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Introduction 
Helices are prevalent molecular structures in natural and synthetic polymers, including 
peptides and proteins. The topology of helices brings atoms that are nearby in a sequence 
into close proximity in a three-dimensional structure. This proximity can be reinforced by 
hydrogen bonds, like those in an α or 310 helix. Other helices, however, lack hydrogen bonds 
(e.g., polyproline type-I and type-II, and poly(L-lactic acid)), and do not have a clear basis 
for their conformational stability. 

We have proposed that a quantum mechanical interaction stabilizes common helices - an 
n→π* interaction between backbone carbonyl groups [1,2]. This interaction is between a 
lone pair (n) of the oxygen (Oi–1) of one carbonyl group and the antibonding orbital (π*) of 
the subsequent carbonyl group (C′i=O′i) [3-5]. Here, the structures of natural and synthetic 
helices are analyzed from this perspective. 

Results and Discussion 
Models of AcAlaNH2 in an α, 310, and polyproline type-I and type-II helix, and a model of an 
Ac(L-lactic acid)OH helix were created based on the ω, ϕ, and ψ backbone dihedral angles 
listed in Table 1. These models are depicted in Figure 1. A key aspect of these helices is that 
rO···C=O is near or within the sum of the van der Waals radii of oxygen and carbon (3.22 Å) 
and O···C=O is close to the Bürgi–Dunitz trajectory for the approach of a nucleophile to a 
carbonyl group (~109°). Accordingly, the parameters indicate that n→π* interactions make a 
significant contribution to the conformational stability to each of these helices. The energy of 
the interaction is 0.3 kcal/mol in AcProNH2, and is enhanced with thiocarbonyl groups [6,7]. 

This analysis has numerous implications. For example, the data provide a new view of 
the α helix, which is the most prevalent structural element in folded proteins. This view is 
depicted in Figure 2 [1]. In addition, the data establish a physicochemical basis for the 
conformational stability of polyproline type-I and type-II helices, and the helical structure of 
poly(L-lactic acid) [2,5]. 

 
Table 1. Structural parameters of common helices with backbone carbonyl groups.a 

Helix ω ϕ ψ rO···C=O O···C=O 

Α 180° –60° –45° 2.91 Å   97.9° 
310 180° –49° –26° 2.73 Å 116.1° 

polyproline type-Ib     0° –75° 150° 3.35 Å 127.5° 
polyproline type-II 180° –75° 160° 3.18 Å   89.4° 
poly(L-lactic acid)c 180° –64° 154° 2.86 Å   94.4° 

aω: Cα
i–C′i–Ni+1–Cα

i+1, ϕ: C′i–1–Ni–Cα
i–C′i, ψ: Ni–Cα

i–C′i–Ni+1; bIn the polyproline type-I helix, 
O···C=O refers to O′i···C′i–1=O′i–1; cIn poly(L-lactic acid), Ni and Ni+1 are replaced with oxygens. 
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Fig. 1. n→π* Interactions (hatched lines) between backbone carbonyl groups in common 
helices. The depicted models are AcAlaNH2 or Ac(L-lactic acid)OH with structural 
parameters listed in Table 1. 

 

Fig. 2. A new view of the α helix. The s-rich 
lone pair (ns) forms the canonical i→i+4 
hydrogen bond; the p-rich lone pair (np) 
forms an i→i+1 n→π* interaction. The 
depicted model is AcAla4NH2 in an α helix. 

We conclude that the n→π* interaction must be considered along with other 
noncovalent interactions when examining and considering the structure, stability, 
engineering, and design of common helices, and that n→π* interactions be included in 
relevant computational force fields. 
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