Catalysis of Hydrogen–Deuterium Exchange Reactions by 4-Substituted Proline Derivatives

Eddie L. Myers,* Michael J. Palte, and Ronald T. Raines*

Table of Contents

1.	p <i>K</i> _a Values	S2
2.	Rate Versus pD/pH/pH-Meter-Reading Profiles	S 6
3.	Concentration/Time and Log/Log Plots for Determination of Rate Laws	S15
4.	Substrate Isotope Effect Data	S56
5.	NMR Spectra	S73

1 pK_a Values

(2S)-4,4-Difluoroproline in D₂O (1)

(2S,4S)-4-Fluoroproline (2)

(2S,4R)-4-Fluoroproline (3)

(2*S*,4*S*)-4-Dimethylaminoproline (**4**)

(2*S*,4*R*)-4-Dimethylaminoproline (**5**)

(2*S*,4*S*)-4-Trimethylaminoproline (**6**)

(2*S*,4*R*)-4-Trimethylaminoproline (**7**)

pKa² Values for phosphate in D₂O and H₂O

2 Rate versus pD/pH/pH-meter-reading profiles

Background (no catalyst; all pD values)

Background (no catalyst; to pD = 11.5)

(2S)-Proline

(2*S*)-4,4-Difluoroproline (1)

 $pK_{a}(D_{2}PO_{4}^{-}) = 6.7$ $pK_{a}(1) = 7.8$ $k(D_{2}PO_{4}^{-})/k(DPO_{4}^{2-}) = k_{1}/k_{2} = 33$ [1] = 0.018 $[D_{2}PO_{4}^{-} + DPO_{4}^{2-}] = 0.15$ Rate $\propto k_{1}[D_{2}PO_{4}^{-}][1] + k_{2}[DPO_{4}^{-2}][1]$

pH-meter reading profile of deuterium incorporation 4,4-difluoroproline (10 mol %) 0.15M phosphate (I = 0.9) H₂O/D₂O (1:1)

(2*S*,4*S*)-4-Fluoroproline (2)

(2S,4R)-4-Fluoroproline (3)

(2*S*,4*S*)-4-Dimethylaminoproline (**4**)

(2*S*,4*R*)-4-Dimethylaminoproline (**5**)

(2*S*,4*S*)-4-trimethylammoniumproline (**6**)

(2*S*,4*R*)-4-trimethylammoniumproline (**7**)

1500

2000

3000

6000

-1.5

8000

-1.0

4000

2500

3 Concentration/Time and Log/Log Plots for Determination of Rate Laws

-5.5

-3.0

-2.5

-2.0

log [cat]

Fluoroproline 1: Variation of concentration of ketone (0.15M Phosphate, pD 7.4, *I* = 0.9)

Fluoroproline 1: Variation of concentration of phosphate (pD = 8.0, *I* = 3)

-S17-

The Y Intercept of the above Rate versus [Phosphate] plot represents catalysis where the proline derivative acts as both the putative iminium/enamine covalent catalyst and the general acid/base (background). When the value corresponding to the Y intercept is subtracted from the values of the rate of incorporation deuterium at each concentration value and the log of the resulting values plotted against the log of the concentration of phosphate, a value close to unity is obtained (see below). The error bars in the log/log plot are 0.434*dy/y(y = rate of deuterium)incorporation; dy = std. error obtained from plots of [deuterium] versus time +std. error of intercept in rate versus [phosphate] plot.)

-S18-

Fluoroproline 1: Variation of concentration of phosphate (pD = 6.5, *I* = 0.9)

Value at 0.13M (0.00001732) excluded owing to being an extreme outlier

-S19-

The Y Intercept of the above Rate versus [Phosphate] plot represents catalysis where the proline derivative acts as both the putative iminium/enamine covalent catalyst general acid/base and the (background). When the value corresponding to the Y intercept is subtracted from the values of the rate of deuterium incorporation at each concentration value and the log of the resulting values plotted against the log of the concentration of phosphate, a value of 0.87 is obtained (see below). The error bars in the log/log plot are 0.434*dy/y (y = rate of deuterium incorporation; dy = std. error obtained from plots of [deuterium] versus time + std. error of intercept in rate versus [phosphate] plot.)

-1.00 -0.95 -0.90

Log [Phosphate] 0.09M - 0.15M

-0.85

-0.80

-4.7

-4.8

-4.9 -1.10

-1.05

Fluoroproline 1: Variation of concentration of phosphate (pD = 8.5, *I* = 0.9)

-S21-

The Y Intercept of the above Rate versus [Phosphate] plot represents catalysis where the proline derivative acts as both the putative iminium/enamine covalent catalyst the general acid/base and (background). When the value corresponding to the Y intercept is subtracted from the values of the rate of deuterium incorporation at each concentration value and the log of the resulting values plotted against the log of the concentration of phosphate, a value of 0.96 is obtained (see below). The error bars in the log/log plot are 0.434*dy/y (y = rate of deuterium incorporation; dy = std. error obtained from plots of [deuterium] versus time + std. error of intercept in rate versus [phosphate] plot.)

Log/Log Plot: Rate Vs [Phosphate]

Fluoroproline 2: Variation of concentration of catalyst (0.25M Phosphate, pD 8.4, *I* = 1.5)

-S23-

Fluoroproline 2: Variation of concentration of ketone (0.25M Phosphate, pD 8.4, *I* = 1.

Fluoroproline 2 (0.178M Ketone)

-S25-

The Y Intercept of the above Rate versus [Phosphate] plot represents catalysis where the proline derivative acts as both the putative iminium/enamine covalent catalyst the general acid/base and (background). When the value corresponding to the intercept Y is subtracted from the values of the rate of deuterium incorporation at each concentration value and the log of the resulting values plotted against the log of the concentration of phosphate, a value of 0.90 is obtained (see below). If the first data point is excluded, the best-fit line gives a slope of 0.99. The error bars in the \log/\log plot are 0.434*dy/y (y = rate of deuterium incorporation; dy = std. error obtained from plots of [deuterium] versus + std. error of intercept in rate time versus [phosphate] plot.)

Log/Log Plot: Rate Vs [Phosphate]

Fluoroproline 2: Variation of concentration of imidazole (pD = 8.4, *I* = 0.5)

-S27-

[Imidazole] (M)

The Y Intercept of the above Rate versus [Imidazole] plot represents catalysis where

the proline derivative acts as both the putative iminium/enamine covalent catalyst and the general acid/base (background). When the value corresponding to the Y intercept is subtracted from the values of the rate of deuterium incorporation at each concentration value and the log of the resulting values plotted against the log of the concentration of imidazole, a value of 0.89 is obtained (see below). If the first data point is excluded, the best-fit line gives a slope of 1.03. The error bars in the \log/\log plot are 0.434*dy/y (y = rate of deuterium incorporation; dy = std. error obtained from plots of [deuterium] versus time +std. error of intercept in rate versus [imidazole] plot.)

Log/Log Plot: Rate Vs [Imid]

-S29-

Fluoroproline 3: Variation of concentration of ketone (0.25M Phosphate, pD 8.4, *l* = 1.5)

Fluoroproline 3 (0.276M Ketone)

Fluoroproline 3 (0.368M Ketone)

-S30-

Fluoroproline 3: Variation of concentration of phosphate (pD = 8.4, *I* = 3)

The Y Intercept of the above Rate versus [Phosphate] plot represents catalysis where the proline derivative acts as both the putative iminium/enamine covalent catalyst and the general acid/base (background). When the value corresponding to the Y intercept is subtracted from the values of the rate of incorporation deuterium at each concentration value and the log of the resulting values plotted against the log of the concentration of phosphate, a value of 0.86 is obtained (see below). If the first data point is excluded, the best-fit line gives a slope of 1.06. The error bars in the \log/\log plot are 0.434*dy/y (y = rate of

deuterium incorporation; dy = std. error obtained from plots of [deuterium] versus time + std. error of intercept in rate versus [phosphate] plot.)

Fluoroproline 3: Variation of concentration of imidazole (pD = 8.4, *I* = 0.5)

-S33-

The Y Intercept of the above Rate versus [Imidazole] plot represents catalysis where the proline derivative acts as both the putative iminium/enamine covalent and acid/base catalyst the general (background). When the value corresponding to the Y intercept is subtracted from the values of the rate of incorporation deuterium at each concentration value and the log of the resulting values plotted against the log of the concentration of imidazole, a value of 0.95 is obtained (see below). excluded, the best-fit The error bars in the log/log plot are 0.434*dy/y (y = rate of deuterium

incorporation; dy = std. error obtained from plots of [deuterium] versus time + std. error of intercept in rate versus [imidazole] plot.)

Aminoproline 4: Variation of concentration of catalyst (0.15M Phosphate, pD 7.4, *I* = 0.9)

-S35-

Aminoproline 4: Variation of concentration of ketone (0.15M Phosphate, pD 7.4, *I* = 0.9)

500

0

1000

Time (s)

1500

2000

Aminoproline 4: Variation of concentration of phosphate (pD = 7.4, *I* = 3)

-S37-

The Y Intercept of the above Rate versus [Phosphate] plot represents catalysis where the proline derivative acts as both the putative iminium/enamine covalent catalyst and the general acid/base (background). When the value corresponding to the Y intercept is subtracted from the values of the rate of incorporation deuterium at each concentration value and the log of the resulting values plotted against the log of the concentration of phosphate, a value of 1.03 is obtained (see below). The error bars in the log/log plot are 0.434*dy/y (y = rate of deuterium incorporation; dy = std. error obtained from plots of [deuterium] versus time + std. error of intercept in rate versus [phosphate] plot.)

Log/Log Plot: Rate Vs [Phosphate]

Aminoproline 5: Variation of concentration of catalyst (0.15M Phosphate, pD 7.4, *I* = 0.9)

Aminoproline 5: Variation of concentration of ketone (0.15M Phosphate, pD 7.4, *I* = 0.9)

Time (s)

-S40-

Aminoproline 5: Variation of concentration of phosphate (pD = 7.4, *I* = 3)

The Y Intercept of the above Rate versus [Phosphate] plot represents catalysis where the proline derivative acts as both the putative iminium/enamine covalent catalyst and the general acid/base (background). When the value corresponding to the Y intercept is subtracted from the values of the rate of deuterium incorporation at each concentration value and the log of the resulting values plotted against the log of the concentration of phosphate, a value of 0.98 is obtained (see below). The error bars in the log/log plot are 0.434*dy/y (y = rate of deuterium incorporation; dy = std. error obtained from plots of [deuterium]

versus time + std. error of intercept in rate versus [phosphate] plot.)

Aminoproline 5: Variation of concentration of phosphate (pD = 6.5, *I* = 0.9) Aminoproline 5 (0.09M Phos) Deuterium Incorporation (M) 9000 9000 9000 9000 Slope = 1.950e-005 Std. Error = 4.628e-007 2000 3000 4000 1000 Time (s) Aminoproline 5 (0.10M Phos) Deuterium Incorporation (M) 90.0 0.04 90.0 0.04 0.00 Slope = 2.104e-005 Std. Error = 3.829e-007 2000 1000 3000 4000 0 Time (s) Aminoproline 5 (0.11M Phos) Deuterium Incorporation (M) 0.10 Slope = 2.162e-005 Std. Error = 3.346e-007 0.08 0.06 0.04 0.02 0.00 3000 1000 2000 4000 0 Time (s) Aminoproline 5 (0.12M Phos) Deuterium Incorporation (M) 9000 0000 9000 0000 9000 9000 900 Slope = 2.368e-005 Std. Error = 3.219e-007 1000 2000 3000 4000 0

Time (s)

The Y Intercept of the above Rate versus [Phosphate] plot represents catalysis where the proline derivative acts as both the putative iminium/enamine covalent

catalyst and the general acid/base (background). When the value corresponding to the Y intercept is subtracted from the values of the rate of deuterium incorporation at each concentration value and the log of the resulting values plotted against the log of the concentration of phosphate, a value of 1.00 is obtained (see below). The error bars in the log/log plot are 0.434*dy/y (y = rate of deuterium incorporation; dy = std. error obtained from plots of [deuterium] versus time + std. error of intercept in rate versus [phosphate] plot.)

Aminoproline 5: Variation of concentration of phosphate (pD = 8.5, *I* = 0.9)

-S45-

The Y Intercept of the above Rate versus [Phosphate] plot represents catalysis where the proline derivative acts as both the putative iminium/enamine covalent catalyst and the general acid/base (background). the When value corresponding to the Y intercept is subtracted from the values of the rate of deuterium incorporation at each concentration value and the log of the resulting values plotted against the log of the concentration of phosphate, a value of 1.00 is obtained (see below). The error bars in the log/log plot are 0.434*dy/y (y = rate of deuterium incorporation; dy = std. error obtained from plots of [deuterium] std. error of intercept in versus time + rate versus [phosphate] plot.)

Aminoproline 6: Variation of concentration of catalyst (0.15M Phosphate, pD 7.4, *I* = 0.9)

Aminoproline 6 (9.4 mol% cat)

Time (s)

Aminoproline 6 (14.3 mol% cat)

Aminoproline 6: Variation of concentration of ketone (0.15M Phosphate, pD 7.4, *I* = 0.9)

Aminoproline 6: Variation of concentration of phosphate (pD = 8.0, *I* = 3)

-S49-

The Y Intercept of the above Rate versus [Phosphate] plot represents catalysis where the proline derivative acts as both the putative iminium/enamine covalent catalyst and the general acid/base (background). When the value corresponding to the Y intercept is subtracted from the values of the rate of deuterium incorporation at each concentration value and the log of the resulting values plotted against the log of the concentration of phosphate, a value of 0.83 is obtained (see below). If the first data point is excluded, the best-fit line has a slope of 0.95. The error bars in the \log/\log plot are 0.434*dy/y (y = rate of

deuterium incorporation; dy = std. error obtained from plots of [deuterium] versus time + std. error of intercept in rate versus [phosphate] plot.)

400

Time (s)

600

800

200

Aminoproline 7: Variation of concentration of ketone (0.15M Phosphate, pD 7.4, *I* = 0.9)

Aminoproline 7 (0.184M Ketone)

Aminoproline 7 (0.276M Ketone)

The Y Intercept of the above Rate versus [Phosphate] plot represents catalysis where the proline derivative acts as both the putative iminium/enamine covalent catalyst and the general acid/base (background). When the value corresponding to the Y intercept is subtracted from the values of the rate of deuterium incorporation at each concentration value and the log of the resulting values plotted against the log of the concentration of phosphate, a value of 0.93 is obtained (see below). If the first data point is excluded, the best-fit line has a slope of 1.00. The error bars in the log/log plot are 0.434*dy/y (y = rate of deuterium incorporation; dy = std. error obtained from plots of [deuterium] versus time +std. error of intercept in rate versus [phosphate] plot.)

4 Substrate Isotope Effect Data

GC/MS data: **4,4-difluoroproline** (10 mol%), phosphate (150 mM, I = 0.9), D₂O/H₂O (1:1, pH-meter reading 6.0), Substrate = [**D**₀]cyclohexanone

Mass				Integrations			
Ion	0 min	20 min	40 min	60 min	80 min	100 min	120 min
97	14283	4994	7633	3992	1971	3901	2003
98	219875	76379	121170	64662	32642	63432	32864
99	15307	6276	12001	7225	4118	8972	5178
100	908	442	863	566	337	697	459
101	0	0	16	0	0	17	165
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0
		M=97 species	and higher M	W isotopes of n	atural abundan	ce	
97	14283	4994	7633	3992	1971	3901	2003
98	948	332	507	265	131	259	133
99	56	19	30	16	8	15	8
	Subtrac	ction of M=97	species and hig	gher MW isotop	pes of natural a	bundance	
97	0	0	0	0	0	0	0
98	218927	76047	120663	64397	32511	63173	32731
99	15251	6257	11971	7209	4110	8957	5170
100	908	442	863	566	337	697	459
101	0	0	16	0	0	17	165
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0
	M=98 spec	cies ([D ₀]cyclo	hexanone) and	l higher MW iso	otopes of natur	al abundance	

97	0	0	0	0	0	0	0
98	218927	76047	120663	64397	32511	63173	32731
99	14537	5050	8012	4276	2159	4195	2173
100	854	297	471	251	127	246	128
101	0	0	0	0	0	0	0
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0

Subtraction M=98 species ([D₀]cyclohexanone) and higher MW isotopes of natural abundance

97	0	0	0	0	0	0	0
98	0	0	0	0	0	0	0
99	715	1207	3959	2933	1952	4762	2997
100	54	145	392	315	210	451	331

0	0	16	0	0	17	165
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
M=99 spec	ies ([D ₁]cyclo	hexanone) and	higher MW iso	otopes of natur	al abundance	
0	0	0	0	0	0	0
0	0	0	0	0	0	0
715	1207	3959	2933	1952	4762	2997
47	80	263	195	130	316	199
0	0	1	1	1	1	1
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
otraction of M=	99 species ([D	1]cyclohexanor	ne) and higher l	MW isotopes of	of natural abun	dance
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
7	65	130	120	81	134	132
0	0	15	-1	-1	16	164
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
Addi	tion of the nur	nbers in bold ([D_0]-, [D_1]-, and	1 [D ₂]cyclohex	anone)	
7 Iddi						
219648	77320	124752	67450	34543	68069	35860
	0 0 0 M=99 spec 715 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Species							
$[D_0]$	99.67161	98.35456	96.72252	95.47291	94.11696	92.80658	91.27387
[D1]	0.32532	1.56102	3.17366	4.34908	5.64964	6.99594	8.35703
[D ₂]	0.00307	0.08442	0.10382	0.17801	0.23339	0.19748	0.36910

	Abc	ove values conv	erted into mole	es of deuterium	incorporated j	per liter	
[D ₀]	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
[D ₁]	0.00060	0.00287	0.00584	0.00800	0.01040	0.01287	0.01538
[D ₂] [D ₁]+	0.00001	0.00031	0.00038	0.00066	0.00086	0.00073	0.00136
[D ₂]	0.00061	0.00318	0.00622	0.00866	0.01125	0.01360	0.01674

Mass]	Integrations			
Ion	0 min	20 min	40 min	60 min	80 min	100 min	120 min
97 98 99 100 101 102 103 104	0 346 298 2959 23865 150423 10357 1017	0 0 671 5031 28532 1902 117	0 21 757 6001 31588 2057 141	0 0 260 2156 10619 684 16	0 0 632 4781 21422 1385 85	0 0 558 4069 17067 1136 59	0 130 1304 8906 35359 2337 171
		M-00 species	and higher MW	isotones of n	atural abundan	<u> </u>	
		M=99 species a		isotopes of in	aturar abundan	ce	
99 100 101	298 20 1	0 0 0	21 1 0	0 0 0	10 1 0	0 0 0	130 9 1
Subtra	ction of M=98	integrations, an	nd M=99 specie	es with its high	er MW isotop	es of natural at	oundance
97 98 99 100 101 102 103 104	0 0 2939 23864 150423 10357 1017 M=100 spe	0 0 671 5031 28532 1902 117 cies ([D ₂]cyclo	0 0 756 6001 31588 2057 141 hexanone) and	0 0 260 2156 10619 684 16 higher MW is	0 0 631 4781 21422 1385 85 otopes of natur	0 0 558 4069 17067 1136 59 ral abundance	0 0 1295 8905 35359 2337 171
97 98 99							
100 101 102 103 104	2939 195 11	671 45 3	756 50 3	260 17 1	631 42 2	558 37 2	1295 86 5
Su	btraction M=10	00 species ([D ₂]cyclohexanone	e) and higher M	MW isotopes o	f natural abund	lance
97 98 99 100 101	0 0 0 23669	0 0 0 4986	0 0 0 5951	0 0 0 2139	0 0 0 4739	0 0 0 4032	0 0 0 8819

GC/MS data: **4,4-difluoroproline** (10 mol%), phosphate (150 mM, I = 0.9), D₂O/H₂O (1:1, pH-meter reading 6.0), Substrate = [**D**₄]cyclohexanone

104	1017	117	141	16	85	59	171
	M=101 spec	ies ([D ₃]cycloh	exanone) and l	higher MW iso	topes of natura	l abundance	
97 98 99 100 101 102 103 104	23669 1572 92	4986 331 19	5951 395 23	2139 142 8	4739 315 18	4032 268 16	8819 586 34

Subtraction of M=101 species ([D₃]cyclohexanone) and higher MW isotopes of natural abundance

97	0	0	0	0	0	0	0
98	0	0	0	0	0	0	0
99	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0
101	0	0	0	0	0	0	0
102	148840	28198	31190	10476	21105	16797	34768
103	10265	1883	2034	676	1367	1120	2303
104	1017	117	141	16	85	59	171

Addition of the numbers in bold ([D₄]-, [D₃]-, and [D₂]cyclohexanone)

175448	33856	37896	12875	26475	21387	44883
1/3440	22020	37090	120/5	207/3	2130/	TTOOJ

 $([D_4]-, [D_3]-, and [D_2]cyclohexanone)$ as a percentage of total

Species							
[D4]	84.83430	83.28955	82.30340	81.36862	79.71548	78.53866	77.46406
[D ₃]	13.49043	14.72851	15.70272	16.61192	17.89989	18.85229	19.64986
[D ₂]	1.67526	1.98194	1.99388	2.01946	2.38463	2.60906	2.88609
	Ab	ove values con	verted into mo	les of hydroger	n incorporated	per liter	
[D4]	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
[D3]	0.02482	0.02710	0.02889	0.03057	0.03294	0.03469	0.03616
[D ₂]	0.00616	0.00729	0.00734	0.00743	0.00878	0.00960	0.01062
[D3]+							
$\left[D_{2} \right]$	0.03099	0.03439	0.03623	0.03800	0.04171	0.04429	0.04678

4,4-difluoroproline (10 mol %), phosphate (150 mm, I=0.9), D₂O/H₂O (pH-meter reading 6) 1:1

GC/MS data: 4,4-difluoroproline (10 mol%), phosphate (150 mM, $I = 0.9$), D ₂ O/H ₂ O)
(1:1, pH-meter reading 8.0), Substrate = $[D_0]$ cyclohexanone	

Mass				Integrations			
Ion	0 min	20 min	40 min	60 min	80 min	100 min	120 min
97	14283	4073	3538	2479	150	2578	2552
98	219875	65510	57742	40937	2476	42377	41249
99	15307	5802	6239	5122	338	7023	7725
100	908	400	476	409	0	641	750
101	0	0	0	0	0	12	52
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0
		M=97 species	and higher MV	V isotopes of n	atural abundan	ce	
97	14283	4073	3538	2479	150	2578	2552
98	948	270	235	165	10	171	169
99	56	16	14	10	1	10	10
	Subtrac	tion of M=97 s	species and hig	ther MW isotop	pes of natural a	bundance	
97	0	0	0	0	0	0	0
98	218927	65240	57507	40772	2466	42206	41080
99	15251	5786	6225	5112	337	7013	7715
100	908	400	476	409	0	641	750
101	0	0	0	0	0	12	52
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0

97	0	0	0	0	0	0	0
98	218927	6524 0	57507	40772	2466	42206	41080
99	14537	4332	3818	2707	164	2802	2728
100	854	254	224	159	10	165	160
101	0	0	0	0	0	0	0
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0

M=98 species ([D₀]cyclohexanone) and higher MW isotopes of natural abundance

Subtraction M=98 species ([D₀]cyclohexanone) and higher MW isotopes of natural abundance

97	0	0	0	0	0	0	0
98	0	0	0	0	0	0	0
99	715	1454	2407	2405	174	4210	4987
100	54	146	252	250	-10	476	590
101	0	0	0	0	0	12	52
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0

M=99 species ([D1]cyclohexanone) and higher MW isotopes of natural abundance

97	0	0	0	0	0	0	0
98	0	0	0	0	0	0	0
99	715	1454	2407	2405	174	4210	4987
100	47	97	160	160	12	280	331
101	0	0	1	1	0	1	1
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0

Subtraction of M=99 species ([D1]cyclohexanone) and higher MW isotopes of natural abundance

97	0	0	0	0	0	0	0
98	0	0	0	0	0	0	0
99	0	0	0	0	0	0	0
100	7	49	92	90	-21	197	259
101	0	0	-1	-1	0	11	51
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0

Addition of the numbers in bold ([D₀]-, [D₁]-, and [D₂]cyclohexanone)

219648	66743	60006	43268	2619	46613	46326

([D₀]-, [D₁]-, and [D₂]cyclohexanone) as a percentage of total

Species

[D ₀]	99.67161	97.74775	95.83599	94.23280	94.17540	90.54494	88.67581
$[D_1]$	0.32532	2.17883	4.01084	5.55852	6.63227	9.03282	10.76591
[D ₂]	0.00307	0.07343	0.15318	0.20868	-0.80767	0.42224	0.55829
	Abo	ove values con-	verted into mol	es of deuteriun	n incorporated	per liter	
[D ₀]	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
[D1]	0.00060	0.00401	0.00738	0.01023	0.01220	0.01662	0.01981
[D ₂]	0.00001	0.00027	0.00056	0.00077	-0.00297	0.00155	0.00205
[D ₁]+							
[D ₂]	0.00061	0.00428	0.00794	0.01100	0.00923	0.01817	0.02186

GC/MS data: 4,4-difluoroproline (10 mol%), phosphate (150 mM, I = 0.9), D₂O/H₂O (1:1, pH-meter reading 8.0), Substrate = [D4]cyclohexanone

Mass				Integrations			
Ion	0 min	20 min	40 min	60 min	80 min	100 min	120 min
97	0	0	0	0	0	0	0
98	346	25	0	10	0	0	0
99	298	93	135	153	185	242	53
100	2959	1281	1507	1447	1767	2272	760
101	23865	10157	11658	10641	12556	15852	5097
102	150423	56779	58336	47362	51739	58915	17544
103	10357	3842	3937	3190	3463	4004	1151
104	1017	312	326	281	270	333	86
		M=99 species	and higher MV	V isotopes of n	atural abundan	ce	
99	298	93	135	153	185	242	53
100	20	6	9	10	12	16	4
101	1	0	1	1	1	1	0
Subtra	ction of M=98	integrations, a	nd M=99 speci	es with its high	ner MW isotop	es of natural at	oundance
97	0	0	0	0	0	0	0
98	0	0	0	10	0	0	0
99	0	0	0	0	0	0	0
100	2939	1275	1498	1437	1755	2256	756
101	23864	10157	11657	10640	12555	15851	5097
102	150423	56779	58336	47362	51739	58915	17544
103	10357	3842	3937	3190	3463	4004	1151

M=100 species ([D₂]cyclohexanone) and higher MW isotopes of natural abundance

97							
98							
99							
100	2939	1275	1498	1437	1755	2256	756
101	195	85	99	95	117	150	50

Myers,	Palte, and R	aines		Suppor	ting Information		
102 103 104	11	5	6	6	7	9	3
S	ubtraction M=	100 species ([D	2]cyclohexano	ne) and higher	MW isotopes	of natural abur	dance
97 98 99 100 101 102 103 104	0 0 23669 150412 10357 1017	0 0 0 10072 56774 3842 312	0 0 11558 58330 3937 326	0 10 0 10545 47356 3190 281	0 0 0 12439 51732 3463 270	0 0 0 15701 58906 4004 333	0 0 0 5047 17541 1151 86
	M=101 sp	ecies ([D ₃]cycl	ohexanone) an	d higher MW i	isotopes of natu	ıral abundance	
97 98 99 100 101 102 103 104	23669 1572 92	10072 669 39	11558 767 45	10545 700 41	12439 826 49	15701 1043 61	5047 335 20
Su	btraction of M=	=101 species ([D ₃]cyclohexan	one) and highe	er MW isotopes	s of natural abu	indance
97 98 99 100 101 102 103 104	0 0 0 148840 10265 1017	0 0 0 56105 3803 312	0 0 0 57563 3892 326	0 10 0 46656 3149 281	0 0 0 50906 3414 270	0 0 0 57864 3943 333	0 0 0 0 17206 1131 86
	Add	lition of the nu	mbers in bold	([D ₄]-, [D ₃]-, an	nd [D ₂]cyclohe	xanone)	
	175448	67452	70619	58638	65100	75821	23009
		([D ₄]-, [D ₃]-, ;	and [D2]cycloh	exanone) as a j	percentage of t	otal	
Species [D ₄] [D ₃]	84.83430 13.49043	83.17796 14.93207	81.51193 16.36676	79.56644 17.98320	78.19732 19.10725	76.31628 20.70838	74.77925 21.93299

[D ₃] [D ₂]	13.49043 1.67526	14.93207 1.88997	16.36676 2.12130	17.98320 2.45036	19.10725 2.69543	20.70838 2.97534	21.93299 3.28776
	Ab	ove values con	verted into mo	les of hydroger	n incorporated	per liter	
[D4]	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
[D ₃]	0.02482	0.02748	0.03011	0.03309	0.03516	0.03810	0.04036
[D ₂]	0.00616	0.00696	0.00781	0.00902	0.00992	0.01095	0.01210

[D₃]+							
[D ₂]	0.03099	0.03443	0.03792	0.04211	0.04508	0.04905	0.05246

Mass				Integrations			
Ion	0 min	20 min	40 min	60 min	80 min	100 min	120 min
97	14283	5412	7105	7703	5918	5242	5811
98	219875	82334	110703	122411	93428	84424	92934
99	15307	7974	13682	18714	16995	17775	22249
100	908	570	1100	1602	1612	1866	2535
101	0	33	68	92	106	124	217
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0
		M=97 species	and higher MV	V isotopes of na	atural abundan	ce	
97	14283	5412	7105	7703	5918	5242	5811
98	948	359	472	511	393	348	386
99	56	21	28	30	23	20	23
	Subtrac	tion of M=97 s	species and hig	her MW isotop	bes of natural a	bundance	
97	0	0	0	0	0	0	0
98	218927	81975	110231	121900	93035	84076	92548
99	15251	7953	13654	18684	16972	17755	22226
100	908	570	1100	1602	1612	1866	2535
101	0	33	68	92	106	124	217

104	0	0	0	0	0	0	0
	M=98 spec	eies ([D ₀]cyclo	hexanone) and	higher MW is	sotopes of natu	ral abundance	
97	0	0	0	0	0	0	0
98	218927	81975	110231	121900	93035	84076	92548
99	14537	5443	7319	8094	6178	5583	6145
100	854	320	430	475	363	328	361
101	0	0	0	0	0	0	0
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0

Subtraction M=98 species ([D₀]cyclohexanone) and higher MW isotopes of natural abundance

97	0	0	0	0	0	0	0
98	0	0	0	0	0	0	0
99	715	2510	6335	10590	10794	12172	16081
100	54	250	670	1127	1249	1538	2174
101	0	33	68	92	106	124	217
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0

M=99 species ([D₁]cyclohexanone) and higher MW isotopes of natural abundance

97	0	0	0	0	0	0	0
98	0	0	0	0	0	0	0
99	715	2510	6335	10590	10794	12172	16081
100	47	167	421	703	717	808	1068
101	0	1	2	3	3	3	4
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0

Subtraction of M=99 species ([D₁]cyclohexanone) and higher MW isotopes of natural abundance

97	0	0	0	0	0	0	0
98	0	0	0	0	0	0	0
99	0	0	0	0	0	0	0
100	7	84	249	423	532	730	1106
101	0	32	66	89	103	121	213
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0

Addition of the numbers in bold ([D₀]-, [D₁]-, and [D₂]cyclohexanone)

219648 84568 116816 132913 104362 96978 109736

 $([D_0]-, [D_1]-, and [D_2]cyclohexanone)$ as a percentage of total

C							
Species							
[D ₀]	99.67161	96.93333	94.36343	91.71392	89.14660	86.69612	84.33743
[D ₁]	0.32532	2.96776	5.42302	7.96750	10.34324	12.55125	14.65445
[D ₂]	0.00307	0.09891	0.21355	0.31858	0.51016	0.75264	1.00813
	Abo	ove values con-	verted into mol	les of deuteriun	n incorporated	per liter	
[D ₀]	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
[D1]	0.00060	0.00546	0.00998	0.01466	0.01903	0.02309	0.02696
[D ₂]	0.00001	0.00036	0.00079	0.00117	0.00188	0.00277	0.00371
[D ₁]+							
[D ₂]	0.00061	0.00582	0.01076	0.01583	0.02091	0.02586	0.03067

GC/MS data: *trans*-4-trimethylammoniumproline (5 mol%), phosphate (150 mM, *I* = 0.9), D₂O/H₂O (1:1, pH-meter reading 6.0), Substrate = **[D**4]cyclohexanone

Mass				Integrations			
Ion	0 min	20 min	40 min	60 min	80 min	100 min	120 min
97	0	16	0	0	0	0	0
98	346	51	12	14	13	0	16
99	298	199	123	280	233	358	284
100	2959	2076	1514	2743	2476	3325	2697
101	23865	15998	11085	19229	16484	20758	16363
102	150423	85321	50764	78418	59169	67980	48743
103	10357	5781	3379	5252	4048	4565	3269
104	1017	437	264	451	315	371	227
		M=99 species	and higher M	W isotopes of n	atural abundan	ice	
99	298	199	123	280	233	358	284
100	20	13	8	19	15	24	19
101	1	1	0	1	1	1	1
Subtra	action of M=98	integrations, a	nd M=99 spec	ies with its high	ner MW isotop	es of natural al	oundance
07							
97							
98							
100	2020	2063	1506	2724	2461	2201	2678
100	2959	15997	11085	10728	16483	20757	16362
101	150423	85321	50764	78418	50160	67980	48743
102	10357	5781	3379	5252	4048	4565	3269
104	1017	437	264	451	315	371	227
	M-100 sp	eies ([Dalevel	havanona) an	d higher MW is	otopes of natu	ral abundance	
	100 spt		nexatione) all	u inghei wi w is	solopes of flatu		
97							
98							
99							

Myers, F	Palte, and Ra	ines				Supporti	ng Informatio	n
101 102 103 104	195 11	137 8	100 6	181 11	163 10	219 13	178 10	
Su	btraction M=10	00 species ([D ₂]	cyclohexanon/	e) and higher N	AW isotopes of	natural abund	ance	
97 98 99 100 101 102 103 104	23669 150412 10357 1017	15860 85313 5781 437	10985 50758 3379 264	19047 78407 5252 451	16320 59159 4048 315	20537 67967 4565 371	16184 48733 3269 227	
	M=101 spec	cies ([D ₃]cyclo	hexanone) and	higher MW iso	otopes of natura	al abundance		
97 98 99 100 101 102	23669 1572	15860 1053	10985 729	19047 1265	16320 1084	20537 1364	16184 1075	
103	92	62	43	74	64	80	63	

Subtraction of M=101 species ([D₃]cyclohexanone) and higher MW isotopes of natural abundance

97 98 99							
100							
101							
102	148840	84260	50029	77143	58076	66603	47658
103	10265	5719	3336	5178	3984	4485	3206
104	1017	437	264	451	315	371	227

Addition of the numbers in bold ([D₄]-, [D₃]-, and [D₂]cyclohexanone)

 $([D_4]-, [D_3]-, and [D_2]cyclohexanone)$ as a percentage of total

Species							
[D4]	84.83430	82.45984	80.02153	77.98957	75.56438	73.64210	71.64437
[D3]	13.49043	15.52144	17.56988	19.25612	21.23414	22.70780	24.32957
[D ₂]	1.67526	2.01872	2.40860	2.75432	3.20148	3.65010	4.02606
	Δh	ove values con	verted into mo	les of hydroger	incornorated	ner liter	

	ADC	ove values conv	verted into mor	es of nydrogen	mcorporated p	ber mer	
[D4]	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
[D3]	0.02482	0.02856	0.03233	0.03543	0.03907	0.04178	0.04477

[D₂] [D₂]+	0.00616	0.00743	0.00886	0.01014	0.01178	0.01343	0.01482
[D ₃]+ [D ₂]	0.03099	0.03599	0.04119	0.04557	0.05085	0.05521	0.05958

GC/MS data: *trans*-4-trimethylammoniumproline (5 mol%), phosphate (150 mM, I = 0.9), D₂O/H₂O (1:1, pH-meter reading 7.0), Substrate = [D₀]cyclohexanone

Mass				Integrations			
Ion	0 min	20 min	40 min	60 min	80 min	100 min	120 min
97	14283	6514	5678	6901	5324	6102	7703
98	219875	105687	91257	112926	87659	99292	124947
99	15307	10745	12309	18925	17417	23001	33187
100	908	791	986	1796	1789	2639	4150
101	0	17	17	107	135	200	327
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0
		M=97 species	and higher MV	V isotopes of n	atural abundan	ce	
97	14283	6514	5678	6901	5324	6102	7703
98	948	433	377	458	354	405	511
99	56	25	22	27	21	24	30
	Subtrac	ction of M=97 s	species and hig	her MW isotop	bes of natural a	bundance	
97	0	0	0	0	0	0	0
98	218927	105254	90880	112468	87305	98887	124436

101	0	17	17	107	135	200	327
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0
	M=98 spe	cies ([D ₀]cyclo	hexanone) and	higher MW is	otopes of natur	ral abundance	
97	0	0	0	0	0	0	0
98	218927	105254	90880	112468	87305	98887	124436
99	14537	6989	6034	7468	5797	6566	8263
100	854	410	354	439	340	386	485
101	0	0	0	0	0	0	0
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0
S	ubtraction M=9	98 species ([D ₀]]cyclohexanon	e) and higher I	MW isotopes o	of natural abund	lance
97	0	0	0	0	0	0	0
98	0	0	0	0	0	0	0
99	715	3731	6252	11430	11599	16411	24894
100	54	381	632	1357	1449	2253	3665
100	54 0	17	17	107	135	2255	3005
101	0	17	1/	107	155	200	0
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
	M=99 spe	cies ([D ₁]cyclo	hexanone) and	higher MW is	otopes of natu	ral abundance	
	-			-	-		-
97	0	0	0	0	0	0	0
98	0	0	0	0	0	0	0
99	715	3731	6252	11430	11599	16411	24894
100	47	248	415	/59	//0	1090	1653
101	0	1	2	3	3	4	6
102	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0
104	0	0	0	0	0	0	0
Su	btraction of M=	=99 species ([D	1]cyclohexano	one) and higher	• MW isotopes	of natural abu	ndance
97	0	0	0	0	0	0	0
98	0	0	0	0	0	0	0
99	0	0	0	0	0	0	0
100	7	133	216	598	678	1164	2012
101	0	16	15	104	132	196	321
102	0	0	0	0	0	0	0
103	0 0	Õ	0 0	0	0	0	0
104	0	0 0	0	0 0	0	0	0
					-	-	-

Addition of the numbers in bold ($[D_0]$ -, $[D_1]$ -, and $[D_2]$ cyclohexanone)

219648	109118	97349	124496	99583	116462	151342
--------	--------	-------	--------	-------	--------	--------

Species							
[D ₀]	99.67161	96.45935	93.35500	90.33817	87.67111	84.90939	82.22158
[D ₁]	0.32532	3.41896	6.42270	9.18117	11.64773	14.09144	16.44916
[D ₂]	0.00307	0.12169	0.22230	0.48066	0.68117	0.99916	1.32925
	Abo	ove values con	verted into mol	es of deuteriur	n incorporated	per liter	
[D ₀]	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
[D ₁]	0.00060	0.00629	0.01182	0.01689	0.02143	0.02593	0.03027
[D ₂]	0.00001	0.00045	0.00082	0.00177	0.00251	0.00368	0.00489
[D ₁]+							
[D ₂]	0.00061	0.00674	0.01264	0.01866	0.02394	0.02961	0.03516

 $([D_0]-, [D_1]-, and [D_2]cyclohexanone)$ as a percentage of total

GC/MS data: *trans*-4-trimethylammoniumproline (5 mol%), phosphate (150 mM, I = 0.9), D₂O/H₂O (1:1, pH-meter reading 7.0), Substrate = [D₄]cyclohexanone

Mass				Integrations			
Ion	0 min	20 min	40 min	60 min	80 min	100 min	120 min
97	0	0	0	0	0	0	0
98	346	69	17	14	0	0	0
99	298	246	317	243	254	579	619
100	2959	2355	3178	2420	2521	5230	5484
101	23865	18236	23166	16361	16099	31147	30999
102	150423	94354	102420	61857	54399	93216	83300
103	10357	6345	6872	4173	3636	6382	5677
104	1017	515	587	331	286	537	470
		M=99 species	and higher MV	V isotopes of na	atural abundan	ce	
99	298	246	317	243	254	579	619
100	20	16	21	16	17	38	41
101	1	1	1	1	1	2	2

Subtraction of M=98 integrations, and M=99 species with its higher MW isotopes of natural abundance

97 98							
99							
100	2939	2339	3157	2404	2504	5192	5443
101	23864	18235	23165	16360	16098	31145	30997
102	150423	94354	102420	61857	54399	93216	83300
103	10357	6345	6872	4173	3636	6382	5677
104	1017	515	587	331	286	537	470

M=100 species ([D₂]cyclohexanone) and higher MW isotopes of natural abundance

97

99 100 101 102 103 104	2939 195 11	2339 155 9	3157 210 12	2404 160 9	2504 166 10	5192 345 20	5443 361 21
Su	btraction M=10	00 species ([D	2]cyclohexanon	e) and higher N	AW isotopes of	natural abund	ance
97 98 99 100 101	23669	18080	22955	16200	15932	30800	30635
102	150412	94345	102408	61848	54389	93196	83279
103	10357	6345	6872	4173	3636	6382	5677
104	1017	515	587	331	286	537	470
97 98 99 100 101 102 103 104	23669 1572 92	18080 1200 71	22955 1524 90	16200 1076 63	15932 1058 62	30800 2045 120	30635 2034 119
Sub 97 98 99 100	traction of M=1	101 species ([I	D₃]cyclohexano	ne) and higher	MW isotopes o	of natural abun	dance
101							
102	148840	93144	100883	60772	53331	91151	81245
103	10265	6274	6782	4110	3574	6262	5558
104	1017	515	587	331	286	537	470
	Addi	tion of the nur	nbers in bold ([D ₄]-, [D ₃]-, and	d [D ₂]cyclohex	anone)	

175448 113563 126996 79376 71767 127142 117323

([D₄]-, [D₃]-, and [D₂]cyclohexanone) as a percentage of total

Species							
[D4]	84.83430	82.02015	79.43858	76.56187	74.31158	71.69187	69.24885
[D3]	13.49043	15.92049	18.07555	20.40968	22.19918	24.22486	26.11190
[D ₂]	1.67526	2.05936	2.48588	3.02844	3.48924	4.08327	4.63926

Above values converted into moles of hydrogen incorporated per liter

[D4]	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
[D ₃]	0.02482	0.02929	0.03326	0.03755	0.04085	0.04457	0.04805
[D ₂]	0.00616	0.00758	0.00915	0.01114	0.01284	0.01503	0.01707
[D ₂]	0.03099	0.03687	0.04241	0.04870	0.05369	0.05960	0.06512

trans-4-trimethylammoniumproline (5 mol %) phosphate (150 mM, I=0.9), D₂O/H₂O (pH-meter reading 7) 1:1

- Moles of deuterium incorporated into [D₀]-cyclohexanone
- ▲ Moles of hydrogen incorporated into [D₄]-cyclohexanone

5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 f1 (ppm)

