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ABSTRACT: α-Aryl-α-diazoamides were synthesized in two steps
under mild conditions. This expeditious route employs Pd-catalyzed
C−H arylation of N-succinimidyl 2-diazoacetate to obtain N-
succinimidyl 2-aryl-2-diazoacetates, followed by aminolysis. The
ensuing diazo compounds can esterify carboxyl groups in aqueous
solution, and the ester products are substrates for an esterase. The
broad scope of the synthetic route enables the continued
development of diazo compounds in chemical biology.

Since the discovery of diazomethane by von Pechmann in
1894,1 diazo compounds have become important reagents

in synthetic organic chemistry. Often, diazo groups are utilized
via thermal, photochemical, or transition-metal-mediated
carbenoid formation for constructing new C−C, C−O, or
C−N bonds.2 Recently, the utility of diazo compounds has
been extended into the realm of chemical biology.3,4

Recent work has shown that α-aryl-α-diazoacetamides can
esterify carboxyl groups in proteins (ribonuclease A,5 green
fluorescent protein,6 and ribonuclease 17), enabling their
delivery across cellular membranes (Figure S1).6,7 This
strategy bears analogy to the use of ester prodrugs of small-
molecule carboxylic acids.8 The critical attribute of efficacious
diazo compounds is their basicity,9 which leads to abstraction
of a proton from a carboxylic acid but not water and thereby to
the esterification of carboxyl groups in aqueous solution.5,10

Moreover, the ensuing esters are substrates for intracellular
esterases.6,7 This bioreversibility11 provides a unique means to
“cloak” protein carboxyl groups in a traceless manner (Figure
1A).
Although this application of α-aryl-α-diazoamides has

demonstrated promise, synthetic accessibility (e.g., a lengthy
preparation time and a lack of scalability) has been a major
deterrent to progress. Previously, such diazo compounds have
been accessed via deimidogenation of the corresponding azide
(Figure S1).12 This approach has a high tolerance for
functional groups, but access to the azide typically required
lengthy low-yielding synthetic routes.13 Additionally, the
deimidogenation reaction was not compatible with 2-aryl-2-
azidoacetamides containing bulky N-substituents.6

We sought a facile and general route to the modular α-aryl-
α-diazoamide scaffold. Known synthetic routes can provide
access to α-diazo carbonyl compounds. Most, however, focus
on stable diazoketones, diazoesters, or aryl diazomethanes14

and employ explosive diazo-transfer reagents, high temper-
ature, or strong base,3,15 conditions that can be incompatible
with applications in chemical biology. Routes to α-aryl-α-
diazoamides are underdeveloped and have limited substrate
scope.14,16 Their preparation and isolation is challenging
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Figure 1. (A) Bioreversibility of protein esterification by an α-aryl-α-
diazoacetamide. (B) Two-step synthesis of α-aryl-α-diazoacetamides.
EDG, electron-donating group.
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because of insolubility and functional group incompatibil-
ity.3,12,15,17

Here, we report on the mild, efficient, and versatile synthesis
of α-aryl-α-amides in two steps from a commercially available18

and highly scalable precursor, N-succinimidyl 2-diazoacetate
(1).19 Desired α-aryl-α-diazoamides are accessed via palla-
dium-catalyzed C−H arylation followed by aminolysis under
mild and safe conditions (Figure 1B). This route encompasses
multiple benefits for applications in chemical biology: (1)
facility, (2) broad applicability because of available building
blocks (i.e., aryl iodides and amines), and (3) compatibility
with diverse functionality (e.g., azido and alkynyl groups) that
can be useful for late-stage bioconjugation.
Metal-catalyzed C−H arylation in the presence of a diazo

group has been reported only sporadically due to the undesired
competitive formation of metal−carbene species (Figure
1B).20 Wang and coworkers reported on the C−H
functionalization of ethyl diazoacetate using Pd(PPh3)4.

20b,21

The product, however, required the use of a strong base or
metal catalyst to effect amidation.22 Mendoza and coworkers
used another catalytic system, Pd(II) acetate and tris(2-
furyl)phosphine (P(2-Fu)3), for the C−H arylation of N-
phthalimidoyl diazoacetate to couple (hetero)aryl groups but
encountered incompatibility with p-substituted electron-rich
aryl groups (e.g., 4-iodoanisole).20c Recently, Nelson and
coworkers reported a suite of methods for the synthesis of α-
diazoamides, including the C−H arylation of α-diazo N,N-
disubstituted acetamides.15 Similarly, this method failed in the
coupling of electron-rich substrates (e.g., 4-iodoanisole) and
provided no examples of C−H arylation with α-diazo N-
monosubstituted acetamides.
To access a large number of target compounds under mild

conditions, we investigated diazo compound 1 as a coupling
partner for C−H arylation. Diazo compound 1 has been used
to install a diazo group via acyl transfer reactions with amines,
phenols, thiophenol, and peptides.19 We envisioned that the
C−H arylation of diazo compound 1 could enable a rapid
entry into more complex succinimidyl diazo compounds (2)
and ultimately into diverse α-aryl-α-diazoamides (3).
We found that diazo compound 1 can undergo arylation

with aryl iodides containing a wide variety of functional groups
(Scheme 1). To do so, we prepared diazo compound 1 on a
gram scale (Figure S2)19,23 and employed a Pd(OAc)2/P(2-
Fu)3 catalytic system. Two additives, triethylamine (Et3N) and
silver carbonate (Ag2CO3), prevent product decomposition
and scavenge iodide, respectively.21,24 The reaction mixture
was stirred in EtOAc at room temperature for 6 h. A range of
aryl iodides, spanning electron-donating to -withdrawing p-
substituted phenyl iodides, bulky m-substituted phenyl iodides,
and a heteroaryl iodide, were subjected to the same reaction
conditions. Notably, the electron-rich (2a), electron-neutral
(2c), and electron-poor (2d) phenyl iodides all afforded high
isolated yields (≥77%). Of the sterically hindered phenyl
iodides, methoxy (2f) and trifluoromethyl (2h) functional
groups at the m-position resulted in >80% isolated yields,
whereas the smaller hydroxy group (2g) gave an even higher
yield of 90%. We note too that 3-iodophenol (2g) proved to be
orthogonal to the N-succinimidyl diazoester moiety, whereas
1-(4-iodophenyl)piperazine did not (Figure S11). The cross-
coupling condition was compatible with heteroaryl substrate
(2i) and a variety of fluoro groups, including trifluoromethoxy
(2b), which is an important functional group for medicinal
chemistry because of its high metabolic stability and cell

permeability.25 We effected C−H arylation in the presence of a
TMS-protected alkynyl (2e) or azido (2j) group in 95 and
66% yields, respectively. Further, compound 2j highlights a
convenient means of diversification. This compound was
accessed by a condensation reaction with 4-iodophenyl acetic
acid. Lastly, we note that previously reported routes failed in
arylation with 4-iodoanisole,15 whereas our route provided 2a

Scheme 1. Scope of the C−H Arylation of Diazo
Compound 1

aReaction conditions: 10 mol % Pd(OAc)2 20 mol % P(2-Fu)3.
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in 65% yield. Overall, we successfully demonstrated metal-
catalyzed C−H arylation in the presence of N-succinimidyl and
diazo groups, both of which will serve as important
functionality for instilling diversity.
Next, we examined the aminolysis of representative N-

succinimidyl α-aryl-α-diazoacetates 2b−2f and 2h. We first
tested the aminolysis of analogous N-phthalimidoyl diazoesters
S5−S7, which were synthesized by a method reported
previously (Figure 2A).20c Those diazoesters yielded only a

trace amount of diazoamide product based on liquid
chromatography−mass spectrometry (LC−MS) analysis.
Even after an extensive screening of reactant concentrations,
solvents, and additives, aminolysis at N-phthalimidoyl
diazoesters proved to be unattainable, possibly due to rapid
decarboxylation (Table S1). An initial evaluation of aminolysis
with 2c showed that the use of 1,8-diazabicycloundec-7-ene
(DBU) led to degradation, whereas Et3N afforded the desired
product (Figure 2A). In these reactions, a solution of the N-
succinimidyl diazoester was treated with a secondary amine
and Et3N in tetrahydrofuran (THF) at 0 °C. The reaction
mixture was stirred for 1−3 h at room temperature to yield the
corresponding α-diazoamide (3e−3l) in up to 76% yield. An
excess of Et3N was used to prevent product decomposition.
Most of the reactions showed quantitative conversion based on
analysis with TLC (Figure S12). Due to their apparent
degradation on silica, the isolated yields for diazoamide
compounds 3a, 3c, 3e, 3i, and 3k were low. Still, a wide

range of aryl diazoesters was converted into N,N-disubstituted
diazoamides.
Then, we demonstrated that the aminolysis of N-

succinimidyl α-aryl-α-diazoacetates is also effective with
various primary amines (Scheme 2). Those containing a

pyridinyl (4a), arylhalo (4b), Boc-protected amino (4c),
alkynyl (4d), or azido (4e) group displaced the N-
hydroxysuccinimide moiety of 2c to yield the desired N-
monosubstituted diazoamides. Additional scope for this
reaction includes 6 N-succinimidyl α-aryl-α-diazoacetates × 4
primary amines = 24 α-aryl-α-diazoacetamides (see: Scheme
S1).
Having accomplished the facile synthesis of α-aryl-α-

diazoamides, we turned our attention to their esterification
of carboxylic acids. Specifically, we screened for the O-
alkylation of five structurally diverse small molecules, pivalic
acid, rhodamine B, coumarin-3-carboxylic acid, biotin, and
HGluOMe, by three representative diazo compounds (3h, 3j,
and 3l) in 1:1 acetonitrile:MES−NaOH buffer, pH 6.0, at 37
°C for 19 h (Figure S6). Each of the reactions was analyzed by
LC−MS to quantify the esterified product as well as the
hydrolyzed byproduct, α-aryl-α-hydroxyamide (Table S2).
Though hydrolysis is unavoidable due to the excess of water,
esterification was successful regardless of the steric and
electronic nature of the carboxylic acid or diazo compound.
Finally, we tested the bioreversibility of esterification by our

diazo reagents. As a model acid, we used AcGluNH2 (5),
which we derived from L-glutamic acid and which represents
the most common residue for protein esterification6 and 6.4%
of the residues in human proteins.26 In compound 5, the N-
terminal amino group is acetylated to prevent aminolysis of a
side-chain ester, and the C-terminal carboxyl group is amidated
to prevent main-chain esterification (Scheme S2). Compound
5 was treated with 3j to yield ester 6, which was then subjected
to hydrolysis in the presence or absence of pig liver esterase
(PLE) under biomimetic conditions at 37 °C (pH 5.8 for
endosomes, pH 7.2 for the cytosol, and pH 8.0 for
mitochondria).27 Though stable at pH 5.8, ester 6 hydrolyzed
readily at pH 8.0, even in the absence of PLE (Figure S10).
The hydrolysis at pH 7.2 was, however, reliant on PLE
(Figures 3 and S9). These data suggest that cellular esterases

Figure 2. (A) Aminolysis of N-succinimidyl α-aryl-α-diazoacetates
with secondary amines. (B) Scope of the ensuing N,N-disubstituted
α-aryl-α-diazoamides.

Scheme 2. Scope of the Aminolysis of N-Succinimidyl α-
Aryl-α-diazoacetates with Primary Amines; Isolated Yields
Are Reported

aReaction conditions: 1.0 equiv of H2NR.
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will catalyze the hydrolysis of a nascent ester to reveal the
native carboxylic acid of a protein.

In conclusion, we demonstrated a facile two-step synthesis of
α-aryl-α-diazoamides, which are modular reagents. This route
will expedite the ongoing exploration of diazo compounds as
reagents in chemical biology. We anticipate that the
bioreversibility of our modification will enable applications in
chemical biology, including the cellular delivery of proteins.
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