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ABSTRACT: We introduce a versatile strategy for the bioreversible modification of proteins. Our strategy is based on a
tricomponent molecule, synthesized in three steps, that incorporates a diazo moiety for chemoselective esterification of carboxyl
groups, a pyridyl disulfide group for late-stage functionalization with thiolated ligands, and a self-immolative carbonate group for
esterase-mediated cleavage. Using cytochrome c (Cyt c) and the green fluorescent protein (GFP) as models, we generated protein
conjugates modified with diverse domains for cellular delivery that include a small molecule, targeting and cell-penetrating peptides
(CPPs), and a large polysaccharide. As a proof of concept, we used our strategy to effect the delivery of proteins into the cytosol of
live mammalian cells in the presence of serum. The cellular delivery of functional Cyt c, which induces apoptosis, highlighted the
advantage of bioreversible conjugation on a carboxyl group versus irreversible conjugation on an amino group. The ease and utility of
this traceless modification provide new opportunities for chemical biologists.

Chemical protein modification has emerged as an
invaluable tool for basic and translational research in

chemical biology.1−7 In particular, in protein delivery
applications, ideal modifications are “traceless,” that is, they
bestow a desirable attribute but ultimately leave behind no
atoms that could have deleterious consequences for structure
or function. The extant repertoire of bioreversible strategies is
small. Cys and Lys residues have been the primary targets. A
common approach is to attach a ligand to Cys via a mixed
disulfide that is then reduced in the cytosol.8−13 Cys has,
however, a low abundance in human proteins (2.4%)14 and is
often sequestered in the hydrophobic core or disulfide bonds,
thus being unavailable for modification.15 In comparison with
Cys, Lys is more abundant (5.0%)14 and solvent-accessi-
ble,15,16 and some emerging strategies can modify Lys
reversibly.17−19 Nonetheless, the available options for traceless
protein modification are scant and lack modularity.
The high abundance and solvent accessibility15 of Glu

(6.4%)14 and Asp (4.5%)14 residues in human proteins make
carboxyl groups (total: 10.9%)14 an attractive target for
conjugation. Herein, we introduce a chemoselective, modular,
and bioreversible strategy for the modification of protein
carboxyl groups. Our strategy relies on a compound that
includes domains for (1) protein conjugation, (2) late-stage
modification, and (3) traceless removal (Figure 1A).
Specifically, we report that diazo compound 1 reacts with
protein carboxyl groups in aqueous solution to install activated
mixed disulfides, which allow facile diversification via thiol−
disulfide interchange. The resultant modifications are trace-
lessly cleaved by endogenous esterases (Figure 1B).
We chose to apply our strategy to the traceless delivery of

proteins into mammalian cells�a research area that lacks
reagents.20 Proteins have been delivered into cells via site-
directed mutagenesis,21,22 conjugation of transduction domains
(e.g., CPPs),23−25 and encapsulation in cationic lipid carriers.26

These strategies have shown promise but, with the exception of
disulfide-linked CPPs, typically require the irreversible
modification of native proteins, which can compromise protein
function27 and be problematic for applications that involve live
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Figure 1. (A) Design of diazo compound 1 with its three strategic
domains highlighted in different colors. (B) Scheme for the
bioreversible late-stage modification of protein carboxyl groups.
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cells.28 For example, upon Lys amidation, PEGylated IFNα2
loses 93% of its activity.29 Ongoing efforts are addressing these
limitations to seek reversible modification strategies.27−29

Recently, we reported on α-aryl-α-diazoacetamides�a new
class of bioreversible modification reagents that O-alkylate
protein carboxyl groups chemoselectively under physiological

conditions.30−32 Such esterification makes the protein surface
more cationic and hydrophobic, thereby enabling the delivery
of proteins into the cytosol.31,32 Still, the successful delivery of
GFP, which is an anionic protein with Z = −9 (where Z refers
to Arg + Lys − Asp − Glu), requires the esterification of a
dozen or so carboxyl groups.31 Such extensive modification can
compromise conformational stability and aqueous solubility of
a protein.33

To enable protein delivery with fewer pendant esters, we
designed a diazo compound that enables the addition of highly
potent delivery domains. Specifically, we supplied diazo
compound 1 with a pyridyl disulfide, which allows for rapid
thiol−disulfide interchange under mild conditions.34,35 For
traceless ester hydrolysis, we installed an alkyloxycarbonylox-
ymethyl (AOCOM) group, which is found in prodrugs,36,37

such as tenofovir disoproxil.38

We synthesized diazo compound 1 by palladium-catalyzed
C−H arylation followed by aminolysis (Scheme 1).39 First,
AOCOM-functionalized aryl iodide (S1) was synthesized in
one step from commercially available starting materials. The

Scheme 1. Synthetic Route to Diazo Compounds 1 and 2

Figure 2. (A) Model proteins and structures of 1 and HS-cR10. (B,C) Labeling strategies for proteins without and with reactive Cys residues.
Corresponding Q-TOF MS data are shown under the labeling scheme. The numbers +1, etc. refer to the number of labels; “max x” refers to the
maximum number of labels; “WT” refers to the native protein. Expected and observed masses are listed in the Supporting Information (Figures S7,
S8, S16, and S17).
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coupling of S1 to N-succinimidyl 2-diazoacetate (S2)
proceeded in 81% yield despite the reported incompatibility
of p-substituted electron-rich aryl groups in C−H aryla-
tion.39,40 An O → N acyl transfer of AOCOM-functionalized
diazoester S3 with (S)-2-pyridylthiocysteamine in wet
tetrahydrofuran provided diazo compound 1 in 47% yield.
As a control, we synthesized diazo compound 2, which lacks
the AOCOM moiety, using 4-iodotoluene (S1′).
To validate our strategy, we chose two representative

proteins with contrasting properties: Cyt c, which is a small,
cationic (Z = +6) protein with no reactive Cys residues, and
GFP, which is a larger, anionic protein with two reactive Cys
residues (Figure 2A). We chose thiolated ligands relevant to
protein delivery applications: 1-(2-mercaptoethyl)guanidine
(HS-guan),41,42 CPPs cyclic deca-arginine (HS-cR10)

10,12,13,43

and linear TAT (HS-TAT),23 integrin-targeting ligand cyclic
RGD (HS-cRGD),44 as well as a polysaccharide [HS-
dextran(110 K)],45 which represent small molecules, peptides,
and macromolecules, respectively. We confirmed the degree of
labeling with Q-TOF MS, MALDI-TOF MS, or SDS-PAGE
depending on the nature of the ligand.
We began by optimizing the labeling conditions for a protein

without reactive Cys residues, represented by Cyt c.46 Using
labeling strategy 1 (Figure 2B), Cyt c was esterified with 100
equiv of 1 (∼7 equiv per carboxyl group) at pH 5.5 for 6 h
twice, which resulted in up to five labels of 1 on Cyt c (Cyt c−
1) (Figure S7). Cyt c−1 (1 equiv) was then incubated with a
minimal amount of thiolated ligands (5−20 equiv) at pH 5.5
until all Cyt c−1 was consumed. Using these conditions, Cyt c
was modified with HS-cR10 (2 labels, Z = +30, Cyt c−1−cR10)
(Figure S8) or HS-cRGD (6 labels, Z = +12) (Figure S9). We
also conjugated Cyt c with HS-dextran (110 K) (Figure S10)
to demonstrate that our labeling strategy is compatible with a
macromolecule.
Next, we modified GFP, a model protein with two reactive

Cys residues, using labeling strategy 2 (Figure 2C). Because
Cys residues can react with the pyridyl disulfide group (Figure
S13), 1 (1 equiv) was premixed with thiolated ligands (1−2

equiv) for 1 min prior to the protein esterification step. The
resultant mixture (100 equiv per protein, ∼4 equiv per
carboxyl group) was then used to esterify GFP at pH 6.0 for 8
h. Using labeling strategy 2, GFP was successfully conjugated
with HS-cR10 (2 labels, Z = +15, GFP−1−cR10) (Figures S17
and S18), HS-guan (4 labels, Z = −1) (Figure S19), or HS-
TAT (2 labels, Z = +11, GFP−1−TAT) (Figure S20).
Notably, the ability to generate 1−TAT in situ highlights the
high chemoselectivity of diazo compound 1, which does not
react with the sulfhydryl, amino, or low-pKa C-terminal
carboxyl group of HS-TAT (Figure S20). Thus, premixing 1
with desired ligands can generate functional diazo compounds.
The optimized labeling strategies were also used to generate
Cyt c and GFP conjugates with 2 (Figures S7−S10 and S17−
S20, respectively).
Then, we turned our attention to the bioreversibility of our

strategy. Because of the self-immolative nature of the AOCOM
moiety, we envisioned that esterase cleavage of the carbonate
group would trigger cleavage of the pendant ester bond
through the formation of a quinone methide (QM-1) along
with CH2O and CO2, thereby converting protein conjugates
back to their native form (Figure 3A). To investigate if
esterase-catalyzed hydrolysis of the carbonate bond can initiate
the release of the parent carboxyl group, we synthesized a
model small molecule (MGA−1) by esterifying O-(2-
methoxyethyl)glycolic acid (MGA) with 1. MGA−1 was
coincubated with pig liver esterase (PLE) and biological
nucleophiles [e.g., reduced glutathione (GSH)] overnight to
generate QM-1 (Figures S21−S25). Using LC-MS, we
observed masses that correspond to those of QM-1 trapped
with water (QM-1−OH), GSH (QM-1−GSH), or 2-
mercaptopyridine (QM-1−pyS). These data show that an
esterase can release the model acid in a traceless manner.
Similarly, we treated Cyt c−1−cR10 and GFP−1−TAT with

PLE in the absence of reducing agents. PLE efficiently
removed the modifications from both proteins (Figures
3B,C). Under the same conditions, PLE-mediated cleavage
of Cyt c−2−cR10 resulted in a slower loss of labels (Figure

Figure 3. Esterase cleavage. (A) LC-MS analysis of PLE-mediated cleavage of MGA−1. (B−D) Q-TOF MS data of GFP−1−TAT, Cyt c−1−cR10,
and Cyt c−2−cR10 before and after incubation with PLE. “WT” refers to the native protein. For experimental details, see Figures S21−S32.
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3D), likely because of limited access of the esterase to the
pendent ester compared with the carbonate group. Overall,
GFP−1−TAT, Cyt c−1−cR10, and other conjugates were
regenerated to their native forms upon treatment with either
PLE, cell lysate, or hydrolysis alone (Figures S26−S32 and
S35−S40). Note that, in the presence of cell lysate, which
contains endogenous reductants, the disulfide bonds in Cyt c−
1−cR10 were reduced (Figures S30−S32) to thiols prior to the
loss of labels. These experiments validate the use of the
AOCOM moiety for traceless release.
To apply our bioreversible strategy to protein delivery into

live cells, we used one of the most efficient of known CPPs,47

cR10 (Figure 4A).
10,12,13,43 GFP−1−cR10 and Cyt c−F−1−

cR10 (where Cyt c−F refers to fluorescein-labeled Cyt c), as
well as the respective conjugates modified with 2, were added
to live HeLa or M21 melanoma cells48,49 in medium
containing fetal bovine serum (FBS). On the basis of live-
cell epifluorescence imaging (Figure 4B), all the cR10-modified
conjugates were internalized into the cytosol within 2.5 h,
whereas unesterified proteins did not cross the cell membrane
(Figures S43 and S44 for GFP and S47−S49 for Cyt c).
Our strategy leads to the regeneration of a native protein in

the presence of cellular esterases. This attribute was apparent

in cytotoxicity experiments with Cyt c, a protein that induces
apoptosis by activating a caspase-dependent proteolytic
cascade in the cytosol (Figures S52 and S53).46,50−54 We
compared the activity of Cyt c−1−cR10 in live cells with that of
Cyt c conjugated with cR10 via irreversible Lys amidation (Cyt
c−BCN−cR10) (Figure S54). Specifically, we assessed the
toxicity of each conjugate to M21 cells using an MTS assay for
metabolic activity. Surprisingly, the bioreversible Cyt c−1−
cR10 conjugate, but not the irreversible Cyt c−BCN−cR10
conjugate, induced dose-dependent cytotoxicity (Figures 4C,
S55, and S56), despite the high cytosolic uptake of both
conjugates (Figures 4B, S50, and S51). These findings
demonstrate that efficient protein delivery is necessary but
not sufficient for biological activity.51 MS analysis of the
proteolyzed irreversible conjugate revealed that Lys86 is
modified (Figure S57). This residue is at the interface in the
Cyt c·Apaf-1 complex, which is required to initiate Cyt c-
dependent apoptosis.46,52 The irreversible introduction of cR10
at Lys86 likely disrupts the formation of this complex. These
data illustrate an advantage of delivering a protein with our
bioreversible strategy.
In conclusion, we have developed a versatile, general late-

stage strategy for protein conjugation. rDNA technology is not

Figure 4. Cellular delivery of proteins. (A) Putative mechanism of cytosolic protein delivery via bioreversible modification with cR10. n refers to the
total number of carboxyl groups; x refers to the number of ester labels. (B) Epifluorescence images of 5 μM (i) GFP, (ii) GFP−1−cR10, (iii) Cyt
c−F, and (iv) Cyt c−F−1−cR10 incubated with live HeLa cells for 1.5 h (i,ii) or M21 cells for 2.5 h (iii,iv) in the presence of FBS-supplemented
DMEM. λex = 488 nm and λem = 500 nm. Scale bars: 50 μm. (C) Viability of M21 cells upon a 41 h treatment with Cyt c (light gray), Cyt c−BCN−
cR10 (dark gray, schematic view is shown), or Cyt c−1−cR10 (red). Values are the mean ± SD; ***p ≤ 0.001. For experimental details, see Figures
S43, S44, and S47−S49.
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required, modifications are done under mild conditions, and
the number of labels can be tuned by users. Traceless release is
achieved by the esterase-mediated formation of a quinone
methide. The scaffold can be modified to enable release by
other triggers, including small molecules.55,56

In essence, our strategy enables the bioreversible installation
of disulfide bonds and sulfhydryl groups on virtually any
protein of interest. Its utility is apparent in the traceless
cytosolic delivery of proteins. Other applications, such as the
reversible decoration of proteins of interest with targeting
ligands and pharmacokinetic enhancers, are evident. Thus, we
have developed a new class of probes that fills a gap in extant
protein modification strategies.
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