow oil in 24% yield. Spectral data.** ¹H NMR (CDCl₃, 400 MHz) δ 7.55–7.50 (m, 4H), 6.71–6.68 (m, 4H), 3.60 (d, *J* = 6.9 Hz, 2H), 2.99 (s, 12H), 2.26 (s, 3H), 1.40–0.50 (bm, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 194.09, 152.16, 133.53 (d, J = 9.6 Hz), 112.32 (d, J = 65 Hz), 111.81 (d, J = 12.7 Hz),, 40.02, 30.22, 25.01 (d, J = 35.8 Hz) ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ 12.38 ppm; MS (ESI) *m*/*z* 397.1646 (MNa⁺ [C₁₉H₂₈BN₂OPSNa⁺] = 397.1651).

BH₃·AcSCH₂P(*p***-CH₃-C₆H₄)₂ (48).** Potassium thioacetate (1.06 mg, 9.25 mmol) was added to a solution of phosphine–borane complex **45** (2.59 mg, 7.71 mmol) in anhydrous DMF (70 mL) under Ar(g). The resulting solution was stirred overnight at room temperature, after which the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (30 mL), and the resulting solution was washed with water and brine. The combined organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, CH₂Cl₂) to give phosphine–borane complex **48** as an orange solid in 62% yield. **Spectral data.** ¹H NMR (CDCl₃, 400 MHz) δ 7.60–7.55 (m, 4H), 7.26–7.24 (m, 4H), 3.67 (d, *J* = 10.0 Hz, 2H), 2.38 (s, 6H), 2.25 (s, 3H), 1.47–0.44 (bm, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 193.62, 142.37, 132.52 (d, *J* = 8.7 Hz), 129.79 (d, *J* = 11.5 Hz), 124.47 (d, *J* = 57.2 Hz), 30.23, 24.15 (d, *J* = 36.6 Hz), 21.70 ppm; ³¹P NMR (CDCl₃, 161 MHz) δ 17.65 ppm; MS (ESI) *m/z* 339.1118 (MNa⁺ [C₁₇H₂₂BOPSNa⁺] = 339.1120).

AcSCH₂P(*p*-OCH(CH₃)₂-C₆H₄)₂ (49). Phosphine–borane complex 46 (549 mg, 1.36 mmol) was dissolved in degassed toluene (12 mL) under Ar(g). DABCO (183 mg, 1.63 mmol) was added, and the resulting solution was heated to 40 °C for 4 h. The solvent was removed under reduced pressure, and the residue was dissolved in CH₂Cl₂ and washed with 1 N HCl and brine. The organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:1:18 v/v/v dichloromethane:ethyl acetate:hexane) to give phosphinothioester 49 as a colorless oil in 98% yield. Spectral data. ¹H NMR (CDCl₃, 400 MHz) δ 7.36–7.32 (m, 4H), 6.87–6.85 (m, 4H), 4.56 (sept, *J* = 6.0 Hz, 2H), 3.44 (d, *J* = 3.4 Hz, 2H), 2.29 (s, 3H), 1.33 (d, *J* = 6.0 Hz, 12H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 195.26, 159.07, 134.48 (d, *J* = 20.2 Hz), 127.71 (d, *J* = 10.8 Hz), 116.05 (d, *J* = 8.3 Hz), 69.93, 30.54, 26.73 (d, *J* = 23.2 Hz), 22.34 ppm; ³¹P NMR (CDCl₃, 161 MHz) δ –18.51 ppm.

AcGlySCH₂P(p-CH₃-C₆H₄)₂ (9). Phosphine 51 (250 mg, 0.82 mmol) was dissolved in degassed MeOH (8 mL). NaOH (33 mg, 0.82 mmol) was added to the solution, and the resulting mixture was allowed to stir under Ar(g) for 1.5 h. The solvent was then removed under reduced pressure. The residue was dissolved in CH₂Cl₂, and this solution was washed with 1 M HCl and brine. The organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The resulting residue was used without further purification in the coupling with N-acetylglycine. In a separate round-bottom flask, N-acetylglycine (101 mg, 0.86 mmol) was dissolved in anhydrous DMF (8 mL). HOBT (111 mg, 0.82 mmol) was added, followed by N,N'-diisopropylcarbodiimide (128 µL, 0.82 mmol). The resulting mixture was stirred for 20 min, and freshly deprotected phosphinothiol from above was added (0.82 mmol). The reaction mixture was allowed to stir under Ar(g) for 4 h. The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:2:7 EtOAc:hexanes: CH_2Cl_2) to give phosphinothioester 9 as a colorless oil in 78% yield. Spectral **data.** ¹H NMR (CDCl₃, 400 MHz) δ 7.31 (d, J = 7.6 Hz, 4H), 7.17 (d, J = 7.7 Hz, 4H), 6.00 (bm, 1H), 4.17 (d, J = 5.7 Hz, 2H), 3.49 (d, J = 3.6 Hz, 2H), 2.39 (s, 6H), 2.03 (s, 3H) ppm; ¹³C NMR $(CDCl_3, 100.6 \text{ MHz}) \delta 196.40, 170.42, 139.47, 133.32 \text{ (d, } J = 12.2 \text{ Hz}), 132.83 \text{ (d, } J = 20.1 \text{ Hz}),$ 129.59 (d, J = 7.7 Hz), 49.25, 25.75 (d, J = 24.1 Hz), 23.12, 21.50 ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ –16.80 ppm.

AcGlySCH₂P(p-OCH(CH₃)₂-C₆H₄)₂ (11). NaOH (42.4 mg, 1.06 mmol) was added to a solution of phosphine 49 (414 mg, 1.06 mmol) dissolved in degassed MeOH (10 mL). The resulting mixture was allowed to stir under Ar(g) for 1.5 h. The solvent was then removed under reduced pressure. The residue was dissolved in CH₂Cl₂, and this solution was washed with 1 N HCl and brine. The organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The resulting residue was used without further purification. In a separate round-bottom flask, N-acetylglycine (128 mg, 1.09 mmol) was dissolved in anhydrous DMF (10 mL). HOBT (141 mg, 1.04 mmol) was added, followed by 1.3-diisopropylcarbodiimide (163 uL, 1.04 mmol). The resulting mixture was stirred for 20 min. and freshly deprotected phosphinothiol from above was added (363 mg, 1.04 mmol). The reaction mixture was allowed to stir under Ar(g) for 4 h. The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, 3:3:4 v/v/v ethyl acetate:CH₂Cl₂:hexane) to give phosphinothioester 11 as a colorless oil in 78% vield. Spectral **data.** ¹H NMR (CDCl₃, 400 MHz) δ 7.37–7.31 (m, 4H), 6.90–6.86 (m, 4H), 5.96 (bs, 1H), 4.56 (sept, J = 6.2 Hz, 2H), 4.18 (d, J = 5.6 Hz, 2H), 3.45 (d, J = 3.4 Hz, 2H), 2.03 (s, 3H), 1.34 (d, J = 6.1 Hz, 12H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 196.46, 170.47, 159, 04, 134.39 (d, J = 20.8 Hz), 127.34 (d, J = 11.3 Hz), 116.03 (d, J = 8.4 Hz), 69.88, 49.27, 26.16 (d, J = 22.7 Hz), 23.08, 22.13 ppm; ³¹P NMR (CDCl₃, 161 MHz) δ –18.42 ppm.

AcGlySCH₂P(p-NMe₂-C₆H₄)₂ (12). To deprotect the phosphine, phosphine–borane complex 47 (746 mg, 1.99 mmol) was dissolved in degassed toluene (19 mL) under Ar(g). DABCO (268 mg, 2.39 mmol) was added, and the resulting solution was heated to 40 °C for 4 h. The solvent was removed under reduced pressure, and the residue was dissolved in CH₂Cl₂ and washed with 1 M citrate buffer (pH 4.0). The organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. To deprotect the thiol, the crude phosphine was dissolved in degassed MeOH (15 mL). NaOH (76 mg, 1.89 mmol) was added, and the resulting solution was allowed to stir under Ar(g) for 1.5 h. The solvent was then removed under reduced pressure. The residue was dissolved in CH₂Cl₂, and this solution was washed with 1 M citrate buffer (pH 4.0). The organic extracts were dried over anhydrous $MgSO_4(s)$, filtered, and concentrated under reduced pressure. The resulting residue was used without further purification in the coupling with N-acetylglycine. In a separate round-bottom flask, N-acetylglycine (233 mg, 1.99 mmol) was dissolved in anhydrous DMF (15 mL). HOBT (255 mg, 1.89 mmol) was added, followed by $N_{,N'}$ -diisopropylcarbodiimide (297 μ L, 1.89 mmol). The resulting mixture was stirred for 20 min, and freshly deprotected phosphinothiol from above was added (1.89 mmol). The reaction mixture was allowed to stir under Ar(g) for 4 h. The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, 4% v/v MeOH in CH₂Cl₂) to give phosphinothioester 12 as a colorless oil in 70% yield. Spectral data. ¹H NMR (CDCl₃, 400 MHz) δ 7.33–7.29 (m, 4H), 6.70–6.68 (m, 4H), 5.96 (bs, 1H), 4.18 (d, J = 5.6 Hz, 2H), 3.46 (d, J = 3.9 Hz, 2H), 2.96 (s, 12H), 2.03 (s, 3H) ppm; 13 C NMR (CDCl₃, 100.6 MHz) δ 196.67, 151.60, 134.09, 124.58, 112.44, 111.43, 49.30, 40.40, 26.51 (d, J = 23 Hz), 23.23 ppm; ³¹P NMR (CDCl₃) with D₃PO₄ standard, 161 MHz) δ –19.35 ppm.

AcAlaSCH₂P(p-CH₃-C₆H₄)₂ (15). Phosphine 51 (287 mg, 0.95 mmol) was dissolved in degassed MeOH (9 mL). NaOH (38 mg, 0.95 mmol) was added to the solution, and the resulting mixture was allowed to stir under Ar(g) for 1.5 h. The solvent was then removed under reduced pressure. The residue was dissolved in CH₂Cl₂, and this solution was washed with 1 M HCl and brine. The organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated

under reduced pressure. The resulting residue was used without further purification in the coupling with *N*-acetylalanine. In a separate round-bottom flask, *N*-acetylalanine (131 mg, 1.0 mmol) was dissolved in anhydrous DMF (9 mL). HOBT (128 mg, 0.95 mmol) was added to the resulting solution, followed by *N*,*N*'-diisopropylcarbodiimide (149 μ L, 0.95 mmol). The resulting mixture was stirred for 20 min, and freshly deprotected phosphinothiol from above was added (0.95 mmol). The reaction mixture was allowed to stir under Ar(g) for 4 h. The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:2:7 EtOAc:hexanes:CH₂Cl₂) to give phosphinothioester **15** as a colorless oil in 75% yield. **Spectral data.** ¹H NMR (CDCl₃, 400 MHz) δ 7.30 (d, *J* = 7.6 Hz, 4H), 7.15 (d, *J* = 7.6 Hz, 4H), 6.14 (d, *J* = 7.8 Hz, 1H), 4.67 (dq, *J* = 7.6 Hz, 1H), 3.46–3.44 (m, 2H), 2.34 (s, 6H), 1.98 (s, 3H), 1.29 (d, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 200.17, 169.87, 139.34, 133.45 (d, *J* = 10.7 Hz), 132.86 (d, *J* = 19.2 Hz), 129.51 (d, *J* = 5.8 Hz), 55.07, 25.81 (d, *J* = 24.1 Hz), 23.26, 21.46, 19.01 ppm; ³¹P NMR (CDCl₃, 161 MHz) δ –16.35 ppm.

AcAlaSCH₂P(p-OCH(CH₃)₂-C₆H₄)₂ (17). NaOH (53.3 mg, 1.33 mmol) was added to a solution of phosphine 49 (521 mg, 1.33 mmol) dissolved in degassed MeOH (13 mL). The resulting mixture was allowed to stir under Ar(g) for 1.5 h. The solvent was then removed under reduced pressure. The residue was dissolved in CH₂Cl₂, and this solution was washed with 1 N HCl and brine. The organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The resulting residue was used without further purification. In a separate round-bottom flask, N-acetylalanine (174 mg, 1.33 mmol) was dissolved in anhydrous DMF (11 mL). HOBT (171 mg, 1.27 mmol) was added, followed by 1,3-diisopropylcarbodiimide (198 µL, 1.27 mmol). The resulting mixture was stirred for 20 min, and freshly deprotected phosphinothiol from above was added (441 mg, 1.27 mmol). The reaction mixture was allowed to stir under Ar(g) for 4 h. The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, 3:3:4 v/v/v ethyl acetate:CH₂Cl₂:hexane) to give phosphinothioester 17 as a colorless oil in 72% yield. Spectral data. ¹H NMR (CDCl₃, 400 MHz) δ 7.35–7.31 (m, 4H), 6.87–6.85 (m, 4H), 5.88 (d, 1H), 4.69 (q, J = 7.4 Hz, 1H), 4.56 (sept, J = 6.4 Hz, 2H), 3.44-3.42 (m, 2H), 2.00 (s, 3H), 1.33 (d, J = 6.0 Hz, 2Hz)Hz, 12H), 1.31 (d, J = 7.1 Hz, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 200.27, 170.05, 158.88, 134.21 (d, J = 21.4 Hz), 127.32, 158.85 (d, J = 7.3 Hz), 69.74, 55.00, 26.09 (d, J = 22.9 Hz), 23.07, 22.03, 18.63 ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ –17.77 ppm.

AcAlaSCH₂P(*p*-NMe₂-C₆H₄)₂ (18). Phosphine–borane complex 47 (581 mg, 1.55 mmol) was dissolved in degassed toluene (14 mL) under Ar(g). DABCO (209 mg, 1.86 mmol) was added, and the resulting solution was heated to 40 °C for 4 h. The solvent was removed under reduced pressure, and the residue was dissolved in CH₂Cl₂ and washed with 1 M citrate buffer (pH 4.0). The organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. To deprotect the thiol, the crude phosphine was dissolved in degassed MeOH (14 mL). NaOH (59.2 mg, 1.48 mmol) was added, and the resulting mixture was allowed to stir under Ar(g) for 1.5 h. The solvent was then removed under reduced pressure. The residue was used without further purification. In a separate round-bottom flask, *N*-acetylalanine (203.7 mg, 1.55 mmol) was dissolved in anhydrous DMF (19 mL). HOBT (200 mg, 1.48 mmol) was added, followed by 1,3-diisopropylcarbodiimide (232 μ L, 1.48 mmol). The resulting mixture was stirred for 20 min, and freshly deprotected phosphinothiol from above was added (574 mg, 1.48 mmol). The reaction mixture was allowed to stir under Ar(g) for 4 h.

The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, 4% v/v MeOH in CH₂Cl₂) to give phosphinothioester **18** as a white solid in 65% yield. **Spectral data.** ¹H NMR (CDCl₃, 400 MHz) δ 7.34–7.31 (m, 4H), 6.72–6.69 (m, 4H), 5.91 (bd, J = 7.4 Hz, 1H), 4.72 (q, J = 8.4 Hz, 1H), 3.46–3.43 (m, 2H), 2.98 (s, 12H), 2.01 (s, 3H), 1.34 (d, J = 7.3 Hz, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 200.34, 169.62, 150.88, 133.81 (d, J = 19.4 Hz), 122.08, 112.19 (d, J = 6.7 Hz), 54.90, 41.99, 40.20, 26.48 (d, J = 34.1 Hz), 19.06 ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ –19.06 ppm.

AcSCH₂P(*p*-CH₃-C₆H₄)₂ (51). Phosphine–borane complex 48 (300 mg, 0.95 mmol) was dissolved in degassed toluene (9 mL) under Ar(g). DABCO (117 mg, 1.04 mmol) was added, and the resulting solution was heated to 40 °C for 4 h. The solvent was removed under reduced pressure, and the residue was dissolved in CH₂Cl₂ and washed with 1 M HCl and brine. The organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The residue (51) was a colorless oil (98% yield) and was judged to be sufficiently pure by NMR spectroscopy. Spectral data. ¹H NMR (CDCl₃, 400 MHz) δ 7.32 (t, *J* = 7.7 Hz, 4H), 7.16 (d, *J* = 7.7 Hz, 4H), 3.48 (d, *J* = 3.5 Hz, 2H), 2.35 (s, 6H), 2.29 (s, 3H) ppm; ³¹P NMR (CDCl₃, 161 MHz) δ –17.032 ppm.

AcGlySCH₂P(p-Cl-C₆H₄)₂ (52). The thioacetate of phosphine 3² (373 mg, 1.09 mmol) was dissolved in degassed MeOH (10 mL). NaOH (44 mg, 1.09 mmol) was added to the solution, and the resulting mixture was allowed to stir under Ar(g) for 1.5 h. The solvent was then removed under reduced pressure. The residue was dissolved in CH₂Cl₂, and this solution was washed with 1 M HCl and brine. The organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The resulting residue was used without further purification in the coupling with N-acetylglycine. In a separate round-bottom flask, N-acetylglycine (141 mg, 1.2 mmol) was dissolved in anhydrous DMF (10 mL). HOBT (147 mg, 1.09 mmol) was added, followed by N,N'-diisopropylcarbodiimide (170 µL, 1.09 mmol). The resulting mixture was stirred for 20 min, and freshly deprotected phosphinothiol from above was added (1.09 mmol). The reaction mixture was allowed to stir under Ar(g) for 4 h. The solvent was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, 1:2:7 EtOAc:hexanes:CH₂Cl₂) to give phosphinothioester 52 as a colorless oil in 81% yield. Spectral data. ¹H NMR (CDCl₃, 400 MHz) δ 7.35–7.29 (m, 4H), 6.30 (bm, 1H), 4.14 (d, J = 5.8 Hz, 2H), 3.46 (d, J = 4.0 Hz, 2H), 2.02 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 196.08, 170.54, 135.98, 134.80 (d, J = 15.8 Hz), 134.13 (d, J = 20.7 Hz), 129.16 (d, J = 7.4 Hz), 49.19, 25.32 (d, J = 24.4 Hz, 23.08 ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ –16.27 ppm.

AcGlySCH₂P(*p*-OCH₃-C₆H₄)₂ (53). The thioacetate of phosphine 2² (668 mg, 2.0 mmol) was dissolved in degassed MeOH (20 mL). NaOH (80 mg, 2.0 mmol) was added to the solution, and the resulting mixture was allowed to stir under Ar(g) for 1.5 h. The solvent was then removed under reduced pressure. The residue was dissolved in CH₂Cl₂, and this solution was washed with 1 M HCl and brine. The organic extracts were dried over anhydrous MgSO₄(s), filtered, and concentrated under reduced pressure. The resulting residue was used without further purification in the coupling with *N*-acetylglycine. In a separate round-bottom flask, *N*-acetylglycine (211 mg, 1.8 mmol) was dissolved in anhydrous DMF (18 mL). HOBT (236 mg, 1.8 mmol) was added, followed by *N*,*N'*-diisopropylcarbodiimide (281 µL, 1.8 mmol). The resulting mixture was stirred for 20 min, and freshly deprotected phosphinothiol from above was then removed under reduced pressure. The residue was purified by flash chromatography (silica gel, 70% v/v EtOAc in hexanes) to give phosphinothioester **53** as a white solid in 85% yield.

Spectral data. ¹H NMR (CDCl₃, 400 MHz) δ 7.34 (t, J = 8.0 Hz, 4H), 6.89 (d, J = 8.4 Hz, 4H), 4.15 (d, J = 5.6 Hz, 2H), 3.80 (s, 6H), 3.45 (d, J = 3.6 Hz, 2H), 2.02 (s, 3H) ppm; ¹³C NMR (CDCl₃, 100.6 MHz) δ 196.42, 170.47, 160.73, 134.31 (d, J = 22.3 Hz), 127.72 (d, J = 9.1 Hz), 114.57 (d, J = 7.3 Hz), 55.41, 49.25, 26.14 (d, J = 23.8 Hz), 23.15 ppm; ³¹P NMR (CDCl₃ with D₃PO₄ standard, 161 MHz) δ –18.26 ppm.

References

- 1. C. A. Busacca, J. C. Lorenz, N. Grinberg, N. Haddad, M. Hrapchak, B. Latli, H. Lee, P. Sabila, A. Saha, M. Sarvestani, S. Shen, R. Varsolona, X. D. Wei and C. H. Senanayake, *Org. Lett.*, 2005, **7**, 4277-4280.
- 2. M. B. Soellner, A. Tam and R. T. Raines, J. Org. Chem., 2006, 71, 9824-9830.

Scheme S1. Synthetic route to phosphinothioesters 15, 17, and 18.

Carbon-13 NMR, 100.6 MHz

Phosphorus-31 NMR, 121 MHz $CDCI_3$

Phosphorus-31 NMR, 121 MHz CDCl_3

Carbon-13 NMR, 100.6 MHz $CDCl_3$

:0

ZΙ

18

Proton NMR, 400 MHz $CDCI_3$

Carbon-13 NMR, 100.6 MHz CDCl_3

35

 \cap

O= LT

Phosphorus-31 NMR, 121 MHz CDCl_3

РРМ

-2

0

20-

40

09

-8

Phosphorus-31 NMR, 121 MHz CDCl_3

Ģ

Phosphorus-31 NMR, 121 MHz $CDCI_3$

Carbon-13 NMR, 100.6 MHz CDCl_3

РРМ

9

0

9

2

8

6

20

-00

¢

Phosphorus-31 NMR, 121 MHz CDCl_3

Á

H₃B

Phosphorus-31 NMR, 121 MHz CDCl_3

Phosphorus-31 NMR, 121 MHz CDCl_3

РРМ

-<mark>2</mark>

والمناجع أنتقاط أفريك والمترار فتتناز المارات والمتأم والمترار والمترار والمرار والمرار

للموافع فالفروا أأجرام فأساف المراقع فالمساور ومعاولته فومر فلنجاب والموافعة ومساومه فراوا والموافع والموافع فوالما متحملان

.0

. 8.

2

-6

0

Phosphorus-31 NMR, 121 MHz $CDCI_3$

Phosphorus-31 NMR, 121 MHz CDCl_3

Phosphorus-31 NMR, 121 MHz CDCl₃

