Proceedings of the 23<sup>rd</sup> American Peptide Symposium Michal Lebl (Editor) American Peptide Society, 2013

# $n \rightarrow \pi^*$ Interactions in Helices

## **Ronald T. Raines**

Departments of Biochemistry and Chemistry, University of Wisconsin–Madison, Madison, WI, 53706, U.S.A.

### Introduction

Helices are prevalent molecular structures in natural and synthetic polymers, including peptides and proteins. The topology of helices brings atoms that are nearby in a sequence into close proximity in a three-dimensional structure. This proximity can be reinforced by hydrogen bonds, like those in an  $\alpha$  or 3<sub>10</sub> helix. Other helices, however, lack hydrogen bonds (*e.g.*, polyproline type-I and type-II, and poly(L-lactic acid)), and do not have a clear basis for their conformational stability.

We have proposed that a quantum mechanical interaction stabilizes common helices - an  $n \rightarrow \pi^*$  interaction between backbone carbonyl groups [1,2]. This interaction is between a lone pair (*n*) of the oxygen (O<sub>i-1</sub>) of one carbonyl group and the antibonding orbital ( $\pi^*$ ) of the subsequent carbonyl group (C'<sub>i</sub>=O'<sub>i</sub>) [3-5]. Here, the structures of natural and synthetic helices are analyzed from this perspective.

#### **Results and Discussion**

Models of AcAlaNH<sub>2</sub> in an  $\alpha$ , 3<sub>10</sub>, and polyproline type-I and type-II helix, and a model of an Ac(L-lactic acid)OH helix were created based on the  $\omega$ ,  $\phi$ , and  $\psi$  backbone dihedral angles listed in Table 1. These models are depicted in Figure 1. A key aspect of these helices is that  $r_{0\dots C=0}$  is near or within the sum of the van der Waals radii of oxygen and carbon (3.22 Å) and  $\angle_{0\dots C=0}$  is close to the Bürgi–Dunitz trajectory for the approach of a nucleophile to a carbonyl group (~109°). Accordingly, the parameters indicate that  $n \rightarrow \pi^*$  interactions make a significant contribution to the conformational stability to each of these helices. The energy of the interaction is 0.3 kcal/mol in AcProNH<sub>2</sub>, and is enhanced with thiocarbonyl groups [6,7].

This analysis has numerous implications. For example, the data provide a new view of the  $\alpha$  helix, which is the most prevalent structural element in folded proteins. This view is depicted in Figure 2 [1]. In addition, the data establish a physicochemical basis for the conformational stability of polyproline type-I and type-II helices, and the helical structure of poly(L-lactic acid) [2,5].

| Helix                            | ω    | $\phi$ | ψ    | <i>r<sub>0</sub><sub>C=0</sub></i> | $\angle_{O \cdots C = O}$ |
|----------------------------------|------|--------|------|------------------------------------|---------------------------|
| Α                                | 180° | -60°   | -45° | 2.91 Å                             | 97.9°                     |
| 310                              | 180° | -49°   | -26° | 2.73 Å                             | 116.1°                    |
| polyproline type-I <sup>b</sup>  | 0°   | -75°   | 150° | 3.35 Å                             | 127.5°                    |
| polyproline type-II              | 180° | -75°   | 160° | 3.18 Å                             | 89.4°                     |
| poly(L-lactic acid) <sup>c</sup> | 180° | -64°   | 154° | 2.86 Å                             | 94.4°                     |

Table 1. Structural parameters of common helices with backbone carbonyl groups.<sup>a</sup>

<sup>*a*</sup> $\omega$ :  $C^{a}_{i}-C'_{i}-N_{i+1}-C^{a}_{i+1}$ ,  $\phi$ :  $C'_{i-1}-N_{i}-C^{a}_{i}-C'_{i}$ ,  $\psi$ :  $N_{i}-C^{a}_{i}-C'_{i}-N_{i+1}$ ; <sup>*b*</sup>In the polyproline type-I helix,  $O\cdots C=O$  refers to  $O'_{i}\cdots C'_{i-1}=O'_{i-1}$ ; <sup>*c*</sup>In poly(*L*-lactic acid),  $N_{i}$  and  $N_{i+1}$  are replaced with oxygens.



Fig. 1.  $n \rightarrow \pi^*$  Interactions (hatched lines) between backbone carbonyl groups in common helices. The depicted models are AcAlaNH2 or Ac(L-lactic acid)OH with structural parameters listed in Table 1.



Fig. 2. A new view of the  $\alpha$  helix. The s-rich lone pair  $(n_s)$  forms the canonical  $i \rightarrow i+4$ hydrogen bond; the p-rich lone pair  $(n_p)$ forms an  $i \rightarrow i+1$   $n \rightarrow \pi^*$  interaction. The depicted model is  $AcAla_4NH_2$  in an  $\alpha$  helix.

We conclude that the  $n \rightarrow \pi^*$  interaction must be considered along with other noncovalent interactions when examining and considering the structure, stability, engineering, and design of common helices, and that  $n \rightarrow \pi^*$  interactions be included in relevant computational force fields.

## Acknowledgments

This work was supported by grants R01 AR044276 (NIH) and CHE-1124944 (NSF).

## References

- 1.Bartlett, G.J., Choudhary, A., Raines, R.T., Woolfson, D.N. Nat. Chem. Biol. 6, 615-620 (2010). 2.Newberry, R.W., Raines, R.T. Chem. Commun. 49, 7699-7701 (2013).
- 3. Bretscher, L.E., Jenkins, C.L., Taylor, K.M., DeRider, M.L., Raines, R.T. J. Am. Chem. Soc. 123,
- 777-778 (2001). 4.DeRider, M.L., Wilkens, S.J., Waddell, M.J., Bretscher, L.E., Weinhold, F., Raines, R.T., Markley, J. L. J. Am. Chem. Soc. 124, 2497-2505 (2002).
- 5. Hinderaker, M.P., Raines, R.T. Protein Sci. 12, 1188-1194 (2003).
- 6.Choudhary, A., Gandla, D., Krow, G. R., Raines, R. T. J. Am. Chem. Soc. 131, 7244-7246 (2009). 7.Newberry, R.W., VanVeller, B., Guzei, I.A., Raines, R.T. J. Am. Chem. Soc. 135, 7843-7846 (2013).