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         Introduction 

 Typical chemotherapeutic agents act by disrupting the  fl ow of biochemical information 
(Fig.  1 ). The most common strategy uses small organic molecules to inhibit the 
function of a protein. Information  fl ow can be disrupted at earlier stages. For exam-
ple, an antisense oligonucleotide (Vitravene; Isis Pharmaceuticals) acts at the RNA 
level to treat eye infections caused by cytomegalovirus.  

 Can enzymes act as chemotherapeutic agents? The answer is clearly “yes,” as 
several enzymes are now in clinical use. Most such comprise regimens to restore 
catalytic activities in patients with lysosomal storage diseases. Others are hydrolytic 
enzymes that degrade unwanted extracellular material. For example, deoxyribonu-
clease I (Pulmozyme from Genentech) is used as an aerosol to cleave DNA in the 
lungs of cystic  fi brosis patients. Tissue plasminogen activator (Activase from 
Genentech) promotes the degradation of blood clots. Collagenase (Santyl from 
Healthpoint Biotherapeutics) debrides necrotic tissue. 

 Certain enzymes have the potential to disrupt the  fl ow of biochemical informa-
tion by degrading a biopolymer encoding that information (Fig.  1 ). For example, 
ribonucleases can do so because cleaving RNA renders indecipherable its encoded 
information. Yet, no extant enzymic drugs act by blocking the  fl ow of biochemical 
information. Here, I report on the ability of enzymes to be chemotherapeutic agents, 
focusing on mammalian ribonucleases for the treatment of cancer.  
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   Ribonuclease A and Its Homologues 

 Bovine pancreatic ribonuclease (RNase A; EC 3.1.27.5) is perhaps the best character-
ized of all enzymes  [  1  ] . RNase A was studied extensively during the 1960s and 1970s 
as a model system, in part because of its prevalence in an accessible source—the cow 
pancreas—and because of its facile puri fi cation, its high conformational stability, and 
its small size (C 

575
 H 

901
 N 

171
 O 

193
 S 

12
 ; 13,682 Da). RNase A was the  fi rst enzyme to have 

its sequence determined and the third for which a structure was revealed. RNase A 
was also the object of landmark work on the folding and stability of proteins, on 
enzymology, and on molecular evolution. Recognition of this historic role culminated 
in 1972 when the Nobel Prize in chemistry was awarded jointly to Stanford Moore, 
William Stein, and Christian An fi nsen for their collective work on RNase A  [  2,   3  ] . 
In 1984, Bruce Merri fi eld was awarded the Nobel Prize in chemistry for developing 
chemical synthesis on a solid matrix; he likewise used RNase A as a model  [  4  ] . 

 RNase A catalyzes the depolymerization of RNA by cleaving its P–O 5 ¢   bonds 
 [  1,   5  ] . A mechanism of catalysis that is consistent with all known data from work on 
the enzyme is depicted in Fig.  2   [  6  ] . In this mechanism, His12 acts as a base that 
abstracts a proton from the 2 ¢ -oxygen of a substrate molecule and thereby facilitates 
its attack on phosphorus  [  7,   8  ] . The side chain of His119 acts as an acid to protonate 
the 5″-oxygen to facilitate its displacement. Lys41 stabilizes the negative charge 
that accumulates on a nonbridging phosphoryl oxygen in the transition state  [  9,   10  ] . 
The attack on phosphorus proceeds in line to displace a nucleoside  [  11  ] . Both prod-
ucts are released to solvent. At low salt concentration, the  k  

cat
 / K  

M
  value for this reac-

tion is the largest known: 3 × 10 9 /M s  [  12,   13  ] . The hydrolysis of the 2 ¢ ,3 ¢ -cyclic 
phosphodiester product occurs in a slow, separate process that resembles the reverse 
of transphosphorylation  [  14,   15  ] .  

 RNase A is but the best known member of a superfamily of secretory enzymes that 
operate at the crossroads of transcription and translation by catalyzing RNA degrada-
tion (Fig.  1 )  [  16  ] . The physiological function traditionally ascribed to RNase A, 
RNase 1 (which is its human homologue), and other homologues is to degrade 

  Fig. 1    Flow of biochemical information and strategies to block that  fl ow       
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dietary RNA  [  17,   18  ] . In the 1950s, however, RNase A was shown to be toxic to 
tumor cells, both in vitro  [  19  ]  and in vivo  [  20–  22  ] . These early studies employed 
extremely large doses of RNase A; effects were observed only after milligrams of 
enzyme were injected into solid tumors. Thirty years ago, a dimeric homologue of 
RNase A that is cytotoxic at low levels was discovered in bull seminal  fl uid  [  23  ] . 
In the past two decades, even more cytotoxic homologues were isolated from the 
eggs of the bullfrog  Rana catesbeiana , the Japanese rice paddy frog  Rana japonica , 
and the Northern leopard frog  Rana pipiens   [  24  ] . These amphibian ribonucleases 
are toxic to tumor cells in vitro with IC 

50
  values <1  m M. 

 The  R. pipiens  ribonuclease, ranpirnase (Onconase; Tamir Biotechnology), 
deserves special attention  [  25  ] . Ranpirnase is undergoing a Phase II human clinical 
trial for the treatment of non-small cell lung cancer and has been granted both 
orphan-drug and fast-track status in the United States (USA). The enzyme is deliv-
ered to patients intravenously, kills cancer cells selectively, and avoids resistance 
 [  26  ] . RNase A and ranpirnase have a similar three-dimensional structure (Fig.  3 ), 

  Fig. 2    Putative mechanism for the cleavage of RNA as catalyzed by RNase A  [  6  ]        

  Fig. 3    Three-dimensional structures of RNase A  [  55  ]  and ranpirnase  [  56  ]  with bound oligonucle-
otides. The two active-site histidine residues and the four cystine residues of each enzyme are 
shown explicitly       
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and both catalyze RNA cleavage after pyrimidine residues. Yet, ranpirnase is toxic 
to cancer cells at submicromolar ( m M) concentrations, whereas high micromolar 
doses of RNase A exhibit no detectable antitumoral activity (Fig.  4 ). This discrep-
ancy is made even more puzzling because RNase A cleaves RNA 10 4 -fold faster 
than does ranpirnase  [  27  ] , and ribonucleolytic activity is essential for the antitu-
moral activity of ribonucleases  [  28  ] .   

 A chemotherapeutic agent based on a mammalian ribonuclease is likely to have 
many advantages over one derived from an amphibian  [  29  ] . Mammalian ribonu-
cleases are markedly less immunogenic than ranpirnase  [  30  ] . In humans, the dosing 
of ranpirnase is limited by renal toxicity. In contrast to ranpirnase, mammalian ribo-
nucleases do not accumulate in the kidney  [  31  ] . Finally, mammalian ribonucleases 
have the intrinsic ability to be much more ef fi cacious chemotherapeutic agents by 
virtue of their 10 4 -fold-greater catalytic activity  [  27  ] . The similarity of the structures 
of RNase A and ranpirnase (Fig.  3 ) and the difference in their antitumoral activities 
(Fig.  4 ) pose an intriguing structure–function problem that is at the core of the work 
in our laboratory, along with discerning the biochemical basis for the ability of ribo-
nucleases to discriminate between cells from cancerous and noncancerous origins.  

   Ribonuclease Inhibitor 

 Ribonuclease inhibitor (RI) is a 50-kDa protein present in the cytosol of mammalian 
cells  [  32  ] . RI contains 15 leucine-rich,  b – a  repeat units arranged symmetrically in 
the shape of a horseshoe (Fig.  5 ). The  b -strands form a solvent-exposed  b -sheet that 

  Fig. 4    Effect of wild-type 
RNase A, RNase 1, and 
ranpirnase on the viability of 
human erythroleukemia cells 
in vitro  [  36,   57  ] .  Bars  10  m m       
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de fi nes the inner circumference of RI. The  a -helices de fi ne the outer surface of the 
inhibitor. RI forms an extremely tight 1:1, noncovalent complex with target ribonu-
cleases. The value of  K  

d
  for the human complex is 0.29 fM, making the RI–RNase1 

interaction one of the tightest known protein–protein interactions.   

   Development of a Ribonuclease-Based Drug 

 RI resides in the cytosol. Yet, all known RI ligands are secreted ribonucleases. 
Although ranpirnase retains the elements of tertiary structure that characterize 
pancreatic-type ribonucleases (Fig.  3 ), ranpirnase does not bind to mammalian 
RIs  [  33  ] . Accordingly, we reasoned that RI evolved to preserve the integrity of 
cellular RNA should RNase A or a homologue inadvertently reach the cytosol 
 [  34,   35  ] . 

 Starting in 1998  [  36  ] , we performed a series of experiments to test the hypothesis 
that endowing a ribonuclease with RI-evasion makes the ribonuclease into a cyto-
toxin. Guided by structures of RI–ribonuclease complexes  [  37,   38  ] , we created vari-
ants of RNase A and RNase 1 that evade RI. Most importantly, we found that the 
ability of a ribonuclease to evade correlates with its cytotoxic activity  [  37,   39–  41  ] . 
For reasons that are not yet clear, this toxicity is highly selective for cancer cells, 
both in vitro and in mice  [  39,   42,   43  ] . These  fi ndings have led to a Phase I clinical 
trial of an RI-evasive variant of RNase 1 (QBI-139; Quintessence Biosciences) as a 
cancer chemotherapeutic agent.  

  Fig. 5    Three-dimensional structure of human ribonuclease inhibitor (RI)  [  37  ]        
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   Mechanism of Ribonuclease-Mediated Cytotoxicity 

 The antitumoral activity of ribonucleases relies on their ribonucleolytic activity 
 [  28  ] . To gain access to cellular RNA, ribonucleases effectively ricochet, following 
an endocytic pathway that leads eventually to the cytosol (Fig.  6 ). This process 
occurs via adsorptive endocytosis rather than receptor-mediated endocytosis  [  44  ] . 
Nonspeci fi c Coulombic forces play a key role in the association of ribonucleases 
with the cell surface  [  45  ] . Analyses in vitro and in cellulo reveal that RNase A inter-
acts tightly with abundant cell-surface proteoglycans containing glycosaminogly-
cans, such as heparan sulfate and chondroitin sulfate, as well as with sialic 
acid-containing glycoproteins. The uptake of ribonucleases correlates with both 
their cationicity  [  46  ]  and cell anionicity  [  45  ]  (as quanti fi ed by measuring electro-
phoretic mobility). It is noteworthy that anionic glycans are especially abundant on 
human tumor cells, perhaps contributing to their favorable therapeutic index.  

 We have developed a chemical strategy to track the path of ribonucleases (or 
other molecules) through mammalian cells. Traditional small-molecule  fl uorophores 
have been of extraordinary utility to chemical biology  [  47  ]  but can suffer from 
incessant  fl uorescence that can obscure valuable information. We have developed 
 fl uorogenic labels that overcome this limitation  [  48,   49  ] . At the core of our 
 fl uorogenic label is a derivative of rhodamine in which one nitrogen is modi fi ed as 
a urea. That modi fi cation enables rhodamine to retain bright  fl uorescence while 
facilitating conjugation to a target molecule. The other nitrogen of rhodamine is 
modi fi ed with a “trimethyl lock,” which enables  fl uorescence to be unmasked by a 
single user-designated chemical reaction. For example, the enzymatic activity of 
esterases in endocytic vesicles educes the  fl uorescence of an esterase-reactive 
 fl uorogenic label, enabling unprecedented temporal imaging and quanti fi cation of 
the internalization of a pendant analyte into live human cells (Fig.  7 ). The modular 
design of this  fl uorogenic label enables the facile synthesis of an ensemble of small-
molecule probes with different enzymatic reactivities and  fl uorescence wavelengths 
for the illumination of biochemical and cellular processes  [  50,   51  ] .   

  Fig. 6    Mechanism of ribonuclease cytotoxicity. Internalization of ribonucleases involves associa-
tion with glycans on the cell surface, absorptive endocytosis, and translocation to the cytosol. Upon 
evasion of RI, a ribonuclease can catalyze the degradation of cellular RNA and induce apoptosis       
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   Ribonuclease Zymogens 

 We are extending the realm of cytotoxic ribonucleases to diseases other than cancer. 
The biosynthesis of proteases as inactive precursors, or “zymogens,” is common-
place. This strategy enables organisms to maintain exquisite control over proteolytic 
activity. Surprisingly, no zymogens are known to have evolved for other types of 
enzymes, even those such as ribonucleases that can be cytotoxic. In 2003  [  52  ] , 

  Fig. 7    Mechanism of action of a synthetic esterase-reactive  fl uorogenic label for spatiotemporal 
analysis of the cellular internalization of an analyte, here, a ribonuclease  [  49  ]        
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we created the  fi rst arti fi cial zymogen. To do so, we made a circular permutation of 
the polypeptide chain of RNase A in which the newly installed residues that link the 
N- and C-termini block access to the active site and contain a sequence recognized 
by a user-designated protease (Fig.  8 ). The speci fi city of zymogen activation can be 
altered simply by changing the identity of the 14 amino-acid residues in the linker. 
To date, we have reported on three ribonuclease zymogens. The original one is acti-
vated by a protease that is necessary for the propagation of the parasite that causes 
malaria  [  52  ] , a second zymogen is made active by a protease that is essential for the 
replication of the hepatitis C virus  [  53  ] , and the most recent zymogen is activated by 
the renowned HIV-1 protease  [  54  ] . Our “Trojan horse” strategy, which relies on the 
 function  of a viral enzyme to elicit toxicity rather than its inhibition, could elude the 
resistance mechanisms that frustrate existing anti-pathogen therapies.   

   Prospectus 

 Enzymes are the most potent of known catalysts, and thus have an intrinsic poten-
tial to be superb chemotherapeutic agents. The appearance of ribonucleases in the 
clinic is heraldic, both by its leveraging the storied role of RNase A in the history of 
biological chemistry and by its bringing cytosolic targets within the reach of enzymic 

  Fig. 8    Structural model of an RNase A zymogen that is activated by a user-designated protease 
 [  52–  54  ] . Atoms of the linker (N = any residue) and cysteine residues are shown explicitly; old and 
new termini, and nonnative cysteines are labeled. Cleavage of the indicated peptide bond in the 
linker generates ribonucleolytic activity       
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drugs. The future for ribonucleases and other enzymes as chemotherapeutic agents 
is bright, and its manifestation is likely to inspire new chemistry and to reveal new 
biology.      
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