
Diazo Compounds: Versatile Tools for Chemical Biology
Kalie A. Mix,† Matthew R. Aronoff,‡,§ and Ronald T. Raines*,†,‡

†Department of Biochemistry, University of WisconsinMadison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
‡Department of Chemistry, University of WisconsinMadison, 1101 University Avenue, Madison, Wisconsin 53706, United States

ABSTRACT: Diazo groups have broad and tunable reactivity. That and
other attributes endow diazo compounds with the potential to be
valuable reagents for chemical biologists. The presence of diazo groups
in natural products underscores their metabolic stability and anticipates
their utility in a biological context. The chemoselectivity of diazo groups,
even in the presence of azido groups, presents many opportunities.
Already, diazo compounds have served as chemical probes and elicited
novel modifications of proteins and nucleic acids. Here, we review
advances that have facilitated the chemical synthesis of diazo
compounds, and we highlight applications of diazo compounds in the
detection and modification of biomolecules.

Azido groups dominate the current landscape of chemo-
selective reactions in chemical biology. Yet, diazo groups

have attributes that are even more desirable than those of azido
groups. For example, diazo groups (R1R2CN2) are smaller
than analogous azido groups (R1R2HC−N3), and diazo groups
display a broader range of reactivity.1,2

The simplest diazo compound, diazomethane, is a yellow gas
that was discovered by von Pechmann in 18943,4 and is a
common reagent in synthetic organic chemistry. Diazomethane
and other diazoalkanes are, however, highly toxic5−7 and
explosively reactive8,9 and have little utility in the context of
chemical biology. The problem arises from their high basicity,
as protonation of the α carbon of a diazo group leads to the
formation of a diazonium species (R1R2HC−N2

+) poised for a
rapid SN2 reaction that releases nitrogen gas.
Recent advances in synthetic methodology provide ready

access to “stabilized” diazo compounds that are compatible with
living systems. The stability arises from diminished basicity due
to delocalization of the electrons on the α carbon to another
functional group. Such stabilized diazo compounds have the
potential for widespread application in chemical biology.
Here, we review the use of diazo compounds in chemical

biology. We begin with an overview of natural products and
amino acids that contain a diazo group. That is followed by a
summary of methods for the chemical synthesis of diazo
compounds. We then highlight the remarkable versatility of
diazo compounds in the context of chemical biology, and we
end with a brief prospectus for the future.

■ NATURAL PRODUCTS

In contrast to azido groups,10 diazo groups are found in many
natural products.11 Isotopic labeling studies and genome
mining have provided insight into their biosynthesis.12−15 No
enzyme is known to catalyze the formation of a N−N bond,
though a gene cluster that encodes a nitrous acid-producing
enzyme could be a source.16 Intrinsic antitumor and antibiotic

activities endow some natural diazo compounds with potential
clinical utility, but mechanisms of action in vivo are unclear. As
the isolation and synthesis of diazo-containing natural products
has been reviewed extensively elsewhere,17,18 we summarize
only key findings and recent advances. We focus, in particular,
on the kinamycins and lomaiviticins, two classes of natural
products with unusual structures and intriguing mechanisms of
reactivity (Figure 1A and B).
The kinamycins were isolated from Streptomyces muraya-

maensis in 1970 and displayed antimicrobial activity against
Gram-positive bacteria.19 Initially, the compounds were
thought to contain a cyanamide group due to their infrared
absorption near ∼2155 cm−1 but were later established to have
a diazo moiety.20 The complex architecture of these molecules,
which consist of a four-ring carbocyclic skeleton that contains
several stereogenic centers, challenged synthetic chemists until
routes were developed a decade ago.21−23

Like the kinamycins, the lomaiviticins are analogs of 9-
diazofluorene (Figure 1A). Lomaiviticins A and B were isolated
in 2001 from the marine ascidian symbiont Salinispora pacif ica
and displayed antitumor activity at submicromolar concen-
trations.24 Lomaiviticins C−E were isolated in 2012 from
Salinispora pacif ica and demonstrated similar potency.25

Although synthetic routes to the lomaiviticins are unrealized
to date, progress has been made toward intermediates and
analogues.26−30

Diazofluorene analogues have long been used to investigate
possible mechanisms of DNA cleavage in vitro. Using 9-
diazofluorene, Arya and Jebaratnam were among the first to
suggest that a diazo group could mediate DNA cleavage.31

Kinafluorenone, which contains a ketone oxygen in lieu of a
diazo group, displayed no antibiotic activity and thus supported
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the hypothesis that the diazo moiety is the active
pharmacophore.32 A variety of reactive intermediates that elicit
cytotoxicity have been proposed, including a covalent
adduct,33,34 ortho-quinone methide,34,35 acylfulvene,36 or vinyl
radical33−35,37,38 (Figure 1B). Certain lomaiviticins, such as
(−)-lomaiviticin A, are nearly 100-fold more toxic to cancer
cells than are kinamycins,38 despite similar reactive inter-
mediates being accessible from both kinamycins and
lomaiviticins. (−)-Lomaiviticin A is especially potent, exhibiting
cytotoxic activity at nanomolar−picomolar concentrations.
To reveal the basis for the superior cytotoxicity of

(−)-lomaiviticin A, Herzon and co-workers performed a
thorough comparison of (−)-lomaiviticin A, (−)-lomaiviticin
C, and (−)-kinamycin C.38 They found that the reduction of
(−)-lomaiviticin A in vitro proceeds more rapidly than does that
of (−)-kinamycin C. Moreover, only (−)-lomaiviticin A causes
double-stranded breaks in DNA and activates the double-strand
break repair pathway in cells. This combination of attributes
likely accounts for the superior potency of (−)-lomaiviticin A.
Further, these authors provided evidence that DNA cleavage is
instigated by a vinylic carbon radical (Figure 1B) and is
independent of iron and reactive oxygen species. A solution
structure of (−)-lomaiviticin A in complex with DNA revealed

that both subunits of lomaiviticin A intercalate into DNA at
AT-rich sequences and cause base pairs to be twisted out of the
duplex (Figure 1C).39 The α carbon of the diazo group lies in
close proximity to the DNA strand, facilitating hydrogen
abstraction by an incipient radical.
One challenge in the investigation and application of

lomaiviticins is their limited availability. Smaller analogues
that are easier to synthesize provide a partial solution.40 One
such analogue, a monomeric lomaiviticin aglycon, is capable of
inducing DNA damage, albeit at higher concentrations than
does (−)-lomaiviticin A. Both (−)-lomaiviticin A and this
monomeric lomaiviticin aglycon activate homologous recombi-
nation and the nonhomologous end-joining repair of DNA in
cells.41 Dysfunctional DNA-repair pathways underlie many
human cancers,42 rendering lomaiviticins as a potential
treatment strategy. In support of this strategy, cell lines with
defective DNA-repair pathways (e.g., BRCA2- and PTEN-
deficient cells), are more sensitive to (−)-lomaiviticin A and
monomeric lomaiviticin aglycon than are isogenic cell lines with
intact damage repair pathways.

Figure 1. Structure and reactivity of some natural products that contain diazo groups. (A) Kinamycin D, lomaiviticin A, and lomaiviticin B. (B)
Putative mechanism for the generation of a reactive vinylogous radical from lomaiviticin A.34 (C) Solution structure of the complex of lomaiviticin A
with a G-C-T-A-T-A-G-C duplex.39 Displaced A·T basepairs are depicted in yellow. Phosphorus atoms are depicted in orange. Hydrogen atoms are
not shown. Arrows point to the two diazo groups. Image was created with Protein Data Bank entry 2n96 and the program PyMOL from Schrödinger
(New York, NY). (D) Amino acids that contain diazo groups.
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■ AMINO ACIDS

Some natural amino acids contain diazo groups.43,44 Notable
examples include azaserine and 6-diazo-5-oxo-norleucine
(DON), which are nearly isosteric to glutamine (Figure
1D).45 Both amino acids were isolated initially from
Streptomyces cultures and exhibit antibiotic and tumor
inhibitory properties.43,46 These diazo compounds effectively
inhibit amidotransferases involved in the biosynthesis of
pyrimidines and purines.47−49 DON entered early stage clinical
trials based on its beneficial activity against various carcinomas,
lymphomas, and Hodgkin’s disease.50 The ability of DON to
inhibit amidotransferases revealed the mechanism by which γ-
glutamyl transferase acts in tandem with aminopeptidase M to
transfer the glutamyl group of glutathione to amino acids and
peptides.51−53 DON was also used to determine the catalytic
nucleophile and characterize the substrate specificity of
glutaminase−asparaginases from various organisms.54,55

Likewise, diazo-containing analogs of asparagine have found
utility in medicine as well as enzymology. 5-Diazo-4-oxo-
norvaline (DONV; Figure 1D) inhibits the growth of
asparagine-dependent tumors by interfering with the synthesis
and utilization of asparagine.44,56 DONV is also a specific
inhibitor of L-asparaginase, which is used routinely in the
treatment of leukemia.57 Clinical assays that aim to determine
the blood concentration of asparagine in patients treated with L-
asparaginase suffer from degradation of asparagine in the serum
sample due to L-asparaginase. The addition of DONV to the
assay mixture improves the reliability of asparagine detection.57

■ PREPARATION

The synthesis of diazo compounds has become facile. Common
methods include (i) diazo transfer,58,59 (ii) diazotization,60,61

(iii) hydrazone decomposition62,63 or hydrazone oxidation,64,65

(iv) rearrangement of N-alkyl N-nitroso compounds,8,66 (v)
1,3-disubstituted acyl (or aryl) triazine fragmentation,67,68 and
(vi) elaboration of other diazo compounds (Figure 2).69−73

Most of these routes have been reviewed extensively for their
merits in the context of synthetic chemistry.74,75 Nevertheless,
the preparation of diazo compounds for applications in
chemical biology entails additional challenges because of
restrictions on the compatibility of ancillary functional groups
and on solubility.
Diazo transfer is a simple and effective way to introduce the

diazo group when the pKa of a proton on the acceptor carbon is
low enough to be extracted with a mild base, as is necessary in
the stabilized diazo compounds useful in chemical biology. For
example, 1,8-diazabicycloundec-7-ene (DBU) can generate α-
diazocarbonyl groups after a diazo transfer reaction using
sulfonyl azide reagents (e.g., p-acetamidobenzenesulfonyl azide
and imidazolesulfonyl azide).59,76,77 The electronic delocaliza-
tion that enables diazo transfer also stabilizes the ensuing diazo
compound.
Recently, our group reported on a general method to prepare

a stabilized diazo group directly from a parent azide.78,79

Fragmentation of acyl triazines uses a phosphinoester to
convert an azido group into its corresponding diazo group. The
reactivity underlying this loss of NH, or “deimidogenation,” was
derived from insight into the mechanism of the Staudinger
ligation.80−84 In the Staudinger ligation as well as the
Staudinger reaction,85,86 the incipient phosphazide quickly
extrudes molecular nitrogen to generate an iminophosphorane.
A highly reactive acylating group subverts nitrogen extrusion by

trapping the phosphazide (Figure 2). The ensuing triazeno-
phosphonium intermediate hydrolyzes quickly in water to form
an acyl triazene, which is a known precursor to a diazo
group.67,68

Azide deimidogenation benefits from the extraordinary
chemoselectivity of phosphine for an azide. This approach
has a high tolerance for other functional groups, including
ketones, esters, aldehydes, thiols, α-chloroesters, epoxides, and
disulfide bonds. Chemoselectivity was demonstrated by
converting an azido group into a diazo group in aqueous
solution containing an enzyme, which was not modified
covalently and retained full catalytic activity.79 Notably,
appropriate azides for deimidogenation (that is, azides with

Figure 2. Preparation of diazo compounds by (i) diazo transfer,58,59

(ii) diazotization,60,61 (iii) hydrazone decomposition62,63 or hydrazone
oxidation,64,65 (iv) rearrangement of N-alkyl N-nitroso compounds,8,66

(v) 1,3-disubstituted acyl or aryl triazine fragmentation,67,68 and (vi)
elaboration of other diazo compounds. Diazo compounds can be
accessed from azides via acyl triazenes in a process mediated by a
phosphinoester.78,79
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an electron-withdrawing group on the α carbon) are readily
accessible via SN2 reactions with inorganic azide.87

Finally, diazo compounds that contain sensitive functional
groups can be prepared by the late-stage installation of a
prefabricated diazo group. This strategy typically relies on acyl
transfer. In 1962, Westheimer and co-workers introduced the
concept of photoaffinity labeling by acylating chymotrypsin
with p-nitrophenyl diazoacetate and then forming an intra-
molecular cross-link upon photolysis.88 Most recent late-stage
installations have employed an N-hydroxysuccinimide (NHS)
ester containing a pendant α-diazocarbonyl group. Badet and
co-workers developed a clever synthetic route to the simplest
reagent of this class, N-hydroxysuccinimidyl diazoacetate.89

Such NHS esters have been used to install diazo groups on
small molecules90,91 as well as biomolecules of varying
complexity, including biotin,92 mannosamine,93 heparan-sulfate
fragments,94 lysozyme,93 and bovine serum albumin (BSA).95

■ CYCLOADDITIONS

The archetypal reaction for the diazo group is the 1,3-dipolar
cycloaddition. Soon after the synthesis of ethyl diazoacetate by
Curtius,60 Buchner observed its reaction with an α,β-

unsaturated carboxylic ester to form a pyrazole.96 Over the
past century, the reactivity of diazo groups in cycloadditions has
engaged theoretical, synthetic, and biological chemists, and
these explorations have been reviewed for their use and merits
in synthetic chemistry.97,98 Here, we focus on recent work that
is relevant to biological systems.
Copper - ca t a l yzed az ide−a lkyne cyc loadd i t ions

(CuAAC)99,100 and strain-promoted azide−alkyne cycloaddi-
tions (SPAAC)101−103 are two of the most enabling advances in
the field of chemical biology.83,104,105 The diazo group shares
the ability of the azido group to undergo cycloadditions with
alkynes, forming a pyrazole rather than a triazole.95,106,107 The
reactivity of diazo groups is remarkably predictable and
tunable108the diazo compounds can react with a strained
alkyne at much higher or much lower rates than analogous
azides (Figure 3A).106,107,109 Because a diazo group can be
generated directly from an azido group78,79 and reacts with
strained alkynes in common use, the diazo group fits easily into
extant methodology.
In addition to reacting with strained alkynes, diazo groups

undergo uncatalyzed cycloadditions with unstrained dipolar-
ophiles, including terminal alkenes and alkynes. Moreover,

Figure 3. Diazo compounds in dipolar cycloadditions with strained alkynes. (A) Relative rate constants of diazo compounds and analogous azides
with various cyclooctynes.92,109 (B) Labeling of a diazo-modified lysozyme with a cyclooctyne.93 (C) Labeling of a metabolized diazo sugar displayed
on the surface of human cells with a cyclooctyne.92
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diazo compounds can react chemoselectively with certain
alkenes and alkynes in the presence of an azide. In essence, a
diazo group is more electron-rich and thus a better nucleophile
in normal-electron-demand cycloadditions with electron-
deficient dipolarophiles.110−113 Detailed insight is attainable
from computational analyses. Distortion energies account for a
majority (80%) of the activation energy for 1,3-dipolar
cycloadditions. Due to their increased nucleophilicity and
higher HOMO energy, diazo compounds have lower distortion
energies than do their azide analogues.110,113 The reactions can
occur at ambient temperature in aqueous cosolvent with
reaction rates similar to or greater than those of SPAACs with
azides. Notably, a diazo group can react chemoselectively with
the naturally occurring amino acid dehydroalanine (Dha),
which contains an electronically activated alkene.110 Selective
biotinylation of activated alkenes could enable enrichment and
isolation of compounds from a complex lysate, facilitating the
discovery of new natural products.

■ PROBES

The diazo group is found in the natural products of
microorganisms (vide supra). In contrast, its absence in higher
organisms enables its utility there as a chemical reporter. The
reactivity of the diazo group with many common SPAAC
dipolarophiles spawned the use of a diazo group as a chemical
reporter for cell-surface glycosylation.
Leeper and co-workers prepared an N-diazoacetyl galactos-

amine and incubated this synthetic sugar with LL2 cells.93

Treatment with a biotin-bearing cyclooctyne and subsequent
addition of an avidin fluorophore produced some increase in
fluorescence of cells incubated with the diazo-bearing glycan
compared to untreated cells. In the same study, an α-diazo
NHS ester was reacted with a lysine residue on lysozyme to
append the diazo group. Following modification, the appendage
was used to attach a fluorophore to the protein via a
cycloaddition between the diazo group and a cyclooctyne
(Figure 3B).
Our group demonstrated the suitability of a diazoacetamide

derivative of N-acetyl mannosamine as a chemical reporter of
glycosylation on the surface of CHO K1, Jurkat, HEK293T, and
HeLa cells (Figure 3C).92 The degree of labeling was
determined by SPAAC between the diazo group and a biotin-
bearing cyclooctyne, followed by treatment with an avidin
fluorophore. Metabolic incorporation of the diazo-bearing sugar
was evidenced through live-cell microscopy and flow cytometry,
and labeling was abolished by treatment with a sialidase. Diazo
and alkynyl sugars could be labeled independently on the cell
surface. Notably, such dual labeling was not possible on cells
displaying azido and alkynyl sugars due to the reactivity of the
azide in both CuAAC and SPAAC reactions.
Diazo compounds have long been incorporated into

biomolecules as photoaffinity probes.114,115 Upon irradiation
with ultraviolet light, the diazo group fragments into molecular
nitrogen and a carbene, which can undergo either an insertion
reaction or a Wolff rearrangement116,117 followed by
nucleophilic attack on the ensuing ketene, both of which

Table 1. Diazo Compounds That Esterify Proteins
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cross-link the diazo compound to proximal functional groups.
This strategy has been used to map the architecture of
chymotrypsin (vide supra),88 reveal antibody combining
sites,118 examine the structure of lipid membranes,119 and
identify isoprenoid-binding sites on proteins.120

■ PROTEIN ALKYLATION
The ability of diazo reagents to alkylate oxygen, nitrogen, sulfur,
and even carbon exemplifies their diverse reactivity.1,121−124

When applied to protein modification, these reactions are
typically catalyzed by acid or transition metals. Despite the
apparent promiscuity of this mode of reactivity, even highly
reactive compounds such as diazomethane have historically
found utility in elucidating structural and functional aspects of
proteins.125 Stabilized diazo reagents enable O-alkylation of
carboxyl groups and were valuable tools in classical protein
chemistry and enzymology.126,127 Later, the discovery of diazo-
containing amino acid analogues led medicinal chemists and
structural biologists to employ these compounds as covalent
inhibitors of metabolic enzymes.45 Modern applications of
diazo chemistry in chemical biology aim to capitalize on the
versatility of diazo compounds to access linkages that cannot be
achieved by other methods. Maintaining chemoselectivity in the
presence of water and other biological nucleophiles has been a
primary challenge in developing diazo compounds as useful
tools for protein chemistry.128,129

The earliest uses of diazo reagents for protein labeling sought
to characterize structural features of proteins. In 1914, Geake
and Nierenstein used diazomethane to alkylate caseinogen so as
to characterize the structure of amino acid side chains (Table
1).125 By comparing the methylated and unmethylated protein,
they identified and quantified side chains that contain amino or
hydroxyl groups. Later studies addressed large-scale structural

characterization of proteins, such as quantification of the
number of peptide chains in a protein and identification of
carboxyl groups in the binding region of the antihapten
antibody.130,131

The past 100 years have seen many attempts to limit the
promiscuity of the diazo reagent by using stabilized α-diazo
amides (Table 1). Doscher and Wilcox used α-diazoacetamide
to label chymotrypsin in work that laid the foundation for
modern protein-labeling endeavors.126 They demonstrated that,
although the rate of esterification was much greater than the
rate of diazo-compound hydrolysis, the large excess of water
molecules limits the efficiency of esterification. The authors
suggested that employing a mixed aqueous−organic solvent
could increase esterification efficiency by both limiting diazo
hydrolysis and increasing the pKa of enzymic carboxyl groups.
This idea was later explored and did indeed increase the
efficiency of protein esterification.128 Although α-diazoaceta-
mide was more selective than diazomethane, it still S-alkylated
sulfhydryl groups.
In 1917, Staudinger and Gaule became the first to use a diazo

compound, diphenyldiazomethane, to form an ester.132 The
mechanism of this reaction was established in elegant work by
Roberts and co-workers in 1951 (Figure 4A).133,134 The
heightened reactivity of carboxyl groups versus carboxylates
inspired subsequent esterification experiments. Riehm and
Scheraga used α-diazo acetoglycinamide to esterify the carboxyl
groups in ribonuclease A.127 They found that one aspartic acid
residue was esterified preferentially and proposed that this
residue resides in a solvent-accessible area of local negative
charge, which would raise its pKa value and lead to its selective
esterification. Shortly thereafter, Delpierre and Fruton used an
α-diazoketone to label a single residue in the active site of
pepsin, causing near-complete inhibition of the enzyme.135

Figure 4. Diazo compounds for covalent modification of proteins. (A) Putative mechanism for the esterification of carboxylic acids with a diazo
compound,134 and its application to the bioreversible labeling of a protein.128,129 Diazo compound I is optimized for protein esterification.129 (B)
Putative mechanism of a diazo carbenoid insertion reaction, and its application to the site-specific modification of a proximal amino acid residue.161
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These workers proposed that this residue was in a privileged
environment that enabled its selective labeling, as was posited
for the aspartic acid in ribonuclease A,127 though neither of
these speculations has been explored further. Instead, the
inhibition of pepsin using α-diazoketones gave rise to a breadth
of studies characterizing the active site of pepsin and comparing
pepsin to its zymogen form (i.e., pepsinogen), in which the
active-site residue is inaccessible to solvent and thus does not
react with the diazo reagent.136−144 The combination of
covalent labeling using a diazo reagent with Edman degradation
(which was invented concurrently) provided a robust method
for determining the identity of a catalytically important residue
and its surrounding sequence.145 Using these techniques, novel
acid proteases were classified based on their propensity to be
inactivated by a diazo compound.146−152 Nonetheless, with the
advent of site-directed mutagenesis, the use of diazo
compounds to characterize proteins became rare.

■ BIOREVERSIBLE PROTEIN MODIFICATION

The abundance and promiscuity of cellular esterases has been
utilized in prodrug strategies in which chemotherapeutic agents
are masked as esters and converted to their active forms upon
cellular uptake.153−155 Our group envisioned a similar strategy
for proteins in which carboxyl moieties are esterified by a diazo
compound to install a molecular tag, such as a pharmacokinetic-
enhancing, cell-type-targeting, or cell-penetrating moiety. Upon
cellular uptake, the ester-linked tags are removed by
endogenous esterases to recreate the native protein (Figure
4A). This strategy would be especially valuable for the delivery
of proteins whose activities decrease significantly upon
irreversible modification.156

In an initial study, structurally and electronically diverse diazo
compounds were screened for their reactivity and selectivity in
an aqueous environment.128 Of these compounds, only 9-
diazofluorene esterified a panel of carboxylic acids efficiently in
the presence of water. This diazo compound was used to label
two model proteins, ribonuclease A and red fluorescent protein.
The nascent esters were hydrolyzed upon treatment with a
HeLa-cell extract, regenerating wild-type protein.
Later, a more systematic study investigated the rate and

selectivity of a series of structurally similar but electronically
diverse α-diazo amides.129 A Hammett analysis of these
compounds, which were derived from phenylglycine, revealed
that electron-donating or electron-withdrawing groups on the
aryl ring had a dramatic effect on the rate of esterification. Still,
the compounds were similar in their selectivity for ester
formation over hydrolysis of the diazo reagent. The comparable
selectivity among the compounds in this study supports the
proposed mechanism in which the diazonium and carboxylate
species, formed as intermediates, are held together in a solvent
cage as an intimate ion pair (Figure 4A),134 and the ratio of
ester to alcohol product is determined by the diffusion out of
this solvent cage rather than the reactivity of the diazo
compound.133,134,157 An α-diazo(p-methylphenyl)-glycinamide
(I) demonstrated the fastest rate while maintaining selectivity,
and esterifies proteins more efficiently than any known diazo
reagent. The amide of compound I allows for facile
incorporation of an amine of interest.

■ PEPTIDE AND PROTEIN MODIFICATION WITH
CARBENOIDS

An early example of asymmetric catalysis employed a chiral
transition-metal catalyst to generate a carbenoid from a diazo

Figure 5. Covalent modification of nucleic acids using diazo compounds. (A) Representative alkylation of DNA by a diazo compound. Alkylation
occurs on solvent-accessible nucleobases.166 (B) One-pot N−H insertion and azide−alkyne cycloaddition with a copper(I) catalyst.168 (C)
Photoreversible O-alkylation of a phosphoryl group in RNA by a diazo coumarin.169
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compound.158 Carbenoids generated similarly can access a
broad scope of insertion reactions and are hence powerful
reagents for modifying peptides and proteins. In a seminal
study, Francis and Antos used vinylic α-diazo esters to modify
tryptophan residues in horse heart myoglobin.76 Then, Ball
employed metallopeptides to combine proximity-driven and
transition-metal-driven catalysis.159,160 In this system, the
rhodium catalyst is displayed on a peptide, which is designed
to bind a second peptide or protein of interest by forming a
coiled coil (Figure 4B).161 The catalyst on the metallopeptide is
oriented such that the incipient carbenoid is generated proximal
to the target residue, focusing its high reactivity and enabling
modification of many types of amino acids.162 For example,
although tryptophan can be modified by the addition of a diazo
compound and rhodium acetate catalyst alone, employing a
metallopeptide to orient the catalyst enables modification of the
phenyl group of phenylalanine, imidazolyl group of histidine,
and guanidinium group of arginine.
In a proof-of-concept study, Popp and Ball alkylated the

aromatic amino acid side chains by tethering the dirhodium
center to a lysine-rich K3 peptide, which binds to and reacts
with a glutamate-rich E3 peptide at a specific tryptophan
residue.161 In a follow-up investigation, the scope of the E3/K3
system was extended to the alkylation of a broad range of
functional groups, including a carboxamide.162 This system has
since been used to modify maltose-binding protein fused to the
E3 peptide,163 as well as for the site-selective modification of
the native Fyn protein using a peptide ligand bearing the
rhodium catalyst.164,165

■ NUCLEIC ACID ALKYLATION

Natural nucleobases can be modified in situ with diazo
compounds. Gillingham and co-workers used rhodium(II) to
catalyze the conversion of a diazo ester into a carbenoid that
inserted into exocyclic N−H bonds (Figure 5A).166 Because
this reactivity does not extend to double-helical regions, the
strategy can target hairpins and single-stranded regions (Figure
5B). This selectivity is useful, for example, in studies on the
mechanism of RNA interference, which entails 3′ overhangs.
Rhodium(II) has been used most widely as a catalyst for the

generation of carbenoids in chemical biology.167 Gillingham
and co-workers showed, however, that copper(I)-carbenoid
chemistry for N−H insertion is likewise effective.168 Their work
demonstrated novel synergy of the diazo group with “copper-
click” chemistry by combining N−H insertion with CuAAC in a
one-pot single-catalyst process (Figure 5B).
An alternative strategy for nucleic acid modification involves

O-alkylation of the phosphoryl group. Okamoto and co-workers
employed this method to modify an mRNA using a photolabile
derivative of coumarin bearing a diazo moiety (Figure 5C).169

The ensuing “caged” mRNA, which encoded green fluorescent
protein, was delivered to zebrafish embryos, where its
translation could be modulated spatially and temporally by
uncaging using ultraviolet light. Photolabile diazo groups have
also been used to control RNA interference, in which a double-
stranded precursor to an siRNA is inactivated upon
modification with the diazo reagent and then uncaged with
ultraviolet light.170 Diazo compounds have been employed to
label and detect nucleic acids on microarrays without disrupting
base pairing.171 Recently, Gillingham and co-workers reported
on a diazo compound that modifies the phosphoryl groups of
nucleic acids selectively in the presence of carboxylic acids.172

Their methodology could be useful for the labeling and
detection of phosphorylated peptides and proteins as well.

■ OUTLOOK
Diazo compounds were discovered over 120 years ago. Recent
advances in chemical synthesis have enabled the facile
preparation of stabilized diazo compounds that are compatible
with living systems. Like azido groups, diazo groups are
chemoselective. Unlike azido groups, diazo groups have
reactivity with natural and nonnatural functional groups that
is tunable. The ability to tune their reactivity by delocalization
of the electrons on the α carbon renders diazo compounds as
attractive reagents in physiological contexts. Moreover, the
versatility of diazo-group reactivity is extraordinary. Their
ability to react rapidly, selectively, and autonomously with
nonnatural functional groups (e.g., strained alkynes) as well as
natural carboxyl groups, phosphoryl groups, and even the
alkene in dehydroalanine residues anoints diazo groups as
special. Accordingly, we envision an expansion in the use of
diazo compounds to probe biological phenomena and to treat
human disease and even foresee an era of “diazophilia.”173
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