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ABSTRACT: Noncovalent interactions are ubiquitous in biology,
taking on roles that include stabilizing the conformation of and
assembling biomolecules, and providing an optimal environment for
enzymatic catalysis. Here, we describe a noncovalent interaction that
engages the sulfur atoms of cysteine residues and disulfide bonds in
proteinstheir donation of electron density into an antibonding orbital
of proximal amide carbonyl groups. This n→π* interaction tunes the
reactivity of the CXXC motif, which is the critical feature of thioredoxin
and other enzymes involved in redox homeostasis. In particular, an n→
π* interaction lowers the pKa value of the N-terminal cysteine residue of
the motif, which is the nucleophile that initiates catalysis. In addition, the interplay between disulfide n→π* interactions and C5
hydrogen bonds leads to hyperstable β-strands. Finally, n→π* interactions stabilize vicinal disulfide bonds, which are naturally
diverse in function. These previously unappreciated n→π* interactions are strong and underlie the ability of cysteine residues
and disulfide bonds to engage in the structure and function of proteins.

■ INTRODUCTION

The cysteine residues of proteins have unique attributes. Their
sulfhydryl groups not only manifest potent nucleophilicity, but
also undergo a facile oxidation reaction to generate disulfide
bonds.1 The descendant cystines are active components of
catalytic, oxidation−reduction, and signal transduction path-
ways,2 and have distinct physicochemical properties.3

Approximately 20% of human proteins are predicted to
contain a disulfide bond.4 Although prevalent, the two sulfur
atoms of disulfide bonds are not known to engage with other
functional groups in proteins. The unique attributes of
disulfide bonds and their component sulfur atoms enticed us
to consider their electronic structure in detail.
In a disulfide bond, one lone pair of each sulfur atom resides

in a nondegenerate s-type orbital (ns; Figure 1A), and the other
resides in a nondegenerate p-type orbital (np; Figure 1B).

5 We
envisioned that these four lone pairs could interact with nearby
carbonyl groups. In particular, donation of lone-pair electron
density into the π* orbital of an adjacent carbonyl group could
lead to an n→π* interaction (Figure 1C and D).6 The shape
and higher energy of np orbitals confers larger contributions
relative to those of ns orbitals. The existence of such an
interaction would underlie an aspect of disulfide bonds that is
now unappreciated.
Herein, we use computational methods and bioinformatic

analyses to provide evidence that n→π* interactions that
originate from sulfur play important roles in the structure and
function of proteins. The effects arise from the tuning of the
thermodynamic stability of the disulfide bonds, thiols, and
thiolates of cysteine residues. We find these effects to be
especially important in the reactivity of the CXXC motifs in

enzymic active sites, interplay with the C5-hydrogen bonds of
β-strands, and polarization of electron density in vicinal
disulfide bonds.

■ RESULTS AND DISCUSSION
Protein structures are stabilized by a web of interplaying
noncovalent interactions.7 This web overpowers entropy only
barely, as the free energy difference between the folded and
unfolded states is merely 5−15 kcal/mol.8 We examined three
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Figure 1. Images of the sulfur lone pairs in N-acetyl-cysteine methyl
amide disulfide with surrounding carbonyl groups. (A) Sulfur lone
pair in the ns orbital. (B) Sulfur lone pair in the np orbital. (C) ns

γ→π*
interaction between Si

γ and CiOi. (D) np
γ→π* interaction between

Si
γ and CiOi.
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aspects of this web from the perspective of n→π* interactions
that originate from sulfur.
Disulfide n→π* Interactions within the CXXC Motif.

The CXXC motif, in which two cysteine residues are separated
by two other residues, is a prevalent feature of enzymes that
mediate redox homeostasis.2c,9 During a catalytic cycle, a
disulfide bond is formed and broken between the two cysteine
residues of the motif. The sulfhydryl group of a typical cysteine
residue has a pKa value of 8.7.10 In contrast, the N-terminal
cysteine residue in a CXXC motif typically has a pKa value
below physiological pH12 and is thus highly nucleophilic.13

The origin of this anomalous acidity has been unclear, despite
extensive investigation.14

CXXC motifs often reside at the N-terminus of an α-helix.
In that context, the sulfur atom (Si

γ) of only the N-terminal
cysteine residue is exposed to solvent. Solvent-accessible
surface area calculations on the crystal structures of oxidized
and reduced states of thioredoxin and thioredoxin-2 show that
the C-terminal cysteine is completely inaccessible regardless of
redox state (Figure S1 of the Supporting Information, SI).
Moreover, Si

γ of the N-terminal cysteine residue experiences an
increase of ∼6-fold in solvent-accessible surface area upon
reduction of the active-site disulfide bond. Accordingly, we
focused our attention on Si

γ, which is the linchpin of the
CXXC motif.
We began by performing Natural Bond Orbital (NBO)

second-order perturbation theory calculations on 7 different
proteins with an oxidized CXXC motif and a known three-
dimensional structure. The results revealed a chain of n→π*
interactions that stabilize the oxidized state of the CXXC motif
(Figure 2A, Table S1). Foremost in this network is the
interaction of Si

γ and the CiOi carbonyl group. Specifically,
lone-pair electron density is donated from this sulfur atom into
the π* orbital of the carbonyl group, generating a strong n→π*
interaction in the oxidized, thiol, and thiolate states (Figures
2B−D; Table S2). The chain is propagated by the formation of
a CiOi···Ci+1Oi+1 n→π* interaction (Figure 2E; Tables S1
and S2), and then a Ci+1Oi+1···Ci+2Oi+2 n→π* interaction
(Figure 2F; Tables S1 and S2). This chain of n→π*
interactions was apparent in all 7 proteins examined and
appears to be a ubiquitous feature of CXXC motifs.

Next, we examined oxidized CXXC motifs with known
crystal structures and reduction potentials. We found that
stronger n→π* interactions correlate with lower reduction
potentials, that is, more stable disulfide bonds (Figure 3). The

effect here is not major, given that 100 mV corresponds to 2.3
kcal/mol. Nonetheless, the electron-donation that arises from
disulfide n→π* interactions is likely to increase the electro-
philicity of a disulfide bond and thereby enhance its reactivity
in thiol−disulfide interchange reactions.
To understand how the chain of n→π* interactions within

CXXC motifs might be leveraged to perform biochemical
functions, we examined well-characterized thioredoxins in
more detail. In a CXXC motif, Si

γ has three relevant states:
disulfide, thiol, and thiolate. Conversion between these states
does not induce substantial conformational changes (Figures
S1 and S2). The major change incurred upon reduction of the
disulfide bond is in the χ1 dihedral angle (that is, Ni−Ci

α−Ci
β−

Si
γ), which rotates toward the solvent (Figure S2). In the

descendant thiol and thiolate, Si
γ forms a hydrogen bond with

water rather than with Si+3
γ−H or another enzymic functional

group. Inspection of both of these three states reveals that all
are stabilized by a Si

γ···CiOi n→π* interaction (Figure 4;
Tables S1 and S2).

Figure 2. Network of n→π* interactions within the CXXC motif. (A) Electron donation in the oxidized state. (B) Si
γ···CiOi n→π* interaction in

the oxidized state. (C) Si
γ···CiOi n→π* interaction in the thiol state. (D) Si

γ···CiOi n→π* interaction in the thiolate state. (E) CiOi···Ci+1
Oi+1 n→π* interaction in the thiolate state. (F) Ci+1Oi+1···Ci+2Oi+2 n→π* interaction in the thiolate state. Structures are from PDB entries 1ert
and 1eru.11

Figure 3. Graph of the relationship between calculated En→π* values
and measured E°′ values for CXXC motifs: Escherichia coli DsbA
(black; PDB entry 1a2j15) and three variants of Staphylococcus aureus
thioredoxin (blue; PDB entries 2o7k, 2o85, and 2o8716).
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Moreover, the Si
γ···CiOi n→π* interaction tends to be

stronger than the CiOi···Ci+1Oi+1 or Ci+1Oi+1···Ci+2
Oi+2 interaction. A critical step in catalysis by thioredoxin is
deprotonation of Si

γ to form the nucleophilic thiolate.12a We
find that the Si

γ···CiOi n→π* interaction in the thiolate state
is much greater than that in the thiol state (Figure 4). This
difference is likely to make a significant contribution to the

diminished pKa of the N-terminal cysteine residue in CXXC
motifs. The extant explanation for this low thiol pKa value
relies on a presumed macrodipole of the α-helix.17 The dipole
of an α-helix18 has not been well-replicated in model systems.19

Moreover, slightly downstream to many CXXC motifs is a
proline residue, which induces a kink in the α-helix.20 Such a
kink would interrupt the projection of the electric field along
the helical axis. Notably, calculations of this thiol pKa have
yielded values that are much greater than those observed by
experiment,14,17,21 consistent with n→π* interactions being
absent from the Hamiltonians employed in typical calculations.

Interplay of Disulfide n→π* Interactions with C5
Hydrogen Bonds. A C5 hydrogen bond is an intrinsic feature
of β-strands, arising from the overlap of an np-type carbonyl
lone pair with the σ* orbital of an adjacent amide N−H bond
(Figure 5A).22 Because a large fraction of disulfide bonds in β-
strands participate in highly stabilizing n→π* interactions, we
sought to examine the interplay between a C5 hydrogen bond
and a disulfide n→π* interaction (Figure 5B). To do so, we
examined a disulfide bond that originates from a β-strand
(Figure 5C).
A disulfide n→π* interaction from Si

γ into a carbonyl group
polarizes the electron density of the carbonyl group toward its
oxygen (Figure 5B). The ensuing increase in electron density
could result in a stronger C5 hydrogen bond. We performed

Figure 4. Graph showing calculated En→π* values (in kcal/mol) within
the CXXC motifs of Homo sapiens thioredoxin and thioredoxin-2, and
Drosophila melanogaster thioredoxin. Data are listed in Table S2.

Figure 5. Interplay between a disulfide n→π* interaction and C5 hydrogen bond in a β-strand. (A) Natural bond orbitals showing a disulfide n→
π* interaction. (B) Network of natural bond orbitals in which the n→π* interaction from panel A enhances an n→σ* interaction (that is, a C5
hydrogen bond) within the half-cystine residue. (C) Image of a model disulfide bond. (D) Scan of the dihedral angle ξ (which is defined in the
inset of panel E) in the presence of a disulfide n→π* interaction of En→π* = 1.65 kcal/mol; data are listed in Table S3. (E) Scan of the dihedral
angle ξ in the absence of a disulfide n→π* interaction; data are listed in Table S4. The structure in panels A−C is from PDB entry 4gn2 (Table S5)
and was used in the calculations of panels D and E.
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relaxed scan calculations of the dihedral angle ξ (that is, Hi
α−

Ci
α−Ni−Hi). Each step of these calculations was then

subjected to NBO calculations to deconvolute the stabilizing
interactions.23 Specifically, donation of np electron density
leads to ΔEn→σ* = 0.30 kcal/mol at the maximum, an increase
of 42% over that in the absence of a n→π* interaction.
Moreover, the maximal En→σ* is achieved at a dihedral angle ξ
that is lower by 15°. In essence, the disulfide n→π* interaction
increases the polarization of the acceptor carbonyl group,
resulting in an increase in the energy of an associated C5
hydrogen bond. This interplay between disulfide bonds and C5
hydrogen bonds bears resemblance to systems in which
donation of a hydrogen bond to the oxygen of a carbonyl
group enhances the ability of that carbonyl group to accept a
stabilizing n→π* interaction.24

n→π* Interactions of Vicinal Disulfide Bonds. The
function of cysteine residues in the proteome spans a vast
chemical landscape. Vicinal disulfide bonds constitute an
intriguing subset of this landscape.25 These vicinal disulfide
bonds, a sulfur atom is proximal to the carbonyl group of the
amide that links the two cysteine residues (Figure 6A). This
proximity engenders significant S···CO n→π* interactions
(Figure 6B).
The eight-membered ring of a vicinal disulfide bond exists in

four distinct conformations (Figure 6C−F). Each of these
conformations entails an n→π* interaction. We find that the
strongest n→π* interactions arise from trans-up/down
conformations (Figures 6C and D), whereas the weakest
interactions arise from cis-up conformations (Figures 6E and
F).
The strong disulfide n→π* interactions in trans-up/down

conformations could play a functional role. These conforma-

tions often provide a site for ligand binding.2h,25e Donation of
electrons from the ns and np orbitals of a disulfide into the
carbonyl π* orbital depletes electron density in the disulfide
bond, thereby creating an electropositive and hydrophobic
surface (Figure S3), especially in the trans-up/down
conformations (Figure S3A,B).

■ CONCLUSIONS
The role of n→π* interactions in protein structure and
function became apparent in the early 2000s.26 Our data
expose new terrain in this landscape: the mixing of sulfur ns
and np orbitals with proximal carbonyl groups can provide an
exceptionally strong n→π* interaction that enhances the
stability of host secondary structures. In general, the
stabilization of oxidized, thiol, or thiolate states through
n→π* interactions provides a method for fine-tuning vital
equilibria in proteins. As cysteine residues are involved in a
myriad of biological processes,2 the contribution of their n→π*
interactions extends to protein function. In particular, the
thermodynamic stability of the CXXC motif, which is the
centerpiece of redox homeostasis, is underpinned by n→π*
interactions. Finally, we note that the enhanced ability of
selenium to donate an n→π* interaction29 suggests that the
effects that we observe with cysteine residues could be
amplified with selenocysteine.30

■ EXPERIMENTAL METHODS
Calculations. All quantum mechanical calculations were per-

formed with Gaussian 09, revision E.0131 at the M062x/6-
311+g(2d,p) level of theory. Energies (i.e., En→π* and En→σ*) were
calculated by second-order perturbation theory analysis of optimized
structures as implemented with NBO 6.032 in Gaussian 09, revision

Figure 6. n→π* Interactions of vicinal disulfide bonds. (A) Image of a model vicinal disulfide bond (PDB entry 3cu927). (B) Histograms of n→π*
interaction energies of vicinal disulfide bonds in protein crystal structures. Twenty-four vicinal disulfide bonds from the PDB were subjected to
NBO analysis, and the resulting En→π* values were put into bins of 0.25 kcal/mol. (C−F) Natural bond orbitals for the strongest disulfide n→π*
interaction in the four conformations of vicinal disulfide bonds: trans-up conformation (panel C; 3cu927), and trans-down conformation (panel D;
4aah25a), cis-up conformation (panel E; 1wd328), and cis-down conformation (panel F; 4mge).
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E.01.31 Images of orbitals were generated with the program NBOView
1.1.33

The atomic coordinates of CXXC motifs were extracted from the
PDB files of parent enzymes. The Cα atoms (and thus the side chains)
were fixed while other main-chain atoms were allowed to optimize.
Optimized structures were consistent with those from molecular
dynamics and QM/MM calculations.21,34

One-dimensional scan calculations were performed by increasing
the dihedral angle ξ in 10°-steps and allowing the structure to
optimize.
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