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Introduction

Homologs of bovine pancreatic ribonuclease (RNase A) exhibit 
innate antitumor activity both in vitro and in vivo.1-3 For reasons 
that are not yet clear, the toxicity of these enzymes is selective 
for cancer cells, stimulating their development as cancer chemo-
therapeutic agents. An amphibian homolog, ranpirnase, is cur-
rently in a Phase II clinical trial for the treatment of non-small 
cell lung cancer.

Unlike ranpirnase, mammalian pancreatic-type ribonucle-
ases are highly susceptible to inhibition by the ubiquitous cyto-
solic ribonuclease inhibitor protein (RI) and are not cytotoxic.4-7 
Variants of RNase A that have been engineered to evade RI are 
more potent cytotoxins in vitro than is ranpirnase.6 Because 
RNase A is less immunogenic than ranpirnase8 and RNase A 
variants can exhibit more selective cytotoxicity than ranpirnase,6 
mammalian ribonucleases are more desirable chemotherapeutic 
agents than amphibian ones.

As small (12–14 kDa), parenterally administered proteins, 
ribonucleases are subject to rapid renal clearance.9 We reasoned 
that covalent modification of RNase A with poly(ethylene glycol) 
(PEG) could overcome this limitation and simultaneously reduce 
sensitivity to RI. A pendant PEG moiety increases hydrodynamic 
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radius, which endows enhanced persistence in circulation and 
imparts resistance to proteolysis, improved solubility and reduced 
immunogenicity.10-13 A PEG moiety also provides steric bulk that 
could hinder the binding of RI.

The general utility of PEGylation is evidenced by the clini-
cal efficacy of the many protein—PEG conjugates that are on 
the market or in late-stage clinical trials.13 Although these extant 
conjugates provide encouraging precedent for our work, a key 
difference exists. All extant PEGylated proteins act on an extra-
cellular target. In contrast, a ribonuclease must gain access to 
intracellular RNA to exert its cytotoxic activity.

Early ribonuclease—PEG conjugates were made by ran-
domly decorating the 11 amino groups of RNase A with linear 
PEG moieties.14-18 These RNase A-PEG conjugates exhibited 
enhanced persistence in circulation,16 as well as resistance to 
proteolytic degradation16,19 and a reduced affinity for anti-
RNase A antibodies.15 In RNase A, the amino group of Lys41 
has a low pK

a
 of ~8.8,20 and is thus especially reactive, but 

its modification reduces catalytic proficiency by 105-fold21 and 
obviates cytotoxicity.22,23 Indeed, extensive modification of the 
amino groups of RNase A with PEG led to the loss of 97% 
of its ribonucleolytic activity.15 Moreover, the necessary acyl-
ation of amino groups reduces net molecular charge, which 
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PEG moiety. We find that these conjugates have somewhat less 
antiproliferative activity in vitro than expected from their ribo-
nucleolytic activity in the presence of RI. These same conjugates, 
however, exert dramatic tumor growth inhibition at low dosing 
in xenograft mice bearing solid human tumors.

Results

Design of PEGylated variants of ribonuclease A. We selected 
two distinct sites on RNase A for PEG conjugation. Residue 
88 was chosen as a site within the interface of the RI·RNase A 
complex (Fig. 1), as single amino-acid substitutions there highly 
destabilize the RI·RNase A complex.6,27 Position 19 of RNase A 
was chosen as a site outside of the RI·RNase A interface because 
small-molecule appendages there do not lead to a detectable 
decrease in affinity for RI.28,29

The size10 and branching19 of PEG chains can impact the bio-
chemical properties of conjugates in vitro19 and their behavior 
in vivo.30 Hence, we chose 2 PEGs of different size: 2 kDa (Fig. 
2A) and 20 kDa (Fig. 2B and C). With the 20-kDa mPEG, we 
used both a linear polymer (Fig. 2B) and one with two equivalent 
branches (Fig. 2C).

Physicochemical analyses of RNase A-PEG conjugates. The 
observed molecular mass of each RNase A-PEG conjugate was 
consistent with its containing a single PEG moiety (Table S1). 
Discrepancies between expected and observed m/z values for the 
PEGylated variants of RNase A reflect the polydispersity of PEG 
moieties and the ensuing broad ion peaks.

The PEGylated variants of RNase A migrated more quickly 
during cation-exchange chromatography (Fig. S1) and more 
slowly during electrophoresis than expected from their molecu-
lar mass (Fig. S2 and Table S1). These observations are consis-
tent with the extended structure and extensive hydration of the 
PEG moiety, as well as its shielding of the charge of the protein,31 
which is highly basic.32 The effect of PEGylation was even more 
apparent during gel-filtration chromatography than during elec-
trophoresis (Fig. S3 and Table S1).

Conformational stability. Pancreatic-type ribonucleases 
must maintain their 3-dimensional structure in order to exert 
their cytotoxic enzymatic activity.33 Conformational stability was 
assessed by the value of T

m
, which is the temperature at the mid-

point of the thermal transition between the folded and unfolded 
states. Values of T

m
 for wild-type RNase A and its G88R vari-

ant are indistinguishable from those reported previously in refer-
ence 27. All PEGylated forms of the A19C and G88C variants 
exhibited values of T

m
 that were indistinguishable from that of 

wild-type RNase A (Fig. S4 and Table 1). Likewise, 20-kDa 
mPEG-D38R/R39D/N67R/G88C RNase A had a T

m
 value of 

55°C (Table 1), which is not distinguishable from that of the 
unmodified variant.6 We conclude that appending a PEG moiety 
had a negligible effect on conformational stability, and that all 
conjugates retained their structure at physiological temperature.

Ribonucleolytic activity. Ribonucleolytic activity is essential 
to the antiproliferative activity of pancreatic-type ribonucleases.22 
Conjugation of the A19C and G88C variants with linear or 
branched PEG moieties had little effect on their ability to catalyze 

Figure 1. Three-dimensional structure of the complex between RNase 
A (blue) and RI (red). Virtual A19C and G88C substitutions (yellow 
spheres) were made in RNase A. Images were made with pyMol (Delano 
scientific) and protein Data Bank entry 1dfj.50

Figure 2. Chemical structures of the mpeG maleimides used for site-
specific conjugation to Cys19 or Cys88 of RNase A variants. L = linker.

is adverse to cellular binding and internalization, and hence 
cytotoxicity.24-26

Here, we report on the efficacy as a cancer chemotherapeutic 
agent of a mammalian ribonuclease that displays a site-specific 
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G88R variants, which lack a PEG moiety. The IC
50

 values for 
these two variants were in agreement with those determined 
previously in reference 6. The remaining PEG conjugates had 
a lesser effect on the proliferation of K-562 cells. These data are 
consistent with the 2-kDa mPEG chain not being too detri-
mental to cytosolic uptake (vide infra), and the 20-kDa mPEG-
D38R/R39D/N67R/G88C variant being especially evasive of RI 
(Table 1).

DU145 cells were even less sensitive in vitro to PEGylated 
ribonucleases than were K-562 cells. 2-kDa mPEG-G88C 
RNase A, 20-kDa mPEG-G88C RNase A and 20-kDa mPEG

2
-

G88C RNase A each had an IC
50

 value of >25 μM (data not 
shown). In contrast, D38R/D39R/N67R/G88R RNase A had 
an IC

50
 value of 0.2 μM, which is comparable to a previous report 

in reference 6.
Tumor growth inhibition. 2-kDa mPEG-G88C RNase 

A was the simplest PEGylated variant to demonstrate antipro-
liferative activity in vitro (Fig. 3), and hence was used in ini-
tial assays of antitumoral activity in vivo. This variant (15 
mg/kg; qd x 5; i.p.) inhibited tumor growth significantly 
(TGI = 71%; Fig. 4A). The inhibition was greater than that 
from a non-PEGylated variant that is much more RI-evasive  
(D38R/R39D/N67R/G88R RNase A, TGI = 62%). The 2-kDa 

the cleavage of a small substrate, 6-FAM-dArUdAdA-6-TAMRA 
(Table 1). Only 20-kDa mPEG-D38R/R39D/N67R/G88C 
RNase A showed a noticable (i.e., 2.3-fold) decrease in catalytic 
activity compared with the wild-type enzyme, but this decrease 
is in accord with that experienced by the analogous (unmodified) 
D38R/R39D/N67R/G88R variant.6 Values of k

cat
/K

M
 for wild-

type RNase A and its G88R variant were in agreement with those 
reported previously in reference 27.

Similarly, conjugation caused only a modest (i.e., < 2-fold) 
decrease in the ability of a ribonuclease to catalyze the cleavage of 
a large substrate, poly(C) (Table 2). This decrease was the result 
of a larger K

M
 value, which is consistent with some occlusion of the 

larger substrate from the enzymic active site by the PEG moiety.
Ribonuclease inhibitor binding. The site of PEG attachment 

affected the ability of RNase A to evade RI (Table 1). The high 
affinity of the A19C RNase A conjugates for RI was beyond the 
resolution of the assay (K

d
 < 1.2 nM). In contrast, the G88C 

conjugates were much more evasive of the inhibitor. For example, 
the 2-kDa mPEG-G88C RNase A conjugate was almost 7-fold 
more evasive than the G88R variant. Attaching a linear 20-kDa 
PEG chain reduced the affinity for RI slightly more, and attach-
ing a branched 20-kDa PEG chain reduced the affinity still fur-
ther. This 20-kDa mPEG

2
 moiety at residue 88 was 31-fold more 

effective at precluding the binding of RI than was the side chain 
of an arginine residue. Attaching a PEG group at position 88 
in the context of other amino-acid substitutions (D38R/R39D/
N67R) that were known to disrupt the RI·RNase A complex6 
resulted in the most RI-evasive monomeric RNase A reported to 
date (K

d
 = 3.3 μM).

Cell proliferation. PEGylation affected the antiproliferative 
activity of RNase A in vitro, as revealed by assaying the inhibi-
tion of cellular DNA synthesis (Fig. 3 and Table 1). The 2-kDa 
mPEG-G88C RNase A and 20-kDa mPEG-D38R/R39D/
N67R/G88C RNase A conjugates, which had IC

50
 values of  

10.4 and 1.9 μM, respectively, retained much of the antiprolifera-
tive activity of the analogous G88R and D38R/R39D/N67R/

Table 1. Biochemical parameters of wild-type RNase A and its variants

Ribonuclease A
Tm

a 
(°C)

kcat/KM
b 

(107 M–1s–1)
Kd

c 
(nM)

IC50
d 

(µM)

Wild-type 64 6.7 ± 0.3 44 x 10-6 >25

G88R 63 7.4 ± 0.2 1.2 ± 0.2 3.6 ± 0.4

D38R/R39D/N67R/G88R 56 3.8 ± 0.6 (1.4 ± 0.1) x 103 0.17 ± 0.01

2-kDa mpeG-A19C 61 5.0 ± 0.4 <1.2 >25

20-kDa mpeG-A19C 61 7.5 ± 0.2 <1.2 >25

20-kDa mpeG2-A19C 61 6.9 ± 0.3 <1.2 >25

2-kDa mpeG-G88C 64 4.0 ± 0.3 8.0 ± 1.3 10.4 ± 0.7

20-kDa mpeG-G88C 64 6.8 ± 0.6 8.9 ± 0.1 >25

20-kDa mpeG2-G88C 64 6.1 ± 0.4 37 ± 2 >25

20-kDa mpeG-D38R/R39D/N67R/G88C 55 2.9 ± 0.1 (3.3 ± 0.2) x 103 1.9 ± 0.2

aValues of Tm (±2°C) were determined in pBs by UV spectroscopy. G88R RNase A, in reference 27; D38R/R39D/N67R/G88R RNase A.6 bValues of kcat/KM 
(±se) for wild-type RNase A and its variants are for catalysis of 6-FAM - dArU(dA)2 - 6-TAMRA cleavage in 0.10 M Mes - NaOh buffer (ph 6.0) containing 
NaCl (0.10 M). D38R/R39D/N67R/G88R RNase A.6 cValues of Kd (±se) are for the complex with human RI in pBs. Wild-type RNase A, reference 49; G88R 
RNase A;48 D38R/R39D/N67R/G88R RNase A.6 dValues of IC50 (±se) are for incorporation of [methyl-3h]thymidine into the DNA of K-562 cells (Fig. 3).

Table 2. steady-state kinetic parameters for catalysis of poly(C)  
cleavage by wild-type RNase A and its peGylated variantsa

Ribonuclease kcat (s–1) KM (µM)
kcat/KM  

(106 M–1s–1)

Wild-type RNase A 368 ± 11 33 ± 3 11.2 ± 0.6

2-kDa mpeG-G88C RNase A 422 ± 12 49 ± 6 8.8 ± 0.8

20-kDa mpeG-G88C RNase A 428 ± 21 54 ± 4 8.0 ± 0.2

20-kDa mpeG2-G88C RNase A 402 ± 16 55 ± 2 7.4 ± 0.6
aValues (±se) were obtained from assays in 0.10 M Mes-NaOh buffer 
(ph 6.0) containing NaCl (0.10 M), poly(C) (0.010–1.5 mM), and enzyme 
(2 nM).
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from 0.4 to 62 h. Likewise the area under the curve, which is 
indicative of total exposure levels, also increased over 30-fold. 
These data confirm that PEG conjugation has enhanced the 
pharmacokinetic parameters of RNase A and might facilitate its 
anti-tumor activity.

Discussion

Mammalian ribonucleases are an emerging class of cancer che-
motherapeutic agents,1-3 but limitations exist. Previously, we 
showed that variants of RNase A, engineered to evade RI, are 
potent cytotoxins.6,27,34,38 Nonetheless, the relatively small size of 
ribonucleases allows for their rapid clearance from circulation via 
glomerular filtration.37 Here, we set out to address simultaneously 
both the sub-optimal pharmacokinetic properties of RNase A 
and its sensitivity to RI by attaching PEG to a specific cysteine 
residue installed by site-directed mutagenesis. We found that this 
site-specific conjugation preserved both conformational stability 
and ribonucleolytic activity (Tables 1 and 2), which are essential 
to antiproliferative activity.

PEGylation can mediate RI evasion. The influence of 
PEGylation on RI-binding had never been examined previously. 
We find that the site of PEGylation, and the length and branch-
ing order of the pendant PEG moiety influence the affinity for 
RI (Table 1). Our data are consistent with the known reduced 
affinity of PEGylated RNase A for anti-RNase A antibodies15 
and lower susceptibility to proteolytic degradation.19 Moreover, 
the lower affinity of RI for 20-kDa mPEG-D38R/R39D/
N67R/G88C RNase A than 20-kDa mPEG-G88C RNase A 
demonstrates that other amino-acid substitutions can augment 
RI-evasion gained through PEGylation.

PEGylation affects antiproliferative activity in vitro. Based 
on its high conformational stability, catalytic activity and ability 
to evade RI (Table 1), 20-kDa mPEG

2
-G88C RNase A should 

be a potent inhibitor on cancer-cell proliferation.6,23,39 Yet, this 
conjugate demonstrated only weak antiproliferative activity 
in vitro (Fig. 3 and Table 1). PEGylation is known to reduce 
affinity for a target receptor, and a loss of in vitro activity is a 
common occurrence.12 We attribute the lower in vitro activity, at 
least in part, to the inefficient cellular association and internaliza-
tion that results from the shielding of its cationicity by the PEG 
moiety. This hypothesis is supported by the reduced affinity of 
PEGylated variants for a cation-exchange resin (Fig. S1), which 
mimics the anionic glycans that play a critical role in the cellular 
internalization of ribonucleases.26,40-42

PEGylation enhances antitumoral activity. Despite the 
attenuated bioactivity of mPEG-G88C RNase A in vitro, these 
conjugates are more effective than non-PEGylated variants at 
inhibiting tumor growth in a xenograft model (Fig. 4). Because 
PEGylation discourages renal clearance (Fig. 5), we conclude 
that the ensuing increase in persistence more than compensates 
for any decreased antiproliferative activity.

A biological implication. Our data have an implication about 
natural human ribonucleases. Gly88 of RNase A is homologous 
to Asn88 of human pancreatic ribonuclease. Like Gly88 in RNase 
A,27 Asn88 in human pancreatic ribonuclease is a key RI-contact 

mPEG-G88C variant also caused less loss in body weight than did 
the non-PEGylated variants (-2% vs. -16 and -6%, respectively).

20-kDa mPEG
2
-G88C RNase A was likewise assayed for 

antitumoral activity in vivo. A once-weekly dose of 20-kDa 
mPEG

2
-G88C RNase A was comparable in efficacy to docetaxel 

(8 mg/kg; 1x wk; i.p.; TGI = 103%), which is an antimitotic 
agent in common use (Fig. 4B). Notably, the weekly molar dose 
of 20-kDa mPEG

2
-G88C RNase A (33.7 kg/mol) was 4.4-fold 

less than that of docetaxel (808 g/mol). The 20-kDa mPEG
2
-

G88C RNase A was well-tolerated, as indicated by a 2% gain in 
body weight over the duration of the study.

Finally, the 2-kDa mPEG-G88C RNase A was tested at a 
lower dose (15 mg/kg; 2x wk; i.p.). Even at this low dose, the 
PEG conjugate inhibited tumor growth significantly (Fig. 4C; 
TGI = 73%). Again, only minimal toxicity was seen, with body 
weight decreasing by 2% over the course of the study. Overall, 
the data indicate that the both 2-kDa mPEG-G88C RNase A 
and 20-kDa mPEG

2
-G88C RNase A are effective and safe anti-

cancer agents in vivo.
Pharmacokinetics. Wild-type RNase A clears in 5 and 3½ 

min from the serum of rats and mice, respectively.35 This rapid 
rate is consistent with that of other small proteins.36,37 Previously, 
a 5-kDa PEGylated RNase A had been shown to exhibit a 40- 
to 50-fold increase in circulation time in rats.16 A similarly 
large enhancement was observed in mice injected with 20-kDa 
mPEG

2
-G88C RNase A compared with that of G88R RNase A 

(Fig. 5). Peak serum levels were the same for both G88R RNase A 
and 20-kDa mPEG

2
-G88C RNase A, but the half-life increased 

Figure 3. effect of RNase A with site-specific peGylation on DNA synthe-
sis by K-562 cells in vitro. Data points are the mean (±se) of at least three 
separate experiments performed in triplicate. Values of IC50 are listed 
in Table 1. Wild-type RNase A (□), G88R RNase A (△) and D38R/R39D/
N67R/G88R RNase A (▽), 2-kDa mpeG-A19C RNase A (gray ●), 20-kDa 
mpeG-A19C RNase A (gray ■), 20-kDa mpeG2-A19C RNase A (gray ◆),  
2-kDa mpeG-G88C RNase A (black ●), 20-kDa mpeG-G88C RNase A 
(black ■), 20-kDa mpeG2-G88C RNase A (black ◆) and 20-kDa mpeG-
D38R/R39D/N67R/G88C RNase A (x).
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site.43 Asn88 is known to be N-glycosylated in humans.44 Given 
the resemblance of glycans to PEG, we speculate that a natural 
N-glycosylated ribonuclease could evade RI and provide humans 
with endogenous antitumor activity.

Materials and Methods

Materials. The preparation of proteins and sources of other mate-
rials are described in the Supplemental Materials.

Assays of conformational stability. The conformational sta-
bility of PEGylated RNase A variants was determined by measur-
ing their T

m
 value as described previously in reference 34.

Assays of catalytic activity. Ribonucleolytic activities of the 
PEGylated RNase A variants were determined by assaying the 
cleavage of 2 RNA substrates, one small and one large. The small 
substrate, 6-FAM-dArUdAdA-6-TAMRA (20 nM), exhibits a 
~180-fold increase in fluorescence (λ

ex
 = 493 nm; λ

em
 = 515 nm) 

upon cleavage.45 Assays of its cleavage were performed in 2.0 mL 
of 0.10 M MES-NaOH buffer (pH 6.0) containing NaCl (0.10 
M). The MES used to prepare the assay buffer was purified by 
anion-exchange chromatography to remove trace amounts of 
oligomeric vinylsulfonic acid, which is a byproduct of commer-
cial buffer synthesis and a potent inhibitor of RNase A.46 Values 
of k

cat
/K

M
 were obtained as described previously in reference 45.

The large substrate, poly(cytidylic acid) (poly(C); ε = 6,200 
M-1cm-1 per nucleotide at 268 nm), is hyperchromic, allowing its 
cleavage to be monitored by an increase in UV absorption (Δε 
= 2,380 M-1cm-1 at 250 nm).47 Assays of its cleavage were per-
formed in 0.10 M MES-NaOH buffer (pH 6.0) containing NaCl  
(0.10 M),poly(C) (0.010–1.5 mM) and enzyme (2 nM). 
According to its supplier, the poly(C) had ≥250 nucleotides, with 
an average size of 300–800 nucleotides. Values of k

cat
 and K

M
 

were calculated by fitting initial velocity data to the Michaelis-
Menten equation.

Assays of ribonuclease inhibitor binding. The affinity of 
PEGylated RNase A variants for human RI in PBS was deter-
mined by using the fluorescence-based competition assay 
described previously in reference 29 and 48.

Assays of cell proliferation. Pancreatic-type ribonucleases 
can inhibit cell proliferation by evoking apoptosis.39 This activ-
ity was assessed by measuring the effect of ribonucleases on the 
incorporation of [methyl-3H]thymidine into the nascent DNA of 
two human cancer cell lines: K-562 (myelogenous leukemia) and 
DU145 (prostate cancer), as described previously in reference 27 
and 34. Values of IC

50
 were calculated by fitting the curves using 

nonlinear regression to a sigmoidal dose—response curve.

Figure 4. effect of RNase A with site-specific peGylation on the tumor 
volume and body weight (insets) of Balb c(-/-) mice in xenograft models 
bearing human DU145 prostate tumors. Data points are the mean (±se) 
for n mice; % TGI values are in parentheses. Vehicle control (○; n = 7). (A) 
2-kDa mpeG-G88C RNase A (■, 11.2 mg/kg; i.p., qdx 5, n = 3) and D38R/
R39D/N67R/G88R RNase A (△, 15 mg/kg; i.p., qdx 5, n = 7). (B) 20-kDa 
mpeG2-G88C RNase A (◆, 75 mg/kg; i.p., 1x wk; n = 5) and docetaxel (▽, 8 
mg/kg; i.p., 1x wk, n = 7). One mouse treated with docetaxel died on day 
42 and another on day 68. (C) 2-kDa mpeG-G88C RNase A (■, 15 mg/kg; 
i.p., 2x wk, n = 3).

Figure 5. effect of site-specific peGylation of RNase A on its persistence 
in the circulation of mice. 20-kDa mpeG-G88C RNase A (◆; 15 mg/kg) 
G88R RNase A (○; 15 mg/kg).
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6-FAM-dArUdAdA-6-TAMRA. Pre-diluted serum (10 μL of a 
1:10,000 dilution) was added to 160 μL of 0.10 M Tris-HCl buf-
fer (pH 7.0) containing NaCl (0.10 M) and acetylated BSA (0.10 
mg/mL). The assay was initiated by the addition of substrate (30 
μL of a 1.33 μM stock solution). Fluorescence (λ

ex
 = 490 nm;  

λ
em

 = 525 nm) was measured with a Tecan Safire plate reader.
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Note

Supplemental materials can be found at:
www.landesbioscience.com/journals/cbt/article/15959

Assays of tumor growth inhibition. Variants and PEG con-
jugates of RNase A were tested for their ability to suppress the 
growth of human tumors implanted into the flanks of male 
athymic (nu/nu) mice. The DU145 tumor cell line was selected 
for its ability to proliferate in mice, low rate of spontaneous 
regression and clinical relevancy. The DU145 xenographs were 
treated intraperitoneally (i.p.) with both the RNase A variants 
and 2- and 20-kDa PEG conjugates. Assays of tumor growth 
inhibition (TGI) were performed as described previously in ref-
erence 34.

Pharmacokinetic studies. The pharmacokinetic (PK) profile 
of the 20-kDa PEG conjugate and the parental RNase A vari-
ant was determined essentially as described previously in refer-
ence 35, that is, by measuring ribonucleolytic activity in serum. 
Normal male CD-1 mice (two or three) were injected once 
intravenously (i.v.) with a ribonuclease (15 mg/kg). Blood was 
collected at various time intervals after dosing. The blood was 
allowed to clot at 2–8°C. Within 30 min, samples were subjected 
to centrifugation at ~1,500 g for 5–10 min to collect serum, 
which was stored frozen at -80°C. For analysis, frozen samples 
were thawed on ice. Ribonucleolytic activity within samples 
was assayed in a 96-well plate using the fluorogenic substrate 
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