Synthesis of Conformationally Constrained 5-Fluoro- and 5-Hydroxymethanopyrrolidines. Ring-Puckered Mimics of Gauche- and Anti-3-Fluoro- and 3-Hydroxypyrrolidines

Grant R. Krow, ${ }^{*,+}$ Ram Edupuganti, ${ }^{+}$Deepa Gandla, ${ }^{\dagger}$ Fang Yu, ${ }^{+}$Matthew Sender, ${ }^{+}$Philip E. Sonnet, ${ }^{\dagger}$ Michael J. Zdilla, ${ }^{+}$Charles DeBrosse, ${ }^{\dagger}$ Kevin C. Cannon, ${ }^{\mathcal{S}^{8}}$ Charles W. Ross, III, ${ }^{\dagger}$ Amit Choudhary, ${ }^{\perp}$ Matthew D. Shoulders," and Ronald T. Raines"
${ }^{\dagger}$ Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
${ }^{\ddagger}$ Department of Medicinal Chemistry, Merck Research Laboratories, Merck \& Co., Inc., West Point, Pennsylvania 19486-004, United States
${ }^{\S}$ Department of Chemistry, Pennsylvania State University, Abington, Pennsylvania, 19001, United States
${ }^{\text {|| Departments of Chemistry and Biochemistry, }}{ }^{\perp}$ Graduate Program in Biophysics, and ${ }^{\#}$ Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States

(S) Supporting Information

Abstract

N-Acetylmethanopyrrolidine methyl ester and its four 5-syn/anti-fluoro and hydroxy derivatives have been synthesized from 2-azabicyclo[2.2.0] hex-5-ene, a 1,2-dihydropyridine photoproduct. These conformationally constrained mimics of idealized C^{β} gauche and C^{β}-anti conformers of pyrrolidines were prepared in order to determine the inherent bridge bias and subsequent hetero- atom substituent effects upon trans/cis amide preferences. The bridgehead position and also the presence of gauche(syn)/anti-5fluoro or 5 -hydroxy substituents have minimal influence upon the $K_{\mathrm{T} / \mathrm{C}}$ values of N-acetylamide conformers in both CDCl_{3} $(43-54 \%$ trans $)$ and $\mathrm{D}_{2} \mathrm{O}(53-58 \%$ trans $)$. O-Benzoylation enhances the trans amide preferences in $\mathrm{CDCl}_{3}(65 \%$ for a syn-OBz, 61% for an anti-OBz) but has minimal effect in $\mathrm{D}_{2} \mathrm{O}$. The synthetic methods developed for N-BOC-methanopyrrolidines should prove useful in the synthesis of more complex derivatives containing α-ester substituents. The $K_{\mathrm{T} / \mathrm{C}}$ results obtained in this study establish baseline amide preferences that will enable determination of contributions of α-ester substituents to trans-amide preferences in methanoprolines.

■ INTRODUCTION

The ability of amides to exist as cis-trans isomers has important implications for protein structure and function. ${ }^{1}$ The particular behavior of amides derived from the secondary amine proline has engendered much interest in this regard because of the importance of proline cis-trans isomerization to biological functions ${ }^{2}$ and structure of proteins. ${ }^{3}$ There is an emerging interest in bioengineering applications of proline and substituted prolines. ${ }^{4-6}$

N-Acetylproline methyl ester (Pro) $\mathbf{1}$ not only is present as a mixture of cis-trans isomers but also exists in a variety of ring conformations. Two of these in which C^{γ} experiences a large out-of-plane displacement are major, ${ }^{7}$ and we refer to them as C^{γ}-endo
(C^{γ}-pucker toward the ester) and C^{γ}-exo (C^{γ}-pucker away from the ester). Substituents at C^{γ}, as in $(2 S, 4 S)$-4-fluoroproline (flp) 2 and ($2 S, 4 S$)-4-hydroxyproline (hyp) 3 , affect the direction of ring pucker and also influence amide cis/trans conformational preferences. ${ }^{3}$ The two effects appear to be correlated. ${ }^{3 a, 4,8}$ In an effort to control the ring pucker variable and isolate the remaining effect of a substituent upon amide cis-trans preferences, we synthesized the 2 -azabicyclo[2.1.1]hexanes 4-6 (Table 1), ${ }^{9}$ analogues of Pro 1, flp 2, and hyp 6. N-Acetylmethanoproline methyl ester (MetPro) 4 displays a Pro 1 residue with both idealized C^{γ} exo and C^{γ}-endo ring puckers. The substituted 4-anti-fluoromethanoproline (Metflp) 5 and 4-anti-hydroxymethanoproline (Methyp) 6, when viewed from the perspective of the substituentbearing bridges, are pyrrolidines (bolded bonds) with constrained C^{γ}-exo ring puckers. The relative substituent effects on $K_{T / C}$ for these methanoprolines $4-6$ was essentially invariant in $\mathrm{D}_{2} \mathrm{O}$, although in the less polar aprotic solvents CDCl_{3} and 1,4-dioxaned_{8} Metflp 5 had a slightly larger trans preference than the others.

[^0]Table 1. $K_{T / C}$ of Methanoprolines 4-6

${ }^{a}$ Values of $K_{\mathrm{T} / \mathrm{C}}$ were measured at $25{ }^{\circ} \mathrm{C}$ using ${ }^{19} \mathrm{~F}$ NMR spectra for fluoro isomers and ${ }^{13} \mathrm{C}$ NMR for MetPro 4 and Methyp 6 (see ref 9). ${ }^{b}$ Values in ref 9 were measured in $\mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{OD} \sim 4: 1$.

Figure 1. Amide equilibrium for a methanopyrrolidine 7.

Scheme 1. Retrosynthesis of Methanoprolines $14-17$ Related to Flp 8 and Hyp 9

8

This result was taken to indicate that the γ-substituent effect is primarily related to ring pucker and a resultant enhancement of the interaction between the amide carbonyl oxygen and ester carbonyl carbon.

Our previous study ${ }^{9}$ did not identify unresolved issues associated with using methanoprolines $4-6$ as mimics of prolines $\mathbf{1 - 3}$. For example, it is not known if the carbonyl group of the amides in the mimics $4-6$ has a structurally-related preference to be adjacent to the bridgehead H_{1} or the methylene H_{3} position. Knowledge of the amide preference of a methanopyrrolidine (Metpyr) 7 that is missing the α-ester adjacent to nitrogen (Figure 1) is necessary in order to determine the effect of a 3-ester substituent upon amide conformations.

Additionally, the scope of the methanoproline substituent effect study was limited to the Metflp 5 and Methyp 6 stereoisomers related to flp 2 and hyp 3 by the synthetic approach available at that time. Thus, we were unable to address the generality of the finding for other methanoproline stereoisomers related to $(2 S, 4 R)$-4-fluoroproline $8(\mathrm{Flp})$ and the biologically relevant ($2 S, 4 R$)-4-hydroxyproline (Hyp) 9 as to whether $K_{\mathrm{T} / \mathrm{C}}$ values are always independent of substituent and depend mainly on ring pucker. To answer these questions, a different synthetic approach is needed to prepare methanofluoroprolines (MetFlps) 14 and 15, whose idealized C^{γ} ring puckers contain either exo(gauche)- or endo(anti)-Flp 8 conformers, embedded in

Scheme 2. Synthetic Route to N-Protected 5-synFluoromethanopyrrolidines

bold for emphasis in Scheme 1. The same is true for methanohydroxyprolines (MetHyps) 16 and 17, related to Hyp 9. A possible synthetic approach to methanoprolines could utilize as key synthons the methanopyrrolidines $10 \mathrm{a}-13 \mathrm{a}$ or related O -protected derivatives.

Herein, we describe 1,2-dihydropyridine-based syntheses of Metpyr 7 as well as N-acetyl- 5 -syn- and 5 -anti-F(OH)-substituted methanopyrrolidines 10b-13b. The configurational preferences determined for these amides reveal that only small inherent trans/cis amide biases accompany the use of methanoprolines as idealized C^{γ}-puckered proline mimics. In a separate paper, we shall show how N-Boc-methanopyrrolidines 10a-13a, or related O-silylated derivatives, can serve as key synthons for a directed lithiation approach to the desired methanoproline derivatives $14-17 .^{10,11}$

■ RESULTS AND DISCUSSION

Metpyr 7 was prepared in 70% yield from N-Boc-methanopyrrolidine ${ }^{10}$ by removal of the Boc group with trifluoroacetic acid followed by acetylation with acetyl chloride.

Synthesis of 5-Fluoromethanopyrrolidines. N-Boc-5-syn-fluoro-Metpyr 10a was synthesized, as shown in Scheme 2, from pyridine-derived intermediate 18 that was prepared by a secondchance rearrangement route. ${ }^{12}$ Conversion of fluoro alcohol 18 to the thionocarbonate 19 using O-phenyl chlorothionoformate ${ }^{13}$ followed by reductive deoxygenation afforded the N -benzyloxycarbonyl fluoride 20. Reductive removal of the protecting group using $\mathrm{H}_{2} / \mathrm{Pd}(\mathrm{OH})_{2}$ in methanol in the presence of $(\mathrm{BOC})_{2} \mathrm{O}$ afforded the N-BOC-5-syn-fluoro synthon 10a. The reduction of 20 in methanol followed by addition of acetyl chloride afforded the N -acetyl-5-syn-fluoroamide 10b.

In the 5 -anti-fluoro series, N -Boc-5-anti-fluoro-methanopyrrolidine 11a was synthesized from 1,2-dihydropyridine photoproduct 21 as shown in Scheme 3. ${ }^{14,15}$ Addition of BrF to 11a was accompanied by rearrangement to afford the 5-anti-bromo-

Scheme 3. Synthetic Route to N-Protected 5-antiFluoromethanopyrrolidines

Scheme 4. Synthetic Route to N-BOC-5-syn-O-TBS-methanopyrrolidine 28

6-anti-fluoro azabicycle 22. Characteristic for the rearranged 2azabicyclo[2.1.1] hexane structure for 22 was the ${ }^{1} \mathrm{H}$ NMR W-plan coupling between the bridgehead proton H_{1} at $\delta 4.61$ with H_{4} at δ $3.20\left(J_{1,4}=7.2 \mathrm{~Hz}\right)$. Similarly, the 5-anti-6-anti stereochemistry for 22 was demonstrated by its W-plan coupling of proton H_{5} at δ 4.18 with H_{6} at $\delta 5.07\left(J_{5,6}=7.5 \mathrm{~Hz}\right)$, as well as their vanishingly small couplings to the flanking bridgehead protons H_{1} and $\mathrm{H}_{4} .{ }^{12,14}$ Bromo fluoride 22 was reductively debrominated to give 5-antifluoride 23. Reductive removal and reprotection, as described above for fluoride 20, afforded either the N -BOC-5-anti-fluoro synthon 11a ${ }^{16}$ or the N-acetyl fluoride 11b.

Synthesis of 5-Hydroxymethanopyrrolidines. For the 5 -syn-hydroxy series, a silylated derivative of alcohol 12a, N-Boc-5-syn-OTBS-methanopyrrolidine 28, was synthesized from iodohydrin 24 as shown in Scheme $4 .^{12,14}$ An inefficient, but necessary, mercuric bromide-mediated nucleophilic substitution reaction, during which nitrogen has migrated from C_{1} to C_{6}, afforded the bromohydrin 25 . The rearranged 2 -azabicyclo[2.1.1] hexane structure of 25 was confirmed by the characteristic ${ }^{1} \mathrm{H}$ NMR W-plan coupling between bridgehead proton H_{1} at $\delta 4.44$ with H_{4} at $\delta 2.92\left(J_{1,4}=6.8 \mathrm{~Hz}\right)$ and a geminal H_{3} proton at $\delta 3.41\left(\mathrm{~d}, J_{3,3^{\prime}}=11.3 \mathrm{~Hz}\right)$ that is not further coupled to H_{4}. The singlet at $\delta 3.57$ identifies H_{5} as syn, since there is no coupling with H_{1} or H_{4}. Also, the absence of W-plan coupling between H_{5} and H_{6} at $\delta 4.77$ identifies H_{6} as anti. With the crucial 5-synalcohol in place, protection of the alcohol as the TBS ether 26

Scheme 5. Synthetic Route to N-Acetyl-5-synhydroxymethanopyrrolidines

Scheme 6. Synthetic Route to N-Protected 5-antiHydroxymethanopyrrolidines

followed by reductive debromination gave the ether 27. Hydrogenolysis in the presence of $(\mathrm{BOC})_{2} \mathrm{O}$ gave N -BOC-5-syn-OTBS synthon 28.
N-Acetyl-5-syn-O-benzoate 29 and N-acetyl-5-syn-alcohol 12a were prepared from 25 as shown in Scheme 5. Benzoylation of alcohol 25 gave a benzoate 29 that was reductively debrominated to afford benzoate 30. Hydrogenolysis and acetylation afforded the amide ester 31, which upon methanolysis afforded 5-synalcohol 12b.

For the 5-anti-hydroxy series, N-BOC-5-anti-alcohol 13a was prepared from bromoacetate 32, ${ }^{17}$ as shown in Scheme 6. Reductive debromination gave acetate 33. Methanolysis to 34 and then hydrogenolysis in the presence of $(\mathrm{BOC})_{2} \mathrm{O}$ gave N-BOC alcohol 13a. For investigation of trans/cis amide preferences, alcohol 13a was converted to the N-acyl benzoate ${ }^{18} 36$, and this was converted by methanolysis to the alcohol $\mathbf{1 3 b}$.

NMR Analysis of $K_{\mathrm{T} / \mathrm{C}}$ for Substituted Methanopyrrolidines. A planar amide carbonyl in methanopyrrolidine 7 might be eclipsed with H_{1} in a cis conformation or staggered between the two H_{3} methylene protons in a trans orientation (Figure 2). Further, substituents might alter whatever inherent stereochemical preference might exist for 7. To resolve these issues, and to establish baseline amide conformational preferences for conformationally constrained methanoprolines with heteroatom substituents, we determined $K_{T / C}$ for the 5-syn- and 5-anti-fluoro-, hydroxy-, and benzoyloxymethanopyrrolidines in Figure 2.

Amide trans/cis ratios shown in Table 2 were obtained by integration of nonoverlapping ${ }^{1} \mathrm{H}$ or ${ }^{19} \mathrm{~F}$ NMR peaks. The percentages of trans isomers obtained by separate ${ }^{1} \mathrm{H}$ NMR integrations are reliable $\pm 1 \%$. For an individual structure, isomer ratios can depend on the protons chosen to be integrated and compared and the percentage of trans isomer can vary from the average by \pm $1.5 \% .{ }^{19} \mathrm{~F}$ and ${ }^{1} \mathrm{H}$ ratios ($K_{\mathrm{T} / \mathrm{C}}$) differ by no more than 0.1 .

There is only a slight solvent dependence for methanopyrrolidine amide preferences of 7 and $\mathbf{1 0 b} \mathbf{- 1 3 b}$ (entries $1-5$ Table 2). In polar protic $\mathrm{D}_{2} \mathrm{O}$, the 54% trans amide preference shown by MetPyr 7 is relatively unchanged ($\pm 1 \%$) by either the syn or anti, fluoro or hydroxy, heteroatom substituents of 10b-13b. In CDCl_{3} solvent there is a bit more sensitivity to solvent ($43-54 \%$ trans). The $5-$ syn-F 10b and 5 -anti-F isomers $\mathbf{1 1 b}$ (entries 2 and 3) show essentially the same trans preferences in CDCl_{3} within a few percent as the parent substrate 9 (entry 1), indicating that the dipolar $\mathrm{C}-\mathrm{F}$ bond does not have a significant effect on amide preference for these methanopyrrolidine derivatives. With alcohol substitution, the 5 -syn-OH 12b (entry 4) in CDCl_{3} has a clear cis amide preference, while the 5 -anti-OH 15b (entry 5) has little amide preference.

The $K_{\mathrm{T} / \mathrm{C}}$ results in Table 2 in apolar CDCl_{3} solvent are in somewhat qualitative agreement with gas-phase relative energy calculations that generally favor small trans amide preferences. Only the 5 -syn-OH 12b, in agreement with experiment, is calculated to have a cis amide preference. An X-ray analysis of $\mathbf{1 2 b}$ shows that that there is no unusual distortion of the ring or internal hydrogen bonding interaction in the solid phase; the

Figure 2. Amide conformations for methanopyrrolidines.
amide nitrogen is nearly flat in both the cis and trans amide forms (see the Supporting Information).

Benzoylation of the alcohol groups results in little change in preference for trans amides in $\mathrm{D}_{2} \mathrm{O}$ for both the $5-s y n-\mathrm{OBz} 31$ (entry 6) and 5-anti-OBz 36 (entry 7) isomers. However, upon benzoylation the trans preference is enhanced in the less polar aprotic solvent CDCl_{3}. Especially noteworthy is the switch from a cis amide preference for 5-syn-OH 12b (entry 4) to a clear trans amide preference for the $5-5 y n-\mathrm{OBz} 31$. In this constrained ring system a change in preferred ring pucker upon O-acylation can be ruled out as the cause of the enhancement effect. ${ }^{5 \mathrm{~b}, \mathrm{f}}$

CONCLUSION

N-Acetylmethanopyrrolidine and its 5-syn/5-anti-F(OH) derivatives have been synthesized from pyridine via a 1,2-dihydropyridine photoproduct. The trans/cis amide preferences ($K_{\mathrm{T} / \mathrm{C}}$) for the parent 7 were compared with those of the stereoisomeric pairs of $5-\operatorname{syn}($ gauche $) /$ anti-fluoro $10 \mathbf{b} / \mathbf{1 1 b}$, hydroxy $\mathbf{1 2 b} / \mathbf{1 3 b}$, and $\mathrm{O}-\mathrm{Bz}$ isomers $31 / 36$ in both $\mathrm{D}_{2} \mathrm{O}$ and CDCl_{3} solvent. The substituent effect differences ($K_{\mathrm{T} / \mathrm{C}}$ functionalized isomer $-K_{\mathrm{T} / \mathrm{C}}$ for 7) were extremely small $\left(\Delta K_{\mathrm{T} / \mathrm{C}}=-0.3\right.$ to +0.1$)$ for all cases studied, with the single minor exception of the OBz isomers in $\mathrm{CDCl}_{3}\left(\Delta K_{\mathrm{T} / \mathrm{C}}=0.5-0.7\right)$. Further, in all of the pairs of stereoisomers studied the trans/cis amide preference was minimally influenced by the stereochemical orientation of the substituent ($K_{\mathrm{T} / \mathrm{C}}$ syn-isomer $-K_{\mathrm{T} / \mathrm{C}}$ anti-isomer $=\Delta K_{\mathrm{T} / \mathrm{C}}=-0.2$ to +0.3).

The small trans amide preferences for methanopyrrolidine 7 in CDCl_{3} or $\mathrm{D}_{2} \mathrm{O}$ show that it is the interaction of the α-ester group and the amide of MetPro 4 that plays a major role in determining trans/cis ratios. Further, the small trans amide preferences for the substituted fluoro- and hydroxy-methanopyrrolidines is confirmation of previous work with the stereoisomers Metflp 5 and Methyp 6 that indicated the remote anti heteroatom has little additional effect upon trans amide preferences. ${ }^{9}$ The findings with rigid methanopyrrolidines are consistent with the proposal for prolines that substituent influences upon the pucker energetics of ring conformations, and the resulting impact upon the amide carbonyl and proline side-chain

Table 2. $K_{\text {trans/cis }}$ for N-Acetylmethanopyrrolidine Derivatives

entry	substrate	X	Y	$K_{\text {trans/cis }}$		dipole moment (μ)		$K_{\text {trans/ } / \text { cis }} \mathrm{calcd}^{\text {b }}$
				$\mathrm{D}_{2} \mathrm{O}^{a}$	$\mathrm{CDCl}_{3}{ }^{\text {a }}$	trans	cis	
1	parent 7	H	H	1.2 (54:46)	1.1 (52:48)	4.34	4.30	1.2
2	syn-F 10b	F	H	1.1 (53:47)	$0.9(48: 52)^{c}$	5.05	4.61	1.2
3	anti-F 11b	H	F	$1.2(55: 45)^{d}$	$1.2(54: 46)^{e}$	2.40	4.36	2.0
4	syn-OH 12b	OH	H	1.2 (54:46)	0.8 (43:57)	5.51	2.90	0.06
5	anti-OH 13b	H	OH	1.2 (54:46)	1.0 (51:49)	3.91	2.93	1.2
6	syn-OBz 31	OBz	H	1.4 (58:42)	1.8 (64:36)			
7	anti-OBz 36	H	OBz	1.3 (56:44)	1.6 (61:39)			
${ }^{a}$ Ratios were obtained from ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{b} \mathrm{MP} 2 / 6-31 \mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{RHF} / 6-31 \mathrm{G}(\mathrm{d})$ level. ${ }^{c} K_{\text {trans } / \mathrm{cis}} 0.9(46: 54)$ by ${ }^{19} \mathrm{~F}$ NMR. ${ }^{d} K_{\text {trans } / \mathrm{cis}}=1.3(56: 44)$ by ${ }^{19} \mathrm{~F}$ NMR. ${ }^{e} K_{\text {trans } / \mathrm{cis}}=1.3$ (57:43) by ${ }^{19} \mathrm{~F}$ NMR.								

carbonyl interaction, play the major role in determining trans/cis amide equilibria. ${ }^{3 \mathrm{a}, 4,8}$

For the four possible N -acetyl-5-fluoro- and -5-hydroxymethanopyrrolidines, we now have obtained $K_{T / C}$ values that establish baseline amide preferences in the absence of α-ester functionality. With this evidence, it will be possible to determine the contribution to trans amide preferences by α-ester substituents when other methanoprolines are synthesized. The N-BOCmethanopyrrolidines $\mathbf{1 0 b}, \mathbf{1 1 b}, \mathbf{2 8}$, and $\mathbf{1 3 b}$ should prove useful in this endeavor to prepare fluoro- and hydroxymethanoprolines 14-17, constrained mimics of Flp and Hyp in idealized C^{γ}-exo and C^{γ}-endo conformations through which insights may be gained concerning amide preferences of prolines.

■ EXPERIMENTAL SECTION

General Methods. Thin-layer chromatography was performed on precoated plates of silica gel GF $250 \mu \mathrm{~m}$. Column chromatography was performed on silica gel, Merck grade 60 (230-400 mesh). Reagent chemicals were obtained from commercial suppliers, and reagent grade solvents were used without further purification. The standard for ${ }^{1} \mathrm{H}$ NMR was $\mathrm{CHCl}_{3} \delta 7.26$, for ${ }^{13} \mathrm{C}$ NMR $\mathrm{CDCl}_{3} \delta 77.0$, and for ${ }^{19} \mathrm{~F}$ NMR $\mathrm{CFCl}_{3} \delta 0.00$; undecoupled ${ }^{19} \mathrm{~F}$ spectra were referenced indirectly against a D-lock and required minor shift correction. Some NMR resonances appear as pairs because of carbamate conformations and italics denote minor rotamer peaks. Assignments of NMR resonances, where necessary, were facilitated by NOE, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-COSY, and HETCOR experiments. The trans/cis amide assignments were based upon observations of an NOE effect on either the characteristic bridgehead H_{1} hydrogen or alternatively at the H_{3} methylene hydrogen signals upon irradiation of the major or minor acetyl methyl singlets; italics denote minor rotamer peaks. Amide trans/cis ratios were obtained by integration of nonoverlapping ${ }^{1} \mathrm{H}$ or ${ }^{19} \mathrm{~F}$ NMR peaks. Throughout this paper, we have chosen to use syn/anti nomenclature to identify the stereochemistry of substituents on the non-nitrogen containing bridges. This is to avoid the use of exo/endo nomenclature, confusing to those accustomed to naming related all-carbon-bridged bicyclic structures. The bridge with the nitrogen heteroatom is always the main bridge of highest priority. Thus, all substituents anti to nitrogen are endo.
N -Acetyl-2-azabicyclo[2.1.1]hexane (7). To a solution of N -BOC-2-azabicyclo[2.1.1]hexane ${ }^{10}$ ($42 \mathrm{mg}, 0.229 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5.0 \mathrm{~mL})$ was added TFA ($261 \mathrm{mg}, 2.29 \mathrm{mmol}$) at rt under argon. After 6 h , the crude amine obtained upon workup was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(7.5 \mathrm{~mL})$ to which DMAP ($84 \mathrm{mg}, 0.69 \mathrm{mmol}$) was added. The solution was cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{AcCl}(54 \mathrm{mg}, 0.69 \mathrm{mmol})$ was added to the reaction mixture. After being stirred for 3 h at room temperature, the reaction mixture was washed with water $(2 \times 5 \mathrm{~mL})$ and then the combined aqueous layer was backwashed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the solvent was removed in vacuo. Preparative TLC ($1: 9 \mathrm{MeOH} / \mathrm{EtOAc}$) afforded 20 $\mathrm{mg}(70 \%)$ of 39 as a colorless oil at $R_{f}=0.39(1: 9 \mathrm{MeOH} /$ ethyl acetate $)$: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ (italics denote minor rotamer peaks) $\delta 4.64$ $\left(d t, J=6.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, H_{1}\right), 4.46\left(\mathrm{dt}, J=6.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.54(\mathrm{~s}, 2 \mathrm{H}$, $\left.H_{3}\right), 3.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 2.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.07$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {santi }}\right), 2.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {santi }}\right), 1.44(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}_{5 \text { syn }}\right), 1.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5 \text { syn }}\right) ; \operatorname{NOE}\left(\mathrm{D}_{2} \mathrm{O}\right)$ the major H_{1} signal at δ 4.46 on irradiation sees the acetyl signal at $\delta 2.11$ and the minor H_{1} signal at $\delta 4.64$ sees no acetyl signal. The minor H_{3} signal at $\delta 3.54$ on irradiation enhances the acetyl signal at $\delta 2.07$ and the major H_{3} signal at $\delta 3.36$ on irradiation enhances no acetyl signal. $K_{\text {trans } / \mathrm{cis}}=52 / 48$ $\left(\mathrm{CDCl}_{3}\right)$ based upon H_{1} integrations; the major upfield H_{1} is trans. $K_{\text {trans } / \text { cis }}=54 / 46\left(\mathrm{D}_{2} \mathrm{O}\right)$ based upon H_{1} integrations.

N-Acetyl-2-azabicyclo[2.1.1]hexane (9): ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (italics denote minor rotamer peaks) $\delta 4.78(d t, J=6.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.H_{1}\right), 4.25\left(\mathrm{dt}, J=6.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.39\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 3.38\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}\right)$, $2.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.98(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}_{\text {santi }}\right), 1.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {Santi }}\right), 1.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {ssyn }}\right), 1.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {syyni }}\right)$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6$ and 168.0, 62.5 and $59.1,50.1$ and 48.3, 41.1 and 40.2, 38.7 and 37.9, 21.6 and 21.5; HRMS m / z found 125.0834, calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}$ (M) 125.0836.

N -(Benzyloxycarbonyl)-5-syn-fluoro-6-anti-(phenoxycar-bonothioyloxy)-2-azabicyclo[2.1.1]hexane (19). To 5-syn-fluoro-6-anti-hydroxy-2-azabicyclo[2.1.1]hexane ${ }^{12} \mathbf{1 8}(170 \mathrm{mg}, 0.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added pyridine ($219 \mu \mathrm{~L}, 2.7 \mathrm{mmol}$) and a catalytic amount of DMAP. To the resulting solution was added O-phenyl chlorothionoformate ($111 \mu \mathrm{~L}, 1.02 \mathrm{mmol}$) carefully under argon at rt. ${ }^{13}$ After 2 h , the reaction mixture was quenched with satd $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})(5 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, and all of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layers were combined and dried using $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent in vacuo followed by silica gel flash chromatography gave $230 \mathrm{mg}(88 \%)$ of 19 at $R_{f}=0.60$ ($1: 1$ hexane/ diethyl ether): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.01,5.12(\mathrm{dd}, J=$ $\left.56.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.86\left(\mathrm{~d}, J=20.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.78(\mathrm{dd}$, $\left.J=21.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.61$ (two d, $\left.J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.45(\mathrm{~d}, J=9.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.27\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz) $\delta 194.1(\mathrm{C}=\mathrm{S})$, 156.9, 156.3 ($\mathrm{C}=\mathrm{O}$), 153.5, 136.69, 130.1, 128.9, 128.6, 128.5, 128.3, 127.3, 122.0, 85.9, 83.5, 78.9, 78.7, 67.7, 64.6, 64.4, 47.3, 47.1, 44.3, 44.3; HRMS $m / z 388.1019$, calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FNO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H}), m / z 388.1014$, calcd for $410.0844 \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FNaNO}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na}) 410.0833$.
N-(Benzyloxycarbonyl)-5-syn-fluoro-2-azabicyclo[2.1.1]hexane (20). Compound 19 ($129 \mathrm{mg}, 0.33 \mathrm{mmol}$) was dissolved in dry toluene (8.3 mL) and degassed for 1 h with Ar. Separately, AIBN (8.2 $\mathrm{mg}, 0.05 \mathrm{mmol})$ and $(\mathrm{TMS})_{3} \mathrm{SiH}(100 \mathrm{mg}, 0.5 \mathrm{mmol})$ were dissolved in dry toluene (13.7 mL) and degassed for 1 h with Ar. The flask was then lowered into a $90^{\circ} \mathrm{C}$ oil bath, and the AIBN/(TMS) $3_{3} \mathrm{SiH}$ solution was added slowly via canula. The reaction was monitored by TLC for disappearance of starting material at $R_{f}=0.6$ ($1: 1$ hexane/ether). After 22 h , a second portion of AIBN/TTMSS dissolved in dry toluene degassed for 1 h with Ar was added to the flask. After 3 h , TLC showed no remaining starting material. Solvent was removed in vacuo resulting in a pale yellow oil. The crude material after preparative TLC at $R_{f}=0.3$ ($1: 1$ hexane/ether) yielded $53 \mathrm{mg}(71 \%)$ of 20: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{~m}, 5 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.36\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.27(\mathrm{~d}, J=$ $58.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}$), $3.37,3.35$ (two d, $J=8.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}$), $3.19,3.17$ (two $\left.\mathrm{d}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 2.77\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 1.12(\mathrm{dd}, J=37.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}$, H_{6}), $1.14\left(\mathrm{~s}, \mathrm{H}_{6}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.3,137.2,129.0$, 128.8, 128.6, 128.4, 128.3, 128.2, 85.0, 84.9, 82.7, 82.7, 67.2, 62.6, 62.5, 62.2, 62.1, 45.3, 42.4, 42.2, 42.0, 29.9, 26.7, 26.6, 26.4; HRMS m / z 258.0898, calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FNO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 258.0901.

N-(tert-Butoxycarbonyl)-5-syn-fluoro-2-azabicyclo[2.1.1]hexane (10a). General Procedure for N -COOBn to N -BOC Conversion. To a solution of $20(190 \mathrm{mg}, 0.81 \mathrm{mmol})$ in MeOH $(10 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OH})_{2}(56 \mathrm{mg}, 10 \mathrm{~mol} \%)$ followed by $(\mathrm{BOC})_{2} \mathrm{O}$ ($231 \mathrm{mg}, 1.1 \mathrm{mmol}$). The resulting solution was stirred at rt for 2 h under hydrogen. Filtration of the catalyst followed by silica gel flash chromatography gave 80 mg (50%) of the fluoride 10a at $R_{f}=0.45$ (1:1 hexane/ diethyl ether): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.46\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.41$ $\left(\mathrm{d}, J=58.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.41\left(\mathrm{dd}, J=23.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3 \mathrm{n}}\right.$), $3.24(\mathrm{br}$, $\left.1 \mathrm{H}, \mathrm{H}_{3 x}\right), 2.88\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.29\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}_{6}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.2,85.2,82.8,79.9,62.8,62.6,61.7,61.6,45.5$, 44.9, 42.3, 42.1, 29.0, 28.8, 28.6, 28.4, 26.8, 26.6, 26.4; HRMS m / z 224.1072, calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{FNO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 224.1063.

N -Acetyl-5-syn-fluoro-2-azabicyclo[2.1.1]hexane (10b). General Procedure for Acetylation. Carbamate 20 ($56 \mathrm{mg}, 0.24 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(13 \mathrm{mg}, 0.012 \mathrm{mmol})$ were placed under Ar and suspended in dry THF (5.6 mL). The vessel was repeatedly evacuated and placed
under H_{2} six times. H_{2} was bubbled through the suspension for 15 min followed by capping with a H_{2}-filled balloon (2 L). Acetic anyhdride $(0.025 \mathrm{~mL}, 0.26 \mathrm{mmol})$ and TEA ($0.033 \mathrm{~mL}, 0.024 \mathrm{mmol}$) freshly distilled from CaH_{2} were added via syringe. After being sitrred for 3 h , the Pd / C was filtered through a Celite plug, and the solvent was removed in vacuo. The crude oil purified by silica gel flash chromatography at $R_{f}=0.14$ ($1 \% \mathrm{MeOH}$ in DCM) gave $19.5 \mathrm{mg}(59 \%)$ of amide $\mathbf{1 0 b}:{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.88\left(\mathrm{dm}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, major $\left.\mathrm{H}_{1}\right), 4.49(\mathrm{ddd}, J=58.4$, $2.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}$, minor H_{5}), $4.46\left(\mathrm{ddd}, J=58.3,2.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, major H_{5}), 4.33 (dddd, $J=6.4,1.8,1.74,1.74 \mathrm{~Hz}, 1 \mathrm{H}$, minor $\left.\mathrm{H}_{1}\right), 3.54(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, 1 H , minor H_{3}), $3.50\left(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, major H_{3}), 3.37 (overlapping d, 2 H , $\left.\mathrm{H}_{3}\right), 2.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.07$ (two s, $6 \mathrm{H}, \mathrm{COCH}_{3}$). $1.45-1.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,169.7,83.8(\mathrm{~d}, J=241.1 \mathrm{~Hz}), 83.2$ $(\mathrm{d}, J=240.8 \mathrm{~Hz}), 63.86(\mathrm{~d}, J=17.4 \mathrm{~Hz}), 60.67(\mathrm{~d}, J=17.0 \mathrm{~Hz}), 45.91(\mathrm{~d}, J=$ $3.3 \mathrm{~Hz}), 44.29(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 42.42(\mathrm{~d}, J=18.4 \mathrm{~Hz}), 41.75(\mathrm{~d}, J=18.6 \mathrm{~Hz})$, $27.43(\mathrm{~d}, J=17.6 \mathrm{~Hz}), 26.26(\mathrm{~d}, J=18.0 \mathrm{~Hz}), 22.10,21.70 ;{ }^{1} \mathrm{H} \operatorname{NMR}(500$ $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.72\left(1 \mathrm{H}\right.$, minor $\left.\mathrm{H}_{1}\right), 4.67\left(\mathrm{ddd}, J=58.9,3.1,2.0,1 \mathrm{H}, \mathrm{H}_{5}\right)$, 4.65 (major coupling from HSQC $\left.J=59 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.56(\mathrm{dq}, J=6.3,1.82$ $\mathrm{Hz}, 1 \mathrm{H}$, major $\left.\mathrm{H}_{1}\right), 3.56\left(\mathrm{dt}, J=8.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, minor $\left.\mathrm{H}_{3}\right), 3.53(\mathrm{dd}, J=$ $8.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}$, minor H_{3}), $3.41\left(\mathrm{~d} \mathrm{br}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, major H_{3}), $3.34(\mathrm{~d}, \mathrm{~J}$ $=9.7 \mathrm{~Hz}, 1 \mathrm{H}$, major H_{3}), $3.08-3.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.04-3.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$, $2.1\left(\mathrm{~s}, 3 \mathrm{H}\right.$, major $\left.\mathrm{COCH}_{3}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}\right.$, minor $\left.\mathrm{COCH}_{3}\right), 1.47(\mathrm{dm}, J=9.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{eq}}\right), 1.42\left(\mathrm{dm}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{eq}}\right), 1.42(\mathrm{dd}, J=9.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{6 \mathrm{ax}}\right), 1.34\left(\mathrm{dd}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{ax}}\right) ;{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(} 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -177.2 and -177.6 (ratio 1:1.16); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta-176.9$ (br, overlapping conformers); ${ }^{1} \mathrm{H}$ NMR NOE $\left(\mathrm{CDCl}_{3}\right)$ pulse $\delta 4.33$ $\mathrm{ppm}\left(\right.$ minor $\left.\mathrm{H}_{1}\right)$ hits $\delta 2.09,4.57,1.38$. Pulse $\delta 4.88$ (major H_{1}) hits δ $4.46\left(\mathrm{H}_{5}\right.$ major), 1.33 ; $\operatorname{NOE}\left(\mathrm{D}_{2} \mathrm{O}\right)$ pulse $\delta 1.97$ hits $\delta 3.55$ and 4.57 . and pulse $\delta 2.04$ hits $\delta 4.57$ only; $K_{\text {trans/ } / \text { is }}=48 / 52\left(\mathrm{CDCl}_{3}\right)$ and $53 / 47\left(\mathrm{D}_{2} \mathrm{O}\right)$ based upon H_{1} integrations or $K_{\text {trans/cis }}=46 / 54\left(\mathrm{CDCl}_{3}\right)$ based upon ${ }^{19} \mathrm{~F}$ integrations; HRMS m / z 144.0823, calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{FNO}(\mathrm{M}+\mathrm{H})$ 144.0819.
N-(Benzyloxycarbonyl)-5-anti-bromo-6-anti-fluoro-2-azabicyclo[2.1.1]hexane (22). To a solution of alkene ${ }^{14} 21$ (398 mg , $1.85 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{NO}_{2}(15 \mathrm{~mL})$ was added NBS ($461 \mathrm{mg}, 2.6 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ followed by $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}(753 \mu \mathrm{~L}, 4.62 \mathrm{mmol})$ dropwise over a period of $10 \mathrm{~min} .{ }^{15}$ The reaction mixture was brought to rt and stirred for 16 h , after which it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, washed with $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to give 876 mg of a crude oil. Silica gel flash column chromatography gave 150 mg of the unreacted olefin 21 (37\%) and $212 \mathrm{mg}(38 \%)$ of 22 at $R_{f}=0.45$ ($1: 1$ hexane/ether); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~m}, 5 \mathrm{H}), 5.22$ $(\mathrm{s}, 2 \mathrm{H}), 5.07\left(\mathrm{dd}, J=59.4,7.5 \mathrm{~Hz}, \mathrm{H}_{6}\right), 4.61\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.18$ ($\mathrm{dd}, J=7.5,3.0 \mathrm{~Hz}, \mathrm{H}_{5}$), $3.68\left(\mathrm{dd}, J=12.0,1.8 \mathrm{~Hz}, \mathrm{H}_{3}\right), 3.58(\mathrm{~d}, J=12.0$ $\left.\mathrm{Hz}, \mathrm{H}_{3}\right), 3.20\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5$, 136.8, 128.8, 128.3, 128.2, $100.2(J=224 \mathrm{~Hz}), 65.1,64.8,50.3,49.6$, 48.5; HRMS m / z found 336.0014, calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{FNaBr}^{79}$ $(\mathrm{M}+\mathrm{Na}) 336.0011$.
N-(Benzyloxycarbonyl)-5-anti-fluoro-2-azabicyclo[2.1.1]hexane (23). General Procedure for Reductive Debromination. To a solution of $22(222 \mathrm{mg}, 0.71 \mathrm{mmol})$ in benzene $(25 \mathrm{~mL})$ were added $n-\mathrm{Bu}_{3} \mathrm{SnH}(263 \mu \mathrm{~L}, 0.98 \mathrm{mmol})$ and AIBN $(21 \mathrm{mg})$. The resulting solution was refluxed for 16 h . Solvent was removed in vacuo, and the crude was chromatographed to give $130 \mathrm{mg}(78 \%)$ of 23 at $R_{f}=$ 0.39 ($1: 1$ hexane/ether): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~m}, 5 \mathrm{H})$, $5.15(\mathrm{~s}, 2 \mathrm{H}), 4.80\left(\mathrm{dd}, J=62.1,7.2 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.41\left(\mathrm{brd}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right)$, $3.45\left(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}_{3}\right), 2.86\left(\mathrm{brm}, 2 \mathrm{H}, \mathrm{H}_{4}\right.$ and $\left.\mathrm{H}_{6 x}\right), 1.74$ (ddd, $J=7.8,7.7,2.6$ $\mathrm{Hz}, \mathrm{H}_{6 \mathrm{n}}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.3,136.3,128.8,128.3$, $128.2,98.4\left(\mathrm{~d}, J_{\mathrm{CF}}=209 \mathrm{~Hz}\right), 66.9$ and 66.8, 62.0, 47.3, 43.4 and 43.1, 36.7; HRMS m / z found 258.0907, calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{FNa}$ $(\mathrm{M}+\mathrm{Na}) 258.0907$.

N-(tert-Butoxycarbonyl)-5-anti-fluoro-2-azabicyclo[2.1.1]hexane (11a) ${ }^{16}$. According to the general procedure for 10a, to carbamate $23(42 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added
$\mathrm{Pd}(\mathrm{OH})_{2}(15 \mathrm{mg})$ followed by $(\mathrm{BOC})_{2} \mathrm{O}(47 \mathrm{mg}, 2.15 \mathrm{mmol})$. After the mixture was stirred at rt for 2 h under hydrogen there was obtained 25 mg (71\%) of 11a: $R_{f}=0.39$ ($1: 1$ hexane/ether); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 4.80\left(\mathrm{dd}, J=62,7.9 \mathrm{~Hz}, \mathrm{H}_{5}\right), 4.30\left(\mathrm{br}, \mathrm{H}_{1}\right), 3.36\left(\mathrm{q}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}_{3}\right)$, $2.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4}\right.$ and $\left.\mathrm{H}_{6 x}\right), 1.70\left(\mathrm{ddd}, J=7.9,7.3,2.7 \mathrm{~Hz}, \mathrm{H}_{6 \mathrm{n}}\right), 1.45(\mathrm{~s}$, $9 \mathrm{H}, \mathrm{BOC}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.4,98.6\left(\mathrm{~d}, J_{\mathrm{CF}}=210\right.$ $\mathrm{Hz}, \mathrm{C}_{5}$), 79.9, 62.2, 47.2, 43.4 and 43.2, 36.7, 28.4; HRMS m / z found 224.1052, calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{Na}]$ 224.1063.

N -(Acetyl)-5-anti-fluoro-2-azabicyclo[2.1.1]hexane (11b). According to the general procedure, carbamate $23(96 \mathrm{mg}, 0.41 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(22 \mathrm{mg}, 0.02 \mathrm{mmol})$ were placed under Ar and suspended in dry THF $(5.6 \mathrm{~mL})$. Hydrogenation, followed by addition of acetic anyhdride $(0.042 \mathrm{~mL}, 0.45 \mathrm{mmol})$ and TEA $(0.056 \mathrm{~mL}, 0.41$ $\mathrm{mmol})$, and workup afforded $14 \mathrm{mg}(24 \%)$ of amide $\mathbf{1 1 b}: R_{f}=0.16$ $\left(1 \% \mathrm{MeOH}\right.$ in DCM) ; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.82(\mathrm{dd}, J=62.4$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}$ major), 4.78 (dd, $J=62.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}$ minor) $4.77\left(1 \mathrm{H}, \mathrm{H}_{1}\right.$, minor) $4.26\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right.$ major), $3.49(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}_{3}\right), 2.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4}, \mathrm{H}_{6}\right) 1.78\left(\mathrm{td}, J=7.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 x}\right) 1.71(\mathrm{td}, J=$ 7.8, $\left.2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 y}\right)$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.17,168.72$, $98.51(\mathrm{~d}, J=214.2 \mathrm{~Hz}), 98.43(\mathrm{~d}, J=213.3 \mathrm{~Hz}), 64.13(\mathrm{~d}, J=21.8 \mathrm{~Hz})$, $60.76(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 48.62(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 46.79(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 43.79$ $(\mathrm{d}, J=18.4 \mathrm{~Hz}), 43.15(\mathrm{~d}, J=17.8 \mathrm{~Hz}), 37.70,36.70 ;$ HRMS m / z 144.0823, calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{FNO}(\mathrm{M}+\mathrm{H})$ 144.0819. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-206.1$ and -206.8 (ratio $=1.3: 1.0) ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $\delta-205.2$ and -206.8 (ratio $=1.0: 0.79) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $\delta 4.89\left(\mathrm{dd}, J=62.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right.$ major), $4.87(\mathrm{dd}, J=62.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}$ H_{1} minor), 4.62 (ddd, $J=7.4,1.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}$ minor), 4.48 (ddd, $J=$ 7.1, 1.9, 1.0 Hz, $1 \mathrm{H}, \mathrm{H}_{1}$ major), $3.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3,3^{\prime}}\right.$, minor), 3.45 ($\mathrm{dd}, J=$ $10.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}$, major), $3.41\left(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right.$, major), 2.97 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{anti}}\right), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.80$ (ddd, $J=8.5,7.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {6syn }}$, major), 1.74 (ddd, $J=8.5,7.3,2.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}$, minor $) ; \operatorname{NOE}\left(\mathrm{D}_{2} \mathrm{O}\right)$ pulse $\delta 2.03$ hits $\delta 3.62\left(\mathrm{H}_{3}\right.$ minor); pulse $\delta 2.08$ (pulls 2.03 into pulse) hits $\delta 3.62,4.47$ (H_{1} major). $\operatorname{NOE}\left(\mathrm{CDCl}_{3}\right)$: pulse $\delta 2.02$ hits $\delta 3.48$; pulse $\delta 2.06$ (pulls 2.02 into pulse) hits $\delta 4.25\left(\right.$ major $\left.\mathrm{H}_{1}\right), \delta 3.48 ; K_{\text {trans }} / \mathrm{cis}=54 / 46\left(\mathrm{CDCl}_{3}\right)$ and $K_{\text {trans } / \mathrm{cis}}=55 / 45\left(\mathrm{D}_{2} \mathrm{O}\right)$ based upon H_{1} integrations or $K_{\text {trans } / \mathrm{cis}}=57 /$ $43\left(\mathrm{CDCl}_{3}\right)$ and 56:44 $\left(\mathrm{D}_{2} \mathrm{O}\right)$ based upon ${ }^{19} \mathrm{~F}$ integrations.

N-(Benzyloxycarbonyl)-5-anti-bromo-6-syn-hydroxy-2azabicyclo[2.1.1]hexane (25). To a stirred solution of iodohydrin $24(1000 \mathrm{mg}, 2.784 \mathrm{mmol})$ in $\mathrm{MeNO}_{2}(100 \mathrm{~mL})$ was added mercuric bromide ($2509 \mathrm{mg}, 6.961 \mathrm{mmol}, 2.5$ equiv). ${ }^{12,14}$ The solution was heated at $65{ }^{\circ} \mathrm{C}$ for 15 h . The mixture was diluted with brine $(50 \mathrm{~mL})$ and extracted with ether $(4 \times 150 \mathrm{~mL})$. The ether extracts were combined, washed with brine $(2 \times 100 \mathrm{~mL})$, dried over MgSO_{4}, evaporated under reduced pressure, and chromatographed (gradient: $25-40 \%$ ether in hexanes) to afford 269 mg (31\%) of rearranged bromohydrin 25 as a colorless oil: $R_{f}=0.44$ (2:3 ethyl acetate/hexanes) (unreacted HgBr_{2} is UV active and NMR blind, and separation was difficult); ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.39-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.15(\mathrm{br}, 2 \mathrm{H}), 4.77\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.44(\mathrm{dd}, \mathrm{J}=$ $\left.6.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.41\left(d d, J=6.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, H_{1}\right), 3.57\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$, $3.58-3.51\left(m, 3 H, 2 H_{3}\right.$ and $\left.H_{5}\right), 3.41\left(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.36(\mathrm{~d}, J=$ $\left.11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 3.13(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 2.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.87\left(m, 1 \mathrm{H}, \mathrm{H}_{4}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.8,136.3,128.5,128.1,127.9,71.4$ and $70.2,67.4$ and $67.3,49.9$ and 49.7, 45.5, 43.1, 14.7; HRMS m / z found 334.0045, calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrNO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 334.0049$.

N -(Benzyloxycarbonyl)-5-anti-bromo-6-syn-(tert-butyldime-thylsilyloxy)-2-azabicyclo[2.1.1]hexane (26). To a solution of bromohydrin $25(257 \mathrm{mg}, 0.823 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ under argon was added imidazole ($280 \mathrm{mg}, 4.116 \mathrm{mmol}$, 5.0 equiv) followed by $\mathrm{TBSCl}(149 \mathrm{mg}, 0.988 \mathrm{mmol}, 1.2$ equiv) in small portions. The resulting solution was stirred at rt for 6 h . The solvent was removed in vacuo and then chromatographed (10% ethyl acetate in hexanes) on silica gel to gave 312 mg (89%) of bromo- O-silyl ether $\mathbf{2 6}$ as a colorless oil: $R_{f}=0.44$ (1:5 ethyl acetate/hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.27$
$(\mathrm{m}, 5 \mathrm{H}), 5.21-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.67\left(b r \mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.65\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{6}\right)$, $4.44\left(d d, J=6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, H_{1}\right), 4.38\left(\mathrm{dd}, J=6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.58$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.57-3.28\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}_{3}\right), 2.91-2.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$, $0.91-0.78(\mathrm{~m}, 9 \mathrm{H}), 0.09-0.01(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 156.7$ and $156.1,136.6$ and $136.4,128.4,128.1,128.0,127.9,127.8$, 70.4 and $70.3,68.0$ and 67.6, 67.0 and $66.8,50.4$ and 50.3, 45.7 and 45.6 , 43.2 and $43.0,25.5,17.8,-5.1$ and -5.2 ; HRMS m / z found 448.0923, calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{BrNO}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na}) 448.0914$.

N-(Benzyloxycarbonyl)-5-syn-(tert-butyldimethylsilyloxy)-2azabicyclo[2.1.1]hexane (27). According to the general reductive procedure for 23, to a solution of bromo- O-silyl ether 26 ($304 \mathrm{mg}, 0.713$ $\mathrm{mmol})$ in dry toluene $(20 \mathrm{~mL})$ were added $(\mathrm{TMS})_{3} \mathrm{SiH}(440 \mu \mathrm{~L}, 1.426$ mmol, 2.0 equiv) and $\operatorname{AIBN}(30 \mathrm{mg})$. After 2 h at $70^{\circ} \mathrm{C}$, workup and flash chromatography (1:9 ethyl acetate/hexanes) gave 183 mg (74%) of O-silyl ether 27 as a colorless oil: $R_{f}=0.41$ (1:6 ethyl acetate/hexanes); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.21-5.01(\mathrm{~m}$, 2 H,$), 4.29\left(d t, J=6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, H_{1}\right), 4.23\left(\mathrm{dt}, J=6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right)$, $3.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.47\left(d, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.45\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$, $3.22\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 3.19\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 2.64$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 1.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 a n t i}\right), 1.26\left(\mathrm{~m}, 1 \mathrm{H}, H_{6 a n t i}\right), 1.20(\mathrm{~d}, J=8.1$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right), 1.17\left(d, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{6 \text { syn }}\right), 0.84(\mathrm{~s}, 9 \mathrm{H}),, 0.04(\mathrm{~s}, 6 \mathrm{H})$, $0.03(s, 6 H) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.4$ and $156.9,137.2$ and 137.0, 128.3, 127.9, 127.7, 69.6 and 69.5, 66.5 and $66.4,63.7$ and 63.4, 45.3 and $45.2,42.8$ and 42.7, 28.6 and 28.2, 25.6, 17.8, -5.1 and -5.2 ; HRMS m / z found 348.1994, calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{Si}(M+H)$ 348.1989.

N-(tert-Butoxycarbonyl)-5-syn-(tert-butyldimethylsilyloxy)-2azabicyclo[2.1.1]hexane (28). To a solution of O-silyl ether 27 $(231 \mathrm{mg}, 0.665 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OH})_{2}(50 \mathrm{mg})$ followed by $(\mathrm{BOC})_{2} \mathrm{O}(174 \mathrm{mg}, 0.798 \mathrm{mmol}, 1.2$ equiv). After 3 h under hydrogen at rt, workup and silica gel chromatography gave 184 mg (88%) of carbamate 28 as a colorless oil: $R_{f}=0.52$ (1:6 ethyl acetate/ hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.21(d t, J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.H_{1}\right), 4.11\left(\mathrm{dt}, J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.36(d, J=8.3$ $\left.H z, 1 H, H_{3}\right), 3.31\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.13\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, H_{3^{\prime}}\right)$, $3.09\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 2.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 1.45(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.44$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{Boc}), 1.23\left(\mathrm{~m}, 1 \mathrm{H}, H_{6 a n t i}\right), 1.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \text { anti }}\right), 1.56(\mathrm{~d}, J=8.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right), 1.13\left(d, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, H_{6 \text { syn }}\right), 0.86(\mathrm{~s}, 9 \mathrm{H}, \mathrm{TBS}), 0.04(\mathrm{~s}$, $6 \mathrm{H}, \mathrm{TBS}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.7$ and $156.4,78.8,69.6$, 63.8 and $62.7,45.2$ and $44.6,42.8,28.7,28.5,25.7,17.9,-5.0 ;$ HRMS $m /$ z found 314.2154, calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H}) 314.2146$.

N-(Benzyloxycarbonyl)-5-anti-bromo-6-syn-benzoyloxy-

 2-azabicyclo[2.1.1]hexane (29). Bromohydrin 25 ($51 \mathrm{mg}, 0.163$ $\mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and treated sequentially with triethylamine $(115 \mu \mathrm{~L}, 0.817$ mmol), DMAP ($22 \mathrm{mg}, 0.180 \mathrm{mmol}$), and benzoyl chloride $(40 \mu \mathrm{~L}$, $0.327 \mathrm{mmol}) .{ }^{18}$ The reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, allowed to come to room temperature, and then stirred for 3 h . The reaction mixture was quenched with water $(2 \times 1 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 0.5 \mathrm{~mL})$. The combined organic layers were dried and evaporated to dryness. The residue was purified by chromatography on silica gel (prep TLC: 1:4 ethyl acetate/hexanes) to afford 59 mg (87\%) bromobenzoate ester 29 as a light orange oil at $R_{f}=0.33$ (4:1 hexanes/ ethyl acetate); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10-7.17(\mathrm{~m}, 10 \mathrm{H})$, $5.70\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{6}\right.$ and its rotamer), $5.09(\mathrm{~m}, 2 \mathrm{H}), 4.80(d, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.H_{1}\right), 4.74\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.78\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.69-3.47(\mathrm{~m}, 3 \mathrm{H}$, $2 \mathrm{H}_{3}$ and H_{5} rotamer), $3.28\left(\mathrm{dd}, J=6.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.23(d d, J=6.6$, $\left.2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,156.7,136.0$, 133.5, 129.6, 128.9, 128.5, 128.4, 128.1, 127.8, 72.0 and $70.9,67.3$ and 67.1, 66.9 and 66.3, 49.5 and 49.2, 46.0, 43.5 and 43.2; HRMS m / z found 416.0510, calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrNO}_{4}(\mathrm{M}+\mathrm{H}) 416.0492$.N-(Benzyloxycarbonyl)-5-syn-benzoyloxy-2-azabicyclo[2.1.1]-
hexane (30). According to the general procedure, to a solution of bromobenzoate ester $29(223 \mathrm{mg}, 0.536 \mathrm{mmol})$ in dry toluene $(15 \mathrm{~mL})$
were added $\mathrm{Bu}_{3} \mathrm{SnH}(285 \mu \mathrm{~L}, 1.072 \mathrm{mmol})$ and $\operatorname{AIBN}(9 \mathrm{mg})$. After 3 h at $70{ }^{\circ} \mathrm{C}$, workup and flash chromatography ($1: 5$ ethyl acetate/hexanes) gave $130 \mathrm{mg}(72 \%)$ of benzoate ester 30 as a light orange oil: $R_{f}=0.34$ (1:3 ethyl acetate/hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.20$ $(\mathrm{m}, 10 \mathrm{H}), 5.08(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.8(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}_{5}$ and its conformer), $4.67\left(\mathrm{brd}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, H_{1}\right), 4.61(\mathrm{brd}, \mathrm{J}=$ $\left.6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.59\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.50\left(d, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{3}\right)$, $3.40\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 3.37\left(d, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{3^{\prime}}\right), 3.07(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}_{4}\right), 1.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 a n t i}\right.$ and its conformer), $1.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right.$ and its conformer); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4$ and $165.3,157.5$ and $156.8,136.8$ and $136.6,133.3,129.6,128.5,128.3,127.8,127.7,69.4$, 66.8 and $66.7,62.6$ and $62.0,45.9$ and $45.6,42.0$ and $41.6,30.1$ and 29.8; HRMS m / z found 338.1386, calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H}) 338.1387$.

N-Acetyl-5-syn-benzoyloxy-2-azabicyclo[2.1.1]hexane (31). According to the general procedure, to a solution of benzoate ester $30(102 \mathrm{mg}, 0.302 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OH})_{2}$ $(30 \mathrm{mg})$. After 3 h under hydrogen at RT workup gave a crude amine that was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. DMAP ($110 \mathrm{mg}, 0.907 \mathrm{mmol}, 3$ equiv) and $\mathrm{AcCl}(65 \mu \mathrm{~L}, 0.907 \mathrm{mmol}, 3$ equiv) was added to the reaction mixture maintained for 30 min at $0^{\circ} \mathrm{C}$ and then brought to RT. After 3 h at RT workup and chromatography (1:4 hexanes/ethyl acetate) afforded $45 \mathrm{mg}(61 \%)$ of 31 as a light orange oil at $R_{f}=0.24$ (ethyl acetate); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93$ $(\mathrm{m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 4.98\left(d t, J=6.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}, H_{1}\right)$, $4.75\left(d d, J=3.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}, H_{5}\right), 4.72\left(\mathrm{dd}, J=3.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.50$ $\left(\mathrm{dt}, J=6.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.60\left(\mathrm{brd}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.40(\mathrm{~m}, 1 \mathrm{H}$, H_{3} conformer and $1 \mathrm{H}, \mathrm{H}_{3^{\prime}}$ and its conformer), $3.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.08$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 a n t i}\right), 1.63$ $\left(m, 1 H, H_{6 a n t i}\right), 1.51\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right), 1.39(d, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.H_{6 \text { syn }}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9$ and $169.5,165.6$ and 165.3, 133.4 and 133.3, 129.6 and 129.5, 129.3 and 129.0, 128.5 and $128.4,69.8$ and 69.1, 64.0 and $60.3,46.1$ and $44.7,42.2$ and $41.0,30.9$ and 29.6, 21.6 and 21.4; HRMS m / z found 246.1125, calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H}) 246.1125 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.93$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{Bz}), 7.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Bz}), 7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Bz}), 4.86(d t, J=6.8,1.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{1}\right), 4.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right.$ and its conformer, some part of signal is under $\mathrm{D}_{2} \mathrm{O}$ peak $), 4.71\left(\mathrm{dt}, J=6.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.62-3.36\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}_{3}\right.$ and their conformers), $3.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.03(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.81$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{6 \text { anti }}\right), 1.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \text { anti }}\right), 1.58\left(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right), 1.49$ (d, $\left.J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right)$; $\mathrm{NOE}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ the major acetyl signal at $\delta 2.00$ on irradiation enhances major H_{1} at $\delta 4.50$. The minor acetyl signal at $\delta 2.05$ on irradiation enhances minor H_{3} at $\delta 3.40$; NOE ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) the major acetyl signal at $\delta 2.03$ on irradiation enhances the major H_{1} at $\delta 4.71$. The minor acetyl signal at $\delta 2.05$ on irradiation enhances the minor H_{3} at $\delta 3.60 . K_{\text {trans } / \mathrm{cis}}=64 / 36\left(\mathrm{CDCl}_{3}\right)$; $K_{\text {trans } / \text { cis }}=58 / 42\left(\mathrm{D}_{2} \mathrm{O}\right)$ based on $\mathrm{H}_{6 \text { syn }}$ peaks.

N-Acetyl-5-syn-hydroxy-2-azabicyclo[2.1.1]hexane (12b). General Procedure for Benzoate Removal. $\mathrm{Et}_{3} \mathrm{~N}(770 \mu \mathrm{~L}, 5.504$ $\mathrm{mmol})$ was added to the benzoate $31(27 \mathrm{mg}, 0.110 \mathrm{mmol})$ in methanol $(1 \mathrm{~mL})$ and stirred at room temperature for 1 day under argon. After the solvent was removed in vacuo, the crude was chromatographed (prep TLC: 9:1 ethyl acetate $/ \mathrm{MeOH}$) to afford $11 \mathrm{mg}(71 \%)$ of alcohol $\mathbf{1 2 b}$ as an off-white solid: $R_{f}=0.29(9: 1$ ethyl acetate $/ \mathrm{MeOH}) ; \mathrm{mp} 52-54{ }^{\circ} \mathrm{C}$ (ethyl acetate); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.60(\mathrm{dt}, J=6.8,1.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{1}\right), 4.55\left(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.27\left(b d, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.16(d t$, $\left.J=6.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}, H_{1}\right), 3.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 3.50\left(\mathrm{brd}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$, $3.46\left(b r d, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right.$ and its conformer), 2.78 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{4}\right.$ and its conformer), $2.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.04(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.39$ $\left(m, 1 H, H_{6 a n t i}\right), 1.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \text { anti }}\right), 1.23\left(d, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, H_{6 \text { syn }}\right), 1.14$ $\left(\mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5$ and $169.8,70.1$ and 68.9, 65.1 and 62.0, 46.1 and 44.1, 42.1 and 42.0, 29.6 and 28.6, 21.9 and 21.4; HRMS m / z found 164.0682 , calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2-}$ $\mathrm{Na}(\mathrm{M}+\mathrm{Na}) 164.0682 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.55(d t, J=6.7$, $\left.1.8 \mathrm{~Hz}, 1 \mathrm{H}, H_{1}\right), 4.37\left(\mathrm{dt}, J=6.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.95(\mathrm{bdd}, J=3.1,1.8$
$\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{5}$), 3.93 (dd, $J=3.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}$), 3.48 $\left(s, 2 H, H_{3}\right), 3.32$ (two d, $\left.J=9.8,9.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 2.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right.$ and its conformer), $2.09(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 2.08(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ac}), 1.51(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\text {Ganti }}\right), 1.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \text { anti }}\right), 1.29\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right), 1.21(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syni }}$); $\mathrm{NOE}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, some $\mathrm{C}_{6} \mathrm{D}_{6}$ added to resolve peaks) the minor H_{1} signal at $\delta 4.16$ on irradiation enhances the minor COCH_{3} at $\delta 2.04$ and vice versa; $\mathrm{NOE}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ the major H_{1} resonance at $\delta 4.37$ on irradiation enhances the major COCH_{3} at $\delta 2.08$. The minor H_{3} resonance at $\delta 3.48$ on irradiation enhances the minor COCH_{3} at $\delta 2.09 . K_{\mathrm{T} / \mathrm{C}}=43 / 57\left(\mathrm{CDCl}_{3}\right)$ and $K_{\mathrm{T} / \mathrm{C}}=54 / 46$ ($\mathrm{D}_{2} \mathrm{O}$) based on $\mathrm{H}_{\text {ssyn }}$ peaks.

N -(Benzyloxycarbonyl)-5-anti-acetoxy-2-azabicyclo[2.1.1]hexane (33). According to the general procedure, $\operatorname{AIBN}(600 \mathrm{mg})$ and (TMS) $)_{3} \mathrm{SiH}(10.45 \mathrm{~mL}, 33.8 \mathrm{mmol})$ were added to bromoacetate ${ }^{17} 32$ $(6.00 \mathrm{~g}, 16.9 \mathrm{mmol})$ in dry toluene $(300 \mathrm{~mL})$. The resulting solution was stirred vigorously at $70^{\circ} \mathrm{C}$ for 3 h under an argon-filled balloon. Workup and chromatography (10% and then 25% ether in hexanes) afforded $3.52 \mathrm{~g}(76 \%)$ of acetate 33 as a light yellow oil at $R_{f}=0.44$ ($1: 1$ ether/ hexanes): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.18(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.07$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.48\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.34(\mathrm{br} \mathrm{dd}, J=7.1,1.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{1}\right), 3.43\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.37\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 2.78$ (dd, $\left.J=7.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.60\left(\mathrm{br} \mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {Gant }}\right), 2.00$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.52\left(\mathrm{dd}, \mathrm{J}=8.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,155.5$ (br), 136.5, 128.2, 127.8, 127.6, 81.8, 65.6, 61.8 (br), 47.9, 42.4, 36.7, 24.9 and 20.6; HRMS m / z found 298.1060, calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 298.1055.

N -(Benzyloxycarbonyl)-5-anti-hydroxy-2-azabicyclo[2.1.1]hexane (34). According to the general procedure, $\mathrm{Et}_{3} \mathrm{~N}(15 \mathrm{~mL}, 0.109$ $\mathrm{mol})$ was added to acetate $33(3.00 \mathrm{~g}, 0.011 \mathrm{~mol})$ in methanol $(270 \mathrm{~mL})$ and the mixture stirred at rt for 12 h . Workup and chromatography ($1: 1$ ethyl acetate/hexanes) afforded $2.20 \mathrm{~g}(87 \%)$ of alcohol 34 as a light yellow oil at $R_{f} 0.50$ ($2: 1$ ethyl acetate/hexanes): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.18$ (dd, $J=$ $\left.7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.03\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 2.89$ (br, $\left.1 \mathrm{H}, \mathrm{H}_{6 a n t i}\right), 2.63\left(\mathrm{dd}, J=7.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 1.60(\mathrm{dd}, J=7.8,7.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{6 y y n}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.6, 136.6, 128.4, 127.9, 127.7, 80.9, 66.7, 63.6 and 63.2, $48.2(\mathrm{br})$, 43.8, 36.7 (br); HRMS m / z found 256.0946, calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 256.0950.

N -(tert-Butoxycarbonyl)-5-anti-hydroxy-2-azabicyclo-

[2.1.1]hexane (13a). According to the general procedure, $(\mathrm{Boc})_{2} \mathrm{O}$ $(954 \mathrm{mg}, 4.37 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OH})_{2}(150 \mathrm{mg})$ were added to alcohol 34 $(1.00 \mathrm{~g}, 4.28 \mathrm{mmol})$ in methanol $(40 \mathrm{~mL})$ and stirred at rt for 2 h under a H_{2}-filled balloon. Workup and chromatography (1:2 ethyl acetate/ hexanes) afforded 733 mg (86%) of alcohol 13a as an off-white solid: $R_{f}=0.32$ (2:3 ethyl acetate/hexanes); mp 113-114 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.07\left(\mathrm{br} \mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.03(\mathrm{br} \mathrm{d}, J=6.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{5}\right), 3.66(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 3.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 2.86\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{6 a n t i}\right), 2.61$ ($\mathrm{br} \mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}$), $1.57\left(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syy }}\right)$), 1.43 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{Boc}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.7,81.0,79.6,63.8$ and 62.9 (br), 48.6 and 48.0 (br), 43.9, 36.8, 28.4; HRMS m / z found 222.1104, calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 222.1104$.

N -(tert-Butoxycarbonyl)-5-anti-benzoyloxy-2-azabicyclo[2.1.1]hexane (35). Alcohol 34 ($85 \mathrm{mg}, 0.427 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under argon. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and sequentially treated with triethylamine ($300 \mu \mathrm{~L}, 2.133 \mathrm{mmol}$), DMAP ($57 \mathrm{mg}, 0.469 \mathrm{mmol}$), and benzoyl chloride ($125 \mu \mathrm{~L}, 1.067$ $\mathrm{mmol})$. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, allowed to come to room temperature, and then stirred for 3 h . The solution was washed with water $(3 \times 2 \mathrm{~mL})$, and the combined organic layers were dried and evaporated to dryness. The residue was purified by chromatography on silica gel (10% ethyl acetate in hexanes) to afford 119 mg (92%) of benzoate 35 as a light orange oil: $R_{f}=0.54$ (4:1 hexanes/ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.56$ $(\mathrm{m}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 4.81\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.45(\mathrm{br}$,
$\left.1 \mathrm{H}, \mathrm{H}_{1}\right), 3.53\left(\mathrm{brd}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.45\left(\mathrm{brd}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right)$, $2.99\left(\mathrm{dd}, J=7.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.79\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {6anti }}\right), 1.67$ (dd, $J=8.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}$), $1.49(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.3,155.6,133.3,129.8,129.6$ and 128.5, 82.6, 79.8, 62.2, 48.2, 43.0, 37.1, 28.5; HRMS m / z found 326.1367, calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 326.1363$.

N -Acetyl-5-anti-benzoyloxy-2-azabicyclo[2.1.1]hexane (36). To a solution of carbamate $35(108 \mathrm{mg}, 0.356 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added TFA $(275 \mu \mathrm{~L}, 3.559 \mathrm{mmol})$ at rt. The solution was stirred for 6 h at room temperature under argon, and then solvent was removed in vacuo to afford the 173 mg of crude amine as an orange oil. To the crude amine in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added DMAP ($130 \mathrm{mg}, 1.068 \mathrm{mmol}$) under argon, and the solution was cooled to $0^{\circ} \mathrm{C}$. $\mathrm{AcCl}(75 \mu \mathrm{~L}, 1.068 \mathrm{mmol})$ was added to the reaction mixture that was maintained for 30 min at $0^{\circ} \mathrm{C}$ and then brought to rt. After being stirred for 4 h at rt , the reaction mixture was washed with water $(2 \times 5 \mathrm{~mL})$ and then the combined aqueous layer was backwashed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the solvent was removed in vacuo. The crude (122 mg) was chromatographed (prep tlc, 1:9 hexanes/ethyl acetate) to afford 67 $\mathrm{mg}(77 \%)$ of amide 36 as a light orange oil: $R_{f}=0.22$ (1:9 hexanes/ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.55$ $(\mathrm{m}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 4.89\left(d d, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.77(d, J=$ $\left.7.3 \mathrm{~Hz}, 1 \mathrm{H}, H_{5}\right), 4.76\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.41(\mathrm{dd}, J=$ $\left.7.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.65-3.51\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}_{3}\right), 3.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.84$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{6 a n t i}\right), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{dd}, J=8.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{6 \text { syn }}\right), 1.65\left(d d, J=8.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.7 and $168.5,166.2$ and $166.1,133.4$ and 133.3, 129.6 (2C), 128.5 and 128.4, 82.4 and 82.0, 63.8 and $60.4,49.0$ and 47.1, 43.1 and $42.0,37.6$ and 36.7,21.6 and 20.9; HRMS m / z found 246.1125, calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}$ (M + H) 246.1125 .

N -Acetyl-5-anti-hydroxy-2-azabicyclo[2.1.1]hexane

(13b). $\mathrm{Et}_{3} \mathrm{~N}(450 \mu \mathrm{~L}, 3.180 \mathrm{mmol})$ was added to the benzoate 36 (52.0 $\mathrm{mg}, 0.212 \mathrm{mmol})$ in methanol $(5 \mathrm{~mL})$ and stirred at room temperature for 17 h under argon. After the solvent was removed in vacuo, the crude was chromatographed (9:1 ethyl acetate $/ \mathrm{MeOH}$) to afford 23.6 mg (79\%) of alcohol 13b as a colorless oil: $R_{f}=0.26$ (9:1 ethyl acetate/ $\mathrm{MeOH})$; ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.69(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.48(\mathrm{dd}, \mathrm{J}=$ $\left.7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, H_{1}\right), 4.05\left(d, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, H_{5}\right), 4.04(\mathrm{dd}, J=7.0,1.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{1}$), 3.98 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}$), $3.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 3.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}\right)$, 2.94 (br dd, $\left.J=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { antit }}\right), 2.71\left(d d, J=7.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$, $2.67\left(\mathrm{dd}, J=7.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.98(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{COCH}_{3}\right), 1.62\left(\mathrm{dd}, J=8.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { synn }}\right), 1.55(\mathrm{dd}, J=8.0,7.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9$ and 168.3, 80.9 and 80.5, 65.5 and $62.3,49.4$ and $47.6,43.8$ and 43.4, 37.3 and $36.3,21.4$ and 20.8); HRMS m / z found 164.0692 , calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 164.0687. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.46\left(d d, J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right)$, $4.29\left(\mathrm{dd}, J=7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.08\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 4.05(d, J=$ $\left.7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.61\left(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}_{3}\right), 3.42\left(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}_{3}\right), 2.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$, $2.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {6anti }}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.74$ (dd, $\left.J=7.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syyn }}\right), 1.68\left(d d, J=7.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { sym }}\right)$; NOE $\left(\mathrm{CDCl}_{3}\right)$ the major acetyl signal at $\delta 2.01$ on irradiation sees the major H_{1} at $\delta 4.04$. The minor acetyl signal at $\delta 1.98$ on irradiation sees the minor H_{3} at $\delta 3.40$. NOE $\left(\mathrm{D}_{2} \mathrm{O}\right)$: the major acetyl signal at $\delta 2.09$ on irradiation enhances the major H_{1} at $\delta 4.29$. The minor acetyl signal at $\delta 2.06$ on irradiation enhances the minor H_{3} at $\delta 3.61 . K_{\mathrm{T} / \mathrm{C}}=50.5 / 49.5\left(\mathrm{CDCl}_{3}\right)$ based on $\mathrm{H}_{\text {6syn }}$ and $54 / 46\left(\mathrm{D}_{2} \mathrm{O}\right)$ based on H_{1}.

N -Acetyl-5-anti-benzoyloxy-2-azabicyclo[2.1.1]hexane

(36): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.14-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.71$ $(\mathrm{m}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 4.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}\right.$ and H_{1} rotamer are under $\mathrm{D}_{2} \mathrm{O}$ peak), $4.66\left(\mathrm{dd}, J=7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 3.80\left(d, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$, $3.75\left(d, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, H_{3^{\prime}}\right), 3.61\left(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.56(\mathrm{~d}, J=9.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 3.16\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6 a n t i}\right.$ both conformers), $2.17(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.81\left(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { sym }}\right), 1.75(\mathrm{dd}, \mathrm{J}=$
$\left.8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6 \text { syn }}\right) ; \mathrm{NOE}\left(\mathrm{CDCl}_{3}\right)$ the major acetyl signal at $\delta 2.10$ on irradiation sees the major H_{1} at $\delta 4.41$ and vice versa. The minor H_{1} signal at $\delta 4.89$ on irradiation sees no proton. $\operatorname{NOE}\left(\mathrm{D}_{2} \mathrm{O}\right)$: the major acetyl signal at $\delta 2.17$ on irradiation enhances the major H_{1} at $\delta 4.66$. The minor acetyl signal at $\delta 2.13$ on irradiation enhances the H_{3} signal $\delta 3.80$ and the H_{3} signal δ 3.75. $K_{\mathrm{T} / \mathrm{C}}=61 / 39\left(\mathrm{CDCl}_{3}\right)$ based on H_{1} and $56 / 44\left(\mathrm{D}_{2} \mathrm{O}\right)$ based on H_{3}.

■ ASSOCIATED CONTENT

(s) Supporting Information. Coordinates of optimized geometries, selected angles, and energy calculations for 9 and $\mathbf{1 0 b}-\mathbf{1 3 b}$; data from the X-ray diffraction analysis of syn-alcohol 12b, copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: grkrow@temple.edu.

■ ACKNOWLEDGMENT

Financial support was provided by the National Science Foundation (CHE 0515635) and (DGE-0841377). M.D.S. was supported by an American Chemical Society Division of Medicinal Chemistry graduate fellowship; M.S. was supported by a Der Min Fan Fellowhip. We thank Alex Shaffer and Zilun Hu for assistance and Hans Reich and David Dalton for helpful discussions.

- REFERENCES

(1) (a) Lu, K. P.; Finn, G.; Lee, T. H.; Nicholson, L. Nat. Chem. Biol. 2007, 3, 619-629. (b) Dugave, C.; Demange, L. Chem. Rev. 2003, 103, 2475-2532. (c) Fischer, G. Chem. Soc. Rev. 2000, 29, 119-127. (d) Andreotti, A. H. Biochemistry 2003, 42, 9515-9542. (e) Wedemeyer, W. J.; Welker, E.; Scheraga, H. A. Biochemistry 2002, 41, 14637-14644.
(2) (a) Lummis, S. C. R.; Beene, D. L.; Lee, L. W.; Lester, H. A.; Broadhurst, R. W.; Dougherty, D. A. Nature 2005, 438, 248-252. (b) Lin, L.-N.; Brandts, J. F. Biochemistry 1979, 18, 43-47.
(3) (a) For a review of prolines and collagen, see: Shoulders, M. D.; Raines, R. T. Annu. Rev. Biochem. 2009, 78, 929-958. (b) Shoulders, M. D.; Satyshur, K. A.; Forest, K. T.; Raines, R. T. Proc. Natl. Acad. Sci. U. S.A. 2010, 107, 559-564.
(4) (a) Eberhardt, E. S.; Panasik, N., Jr.; Raines, R. T. J. Am. Chem. Soc. 1996, 118, 12261-12266. (b) DeRider, M. L.; Wilkens, S. J.; Waddell, M. J.; Bretscher, L. E.; Weinhold, F.; Raines, R. T.; Markley, J. L. J. Am. Chem. Soc. 2002, 124, 2497-2505. (c) Kuemin, M.; Nagel, Y. A.; Schweizer, S.; Monnard, F. W.; Ochsenfeld, C.; Wennemers, H. Angew. Chem., Int. Ed. 2010, 49, 1-5. (d) Bretscher, L. E.; Jenkins, C. L.; Taylor, K. M.; DeRider, M. L.; Raines, R. T. J. Am. Chem. Soc. 2001, 123, 777-778. (e) Renner, C.; Alefelder, S.; Bae, J. H.; Budisa, N.; Huber, R.; Moroder, L. Angew. Chem., Int. Ed. 2001, 40, 923-925. (f) Hodges, J. A.; Raines, R. T. J. Am. Chem. Soc. 2003, 125, 9262-9263. (g) Doi, M.; Nishi, Y.; Uchiyama, S.; Nishiuchi, Y.; Nakazawa, T.; Ohkubo, T.; Kobayashi, Y. J. Am. Chem. Soc. 2003, 125, 9922-9923. (h) Hodges, J. A.; Raines, R. T. J. Am. Chem. Soc. 2005, 127, 15923-15932. (i) Kim, W.; McMillan, R. A.; Snyder, J. P.; Conticello, V. P. J. Am. Chem. Soc. 2005, 127, 18121-18132. (j) Doi, M.; Nishi, Y.; Uchiyama, S.; Nishiuchi, Y.; Nishio, H.; Nakazawa, T.; Ohkubo, T.; Kobayashi, Y. J. Pept. Sci. 2005, 11, 609-616. (k) Horng, J.-C.; Raines, R. T. Protein Sci. 2006, 15, 74-83. (1) Kim, W.; Hardcastle, K. I.; Conticello, V. P. Angew. Chem., Int. Ed. 2006, 45, 8141-8145. (m) Shoulders, M. D.; Kamer, K. J.; Raines, R. T. Bioorg. Med. Chem. Lett. 2009, 19, 3859-3862. (n) Kubik, S.; Goddard, R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5127-5132. (o)

Buechter, D. D.; Paolella, D. N.; Leslie, B. S.; Brown, M. S.; Mehos, K. A.; Gruskin, E. A. J. Biol. Chem. 2003, 278, 645-650. (p) Mizuno, K.; Hayashi, T.; Bachinger, H. P. J. Biol. Chem. 2003, 278, 32373-32379. (q) Gauba, V.; Hartgerink, J. D. J. Am. Chem. Soc. 2007, 129, 15034-15041.
(r) Gauba, V.; Hartgerink, J. D. J. Am. Chem. Soc. 2008, 130, 7509-7515. (s) Gauba, V.; Hartgerink, J. D. J. Am. Chem. Soc. 2007, 129, 2683-2690.
(t) Erdmann, R. S.; Wennemers J. Am. Chem. Soc. 2010, 132, 13957-13959.
(u) Rele, S.; Song, Y.; Apkarian, R. P.; Zheng, Q.; Conticello, V. P.; Chaikof, E. L. J. Am. Chem. Soc. 2007, 129, 14780-14787.
(5) For derivatized hydroxyprolines, see: (a) Jenkins, C. L.; McCloskey, A. I.; Guzei, I. A.; Eberhardt, E. S.; Raines, R. T. Biopolymers: Pept. Sci. 2005, 80, 1-8. (b) Owens, N. W.; Braun, C.; O'Neill, J. D.; Marat, K.; Schweizer, F. J. Am. Chem. Soc. 2007, 129, 11670-11671. (c) Bann, J. G.; Bachinger, H. P. J. Biol. Chem. 2000, 275, 24466-24469. (d) Kotch, F. W.; Guzei, I. A.; Raines, R. T. J. Am. Chem. Soc. 2008, 130, 2952-2953. (e) Naduthambi, D.; Zondlo, N. J. J. Am. Chem. Soc. 2006, 128, 12430-12431. (f) Thomas, K. M.; Naduthambi, D.; Tririya, G.; Zondlo, N. J. Org. Lett. 2005, 7, 2397-2400. (g) Owens, N. W.; Lee, A.; Marat, K.; Schweizer, F. Chem.-Eur. J. 2009, 15, 10649-10657.
(6) For prolines other than 4-F or 4-OH, see: (a) Mollica, A.; Paradisi, M. P.; Varani, K.; Spisani, S.; Lucente, G. Bioorg. Med. Chem. 2006, 14, 2253-2265. (b) Cadamuro, S. A.; Reichhold, R.; Kusebauch, U.; Musiol., H.-J.; Renner, C; Tavan, P.; Moroder, L. Angew. Chem., Int. Ed. 2008, 47, 2143-2146. (c) Babu, I. R.; Ganesh, K. N. J. Am. Chem. Soc. 2001, 123, 2079-2080. (d) Beausoleil, E.; Sharma, R.; Michnick, W. W.; Lubell, W. D. J. Org. Chem. 1998, 63, 6572-6578. (e) Curran, T. P.; Chandler, N. M.; Kennedy, R. J.; Keaney, M. T. Tetrahedron Lett. 1996, 37, 1933-1936. (f) Kümin, M.; Sonntag, L.-S.; Wennemers, H. J. Am. Chem. Soc. 2007, 129, 466-467. (g) Shoulders, M. D.; Hodges, J. A.; Raines, R. T.J. Am. Chem. Soc. 2006, 128, 8112-8113. (h) Sonntag, L.-S.; Schweizer, S.; Ochsenfeld, C.; Wennemers, H. J. Am. Chem. Soc. 2006, 128, 14697-14703. (i) Shoulders, M. D.; Guzei, I. A.; Raines, R. T. Biopolymers 2008, 89, 443-454. (j) Koskinen, A. M. P.; Heliaja, J.; Kumpulainen, E. T. T.; Koivisto, J.; Manisikkamacki, H.; Rissanen, K. J. Org. Chem. 2005, 70, 6447-6453.
(7) Giacovazzo, C.; Monaco, H. L.; Artioli, G.; Viterbo, D.; Ferraris, G.; Gilli, G.; Zanotti, G.; Catti, M. Fundamentals of Crystallography, 2nd ed.; Oxford University Press: Oxford, UK, 2002; pp 492-499.
(8) Holmgren, S. K.; Taylor, K. M.; Bretscher, L. E.; Raines, R. T. Nature 1998, 392, 666-667.
(9) (a) Jenkins, C. L.; Lin, G.; Duo, J.; Rapolu, D.; Guzei, I. A.; Raines, R. T.; Krow, G. R. J. Org. Chem. 2004, 69, 8565-8573.
(10) Krow, G. R.; Herzon, S. B.; Lin, F.; Qiu, G.; Sonnet, P. E. Org. Lett. 2002, 4, 3151-3154.
(11) (a) Sunose, M.; Peakman, T. M.; Charmant, J. P. H.; Gallagher, T.; Macdonald, S. J. F. J. Chem. Soc., Chem. Commun. 1998, 1723-1724. (b) Pandey, G.; Chakrabarti, D. Tetrahedron Lett. 1996, 37, 2285-2288.
(12) Krow, G. R.; Lin, G.; Yu, F.; Sonnet, P. E. Org. Lett. 2003, 5, 2739-2741.
(13) (a) Gandon, L. A.; Russell, A. G.; Guveli, T.; Brodwolf, A. E.; Kariuki, B. M.; Spencer, N; Snaith, J. S. J. Org. Chem. 2006, 71, 5198-5207. (b) Khazanchi, R.; Yu, P. L.; Johnson, F. J. Org. Chem. 1993, 58, 2552-2556.
(14) Krow, G. R.; Lin, G.; Rapolu, D.; Fang, Y.; Lester, W. S.; Herzon, S. B.; Sonnet, P. E. J. Org. Chem. 2003, 68, 5292-5299.
(15) (a) Alvernhe, G.; Laurent, A.; Haufe, G. Synthesis 1987, 562-564. (b) Shellhamer, D. F.; Horney, M. J.; Pettus, B. J.; Pettus, T. L.; Stringer, J. M.; Heasley, V. L.; Syvret, R. G.; Dobroldky, J. M., Jr. J. Org. Chem. 1999, 64, 1094-1098.
(16) Krow, G. R.; Huang, Q.; Lin, G.; Centafont, R. R.; Thomas, A. M.; Gandla, D.; DeBrosse, C.; Carroll, P. J. J. Org. Chem. 2006, 71, 2090-2098.
(17) Krow, G. R.; Lee, Y. B.; Lester, W. S.; Christian, H.; Shaw, D. A.; Yuan, J. J. Org. Chem. 1998, 63, 8558-8560.
(18) Pichlmair, S.; Ruiz, M. D. L.; Vilotijevic, I.; Paquette, L. A. Tetrahedron 2006, 62, 5791-5802.

[^0]: Received: January 17, 2011
 Published: April 18, 2011

