Supporting Information

Two-Step Synthesis of α-Aryl-α-diazoamides as Modular Bioreversible Labels
Joomyung V. Jun and Ronald T. Raines*
Department of Chemistry and Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
*E-mail: rtraines@mit.edu

Table of Contents

I. General Information .. S5–S6
II. Application of Diazo Compounds in Chemical Biology ... S7
III. Synthesis of the Key Precursor (N-Succinimidy 2-Diazoacetate, 1) ... S7–S8
IV. Characterization Data for 1 ... S9
V. Experimental Procedure for the Pd-Catalyzed C–H Arylation ... S10
 V-1. C–H Arylation of 1 (General Procedure A) ... S10
 V-2. C–H Arylation of NHPI-DA (S4) ... S11
VI. Experimental Procedure for Aminolysis .. S12
 VI-1. Aminolysis of N-Phthalimidyl 2-Aryl-2-Diazoacetates (S5–S7) .. S12
 VI-2. Aminolysis of N-Succinimidy 2-Aryl-2-Diazoacetate (General Procedure B) S13
VII. Aminolysis with Primary Amines .. S14
 VII-1. Aminolysis of 2d ... S15–S16
 VII-2. Aminolysis of 2e ... S17–S18
 VII-3. Aminolysis of 2f ... S19–S20
 VII-4. Aminolysis of 2g ... S21–S22
 VII-5. Aminolysis of 2h ... S23–S24
 VII-6. Aminolysis of 2j ... S25–S26
VIII. Esterification of α-Aryl-α-Diazoamides ... S27–S28
 VIII-1. Esterification of Pivalic Acid (A) .. S29–S30
 VIII-2. Esterification of Rhodamine B (B) .. S31–S32
 VIII-3. Esterification of Coumarin-3-Carboxylic Acid (C) ... S33–S34
 VIII-4. Esterification of Biotin (D) ... S35–S36
 VIII-5. Esterification of L-Glutamic Acid α-Methyl Ester (E) ... S37–S38
IX. Experimental Procedure for Hydrolysis ... S39
 IX-1. Designing the Model Compound 5 ... S39
 IX-3. Hydrolytic Cleavage of 6 .. S44–S46
X. Characterization Data for 2a–2j ... S47–S58
XI. Characterization Data for S2k .. S59
XII. Characterization Data for S4–S7 .. S60–S63
XIII. Characterization Data for 3a–3l .. S64–S76
XIV. Characterization Data for 4a–4e .. S77–S81
XV. NMR Spectra .. S82–S129

1H NMR (400 MHz, CDCl3 containing 0.03% v/v TMS) for compound S2 .. S82
1H NMR (400 MHz, CDCl3 containing 0.03% v/v TMS) for compound 1 .. S83
13C NMR (101 MHz, CDCl3 containing 0.03% v/v TMS) for compound 1 .. S83
1H NMR (500 MHz, CD3CN) for compound 2a .. S84
13C NMR (126 MHz, CD3CN) for compound 2a .. S84
HMBC NMR (500 MHz, CD3CN) for compound 2a .. S85
1H NMR (500 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2b .. S86
13C NMR (126 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2b .. S86
19F NMR (471 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2b .. S87
HMBC NMR (500 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2b .. S88
1H NMR (400 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2c .. S89
1H NMR (400 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2d .. S90
13C NMR (101 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2d .. S90
19F NMR (376 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2d .. S91
1H NMR (400 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2e .. S92
13C NMR (101 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2e .. S92
1H NMR (400 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2f .. S93
13C NMR (101 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2f .. S93
HMBC NMR (500 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2f .. S94
1H NMR (500 MHz, THF-d8 containing 0.03% v/v TMS) for compound 2g .. S95
13C NMR (126 MHz, THF-d8 containing 0.03% v/v TMS) for compound 2g .. S95
HMBC NMR (500 MHz, THF-d8 containing 0.03% v/v TMS) for compound 2g .. S96
1H NMR (400 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2h .. S97
13C NMR (101 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2h .. S97
19F NMR (376 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2h .. S98
1H NMR (400 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2i .. S99
13C NMR (101 MHz, CDCl3 containing 0.03% v/v TMS) for compound 2i .. S99
1H NMR (400 MHz, CDCl3 containing 0.03% v/v TMS) for compound S2j .. S100
13C NMR (101 MHz, CDCl3 containing 0.03% v/v TMS) for compound S2j .. S100
1H NMR (400 MHz, CDCl3 containing 0.03% v/v TMS) for compound S2j .. S101
13C NMR (101 MHz, CDCl3 containing 0.03% v/v TMS) for compound S2j .. S101
1H NMR (400 MHz, CDCl3 containing 0.03% v/v TMS) for compound S2k .. S102
13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $S2k$.. S102

1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $S4$.. S103

1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $S5$.. S104

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $S5$.. S104

1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $S6$.. S105

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $S6$.. S105

1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $S7$.. S106

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $S7$.. S106

1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3a$.. S107

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3a$.. S107

1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3b$.. S108

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3b$.. S108

19F NMR (471 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3b$.. S109

1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3c$.. S110

1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3d$.. S111

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3d$.. S111

1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3e$.. S112

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3e$.. S112

1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3f$.. S113

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3f$.. S113

1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3g$.. S114

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3g$.. S114

1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3h$.. S115

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3h$.. S115

1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3i$.. S116

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3i$.. S116

1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3j$.. S117

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3j$.. S117

HMBC NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3j$.. S118

HSQC NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3j$.. S119

1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3k$.. S120

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3k$.. S120

1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3l$.. S121

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3l$.. S121

19F NMR (376 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $3l$.. S122

1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $4a$.. S123

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $4a$.. S123

1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) for compound $4b$.. S124
13C NMR (126 MHz, CDCl\textsubscript{3} containing 0.03\% v/v TMS) for compound 4b .. S124
1H NMR (500 MHz, CDCl\textsubscript{3} containing 0.03\% v/v TMS) for compound 4c .. S125
13C NMR (126 MHz, CDCl\textsubscript{3} containing 0.03\% v/v TMS) for compound 4c .. S125
1H NMR (400 MHz, CDCl\textsubscript{3} containing 0.03\% v/v TMS) for compound 4d .. S126
1H NMR (500 MHz, CDCl\textsubscript{3} containing 0.03\% v/v TMS) for compound 4e .. S127
13C NMR (126 MHz, CDCl\textsubscript{3} containing 0.03\% v/v TMS) for compound 4e .. S127
1H NMR (500 MHz, CDCl\textsubscript{3} containing 0.03\% v/v TMS) for compound 4e .. S128
13C NMR (126 MHz, CDCl\textsubscript{3} containing 0.03\% v/v TMS) for compound 6 .. S128
1H NMR (500 MHz, CDCl\textsubscript{3} containing 0.03\% v/v TMS) for compound 6 .. S129
13C NMR (126 MHz, CDCl\textsubscript{3} containing 0.03\% v/v TMS) for compound 7 .. S129
1H NMR (500 MHz, CDCl\textsubscript{3} containing 0.03\% v/v TMS) for compound 7 .. S129

XVI. References .. S130
I. General Information

Compounds 2a–2j, 3a–3l, and 4a–4e were synthesized by the routes shown in Scheme 1, Scheme 2, and Figure 2. All reactions were performed in a reaction vial fitted with TFE-silicone septa under an atmosphere of N₂(g) using standard Schlenk-line techniques. Reactions carried out at low temperature were cooled by cooling agents in a Dewar vessel (water-ice bath at 0 °C), while reactions performed above room temperature were heated on the IKA RCT basic plate. All reactions were magnetically stirred and monitored by liquid chromatography–mass spectrometry (LC–MS) and by analytical thin-layer chromatography (TLC). Purification was performed by flash column chromatography using silica gel or a Biotage Isolera One system unless indicated otherwise. Note: Diazaoamide compounds (3a–3l, 4a–4e) were purified manually by column chromatography to avoid any exposure of UV light from the UV detector in the Biotage. For the same reason, purification by high-performance liquid chromatography (HPLC) is also not recommended. Organic solutions were concentrated in vacuo using a Buchi rotary evaporator (model R-210).

Materials. Reagents and solvents were from Sigma–Aldrich (Milwaukee, WI) and were used without further purification unless indicated otherwise. 4-Iodotoluene, 3-iodobenzotri fluoride, 3-iodoanisole, 4-iodobenzotrifluoride, and 4-iodopyridine were from Alfa Aesar (Tewksbury, MA). 4-Iodoanisole was from ACROS Organics (Morris Plains, NJ). 2-(4-Iodophenyl)acetic acid was from Chem–Impex International (Wood Dale, IL). Azido-PEG4-Amine was from BroadPharm (San Diego, CA). Tri(2-furyl)phosphine was from TCI America (Portland, OR). Rink amide ProTide Resin was from CEM Corporation (Matthews, NC). Reagent-grade solvents (dichloromethane (DCM), tetrahydrofuran (THF), triethylamine (Et₃N), acetonitrile (MeCN), methanol (MeOH) and N,N-dimethylformamide (DMF)) were dried over a column of alumina and removed from a dry still under an inert atmosphere. Anhydrous ethyl acetate (EtOAc) was from ACROS Organics. Flash column chromatography was performed with Silicycle 40–63 Å silica (230–400 mesh), and thin-layer chromatography (TLC) was performed with EMD 250 μm silica gel 60 F254 plates. 40-mL reaction vials (Item No. CG-4909-05) and 8-mL reaction vials (Item No. CG-4909-03) with green open top cap (TFE Septa) were from Chemglass Life Sciences (Vineland, NJ).

Conditions. All procedures were performed under a positive pressure of N₂(g) at ambient temperature (∼22 °C) and pressure (1.0 atm) unless indicated otherwise.

Solvent Removal. The phrase “concentrated under reduced pressure” refers to the removal of solvents and other volatile materials using a rotary evaporator (<20 Torr) while maintaining a water bath at ambient temperature (∼22 °C). Residual solvent was removed from samples at high vacuum (<0.1 Torr).

Nuclear magnetic resonance (NMR) Spectroscopy. ¹H and ¹³C NMR spectra were acquired with a Bruker Avance Neo 400 MHz or Bruker Avance Neo 500 MHz spectrometer at the Department of Chemistry Instrumentation Facility at MIT (DCIF). Proton chemical shifts are reported in parts per million (ppm, δ scale) and are relative to residual protons.
in the deuterated solvent (CDCl₃: δ 7.26; D₂O-d₂: δ 4.79; CD₂CN-d₃: δ 1.94; DMSO-d₆: δ 2.50; THF-d₈: δ 1.72). Carbon chemical shifts are reported in parts per million (ppm, δ scale) and are relative to the carbon resonance of the solvent (CDCl₃: δ 77.16; CD₂CN-d₃: δ 1.32; THF-d₈: δ 25.37). CDCl₃ containing 0.03% (v/v) TMS (AC209561000) was supplied by ACROS Organics. D₂O-d₂, CD₂CN-d₃, and THF-d₈, and DMSO-d₆ containing 0.03% (v/v) TMS were purchased from Sigma Aldrich. Multiplicities are abbreviated as: s (singlet), br (broad), d (doublet), t (triplet), q (quartet), and m (multiplet). ¹³C signal corresponding to diazo carbon (C=N=N) is missing in most of the spectra, possibly due to a T₁ relaxation effect. Because this quaternary carbon is highly shielded by nitrogen, a high number of scans and long relaxation time (d1 > 1.5 s) are required. Despite its being a quaternary carbon, the chemical shift of a diazo carbon is generally reported to be in the 55–65 ppm region.¹⁰ Similarly, we have validated diazo carbon peaks of selected compounds using HMBC (2a, 2b, 2f, 2g, and 3j) and HSQC (3j) experiments.

Mass Spectrometry. Mass spectra of small molecules were acquired with an LCT electrospray ionization (ESI) instrument from Agilent (1260 infinity II) and a LC–MS column (Agilent, Poroshell 120, SB C₁₈-reverse-phase, length 50 mm, internal diameter: 2.1 mm, particle size: 2.7 micron) with a gradient of 10–95% v/v MeCN (0.1% v/v formic acid) in water (0.1% v/v formic acid) over 10 min (Figure S5). To minimize the fragmentation of diazo moieties, the MSD parameters were set as following: capillary voltage, 3000 V; drying gas temperature, 350 °C; gas flow, 13/min; fragmentor voltage, 30; nebulizer pressure, 35 psig; and cycle time, 0.83 s/cycle. High-resolution mass spectra (HRMS) were obtained with a Jeol Accu-ToF (AccuTOF-DART) instrument.

Compound Purity. The purity of all compounds was judged to be ≥95%, as assessed by ¹H and ¹³C NMR spectroscopy, mass spectrometry, and reversed-phase high performance liquid chromatography (HPLC) using an LC–MS column and gradient of 10–95% v/v MeCN (0.1% v/v formic acid) in water (0.1% v/v formic acid) over 10 min (Figure S5) unless indicated otherwise.

Infrared Spectroscopy. IR spectra were obtained with a Bruker Alpha II FTIR spectrometer with a diamond crystal attenuated total reflectance (ATR) accessory. IR spectra were acquired by dissolving a small amount of compound in dichloromethane to mount the sample (neat samples) and representative bands (e.g., the diazo N=N stretching at ~2100 cm⁻¹) are reported in terms of wavenumbers in cm⁻¹.

**Safety. ** *Caution* Although we never experienced any problems, diazo compounds are potentially explosive upon exposure to light, heat, pressure, and shock.¹ They should be stored at ≤0 °C in a location away from light, pressure, and shock. N-Succinimidyl 2-diazoacetate (1)² and N-phthalimidoyl 2-diazoacetate (NHPI-DA, S4)³ are reported to be bench-stable and can be isolated in gram amounts as a crystalline solid. Moreover, structurally similar α-aryl-α-diazoesters have been shown to have T_onset, which reports on thermostability, ranging from 80 °C (p-OMe) to 130 °C (p-NO₂), depending on the aryl substituents.¹ Our synthetic routes (Scheme 1, Figure 2) do not require any heat and are done on a small scale (<500 mg). Still, a blast shield should be placed around the reaction vessels containing the
diazo compounds for synthesis on a multi-gram scale.

II. Application of Diazo Compounds in Chemical Biology

Figure S1. Top) Previously reported synthetic route of α-aryl-α-diazoamide 3c.5,4 Bottom) its application in “bioreversible” esterification of green fluorescent protein (GFP) for cytosolic delivery (bottom).4 (1) Esterification of GFP was done by incubating with 1 (4 equiv) in bis-TRIS buffer (pH 6.5, 20% v/v MeCN) for 4 h at 37 °C to generate GFP-3c. (2) Membrane permeability was analyzed by confocal images of GFP and GFP-3c in CHO-K1 cells (λex, λem: 488 nm, 525 nm).4 Cells were incubated with protein (15 µM) for 2 h at 37 °C. Scale bars are 25 µm. Lastly, (3) intracellular esterases are anticipated to cleave the pendant ester bond, releasing the byproduct, to unmask the native protein.

III. Synthesis of the Key Precursor (N-Succinimidyl 2-Diazoacetate, 1)

Reported Synthesis I (Ouihia et al.)3

\[
\text{S1} \quad \xrightarrow{p-\text{Ts-NH-NH}_2, 2.5\text{M HCl, H}_2\text{O}} \quad \text{S2} \quad \xrightarrow{\text{NHS (1.0 equiv)}, \text{DCC (1.0 equiv)}, \text{Dioxane, 0 °C to r.t. 4 h}} \quad \text{1 (65 %)}
\]

Reported Synthesis II (Gupta and Yin et al.)6

\[
\text{S1} \quad \xrightarrow{p-\text{Ts-NH-NH}_2, 2.5\text{M HCl, H}_2\text{O}} \quad \text{S2} \quad \xrightarrow{\text{SOCl}_2 (2 \text{equiv}), \text{benzene, reflux}} \quad \text{S3 (70 %)} \quad \xrightarrow{\text{NHS-OH, Na}_2\text{CO}_3, \text{CH}_2\text{Cl}_2, 0 °\text{C to r.t. 6 h}} \quad \text{1 (60 %)}
\]

Figure S2. Previously reported synthetic routes and yields of diazo compound 1. The synthesis of 1 was adapted from
2-(2-tosylhydrazono) acetic acid (S2): Glyoxylic acid monohydrate S1 (23.2 g, 250 mmol) was dissolved in water (250 mL) and heated to 65 °C until S1 was dissolved fully. In a separate round bottom flask, p-toluenesulfonylhydrazide (46.6 g, 250 mmol) in 2.5 M aqueous hydrochloric acid (150 mL) was heated at 65 °C. The resulting solution of p-toluenesulfonylhydrazide was then added to the glyoxylic acid solution, and the reaction mixture was heated at 65 °C for 15 min. The reaction mixture was allowed to warm to room temperature and was kept in the refrigerator overnight to induce precipitation. The precipitated crude product was collected by filtration, washed with cold water (70 mL), and dried in the open air for 2 days to remove water. The crude product was then recrystallized using hot EtOAc and hexane. The product was filtered and washed with ice-cold 33% v/v EtOAc in hexanes to afford compound S2 as a white solid (52.2 g, 215 mmol, 86%).

\[\text{S1} \rightarrow \text{S2} \]

\[^1H\text{ NMR (400 MHz, CDCl}_3, \delta]: 8.47 (s, 1H), 7.83–7.80 (m, 2H), 7.38 (d, J = 8.1 Hz, 2H), 7.13 (s, 1H), 2.46 (s, 3H)\]

Note: The \(^1H\text{ NMR spectrum of S2 matched with the literature except for the exchanging protons.}^{2,6}\)

\[\text{S2} \rightarrow \text{1} \]

\(N\text{-Succinimidyl 2-Diazoacetate (1):} \) Compound S2 (9.7 g, 40 mmol, 1.0 equiv) and \(N\)-hydroxysuccinimide (5.1 g, 44 mmol, 1.1 equiv) were dissolved in anhydrous DCM (400 mL), and the reaction mixture was cooled to 0 °C. A solution of \(N,N\)-dicyclohexylcarbodiimide (DCC) (60 mmol, 1.5 equiv) in anhydrous DCM (1.0 M solution) was then added dropwise to the reaction mixture, and stirred at 0 °C for 1 h. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched by filtering out the byproduct, dicyclohexylurea, and the filtrate was concentrated under reduced pressure. The reaction mixture was then extracted with EtOAc (200 mL × 3) and washed with saturated aqueous NaHCO\(_3\) (200 mL × 3), followed by brine (200 mL). The organic layer was separated, dried with Na\(_2\)SO\(_4\)(s), and filtered. The solvent was removed under reduced pressure, and the crude product was purified by chromatography on silica gel (6:4:1 hexanes/EtOAc/DCM) to yield the product as a pale yellow crystalline solid (4.9 g, 27 mmol, 67%).

Note: The \(^1H\text{ NMR, }^{13}C\text{ NMR, and IR spectra of 1 match those previously reported for this compound.}^{2} \)
IV. Characterization Data for \(N \)-Succinimidyl 2-Diazoacetate (1)

Physical State: pale yellow solid

TLC: \(R_f = 0.32 \) (1:1 pentane/EtOAc) Stained red with vanillin

\(^1\)H NMR (400 MHz, CDCl\(_3\), \(\delta \)): 5.11 (s, 1H), 2.85 (s, 4H)

\(^{13}\)C NMR (101 MHz, CDCl\(_3\), \(\delta \)): 169.43, 168.64, 45.11, 25.45

HRMS (ESI–TOF): calc’d for \(\text{C}_6\text{H}_5\text{N}_3\text{O}_4\text{Na} [\text{M} + \text{Na}]^+ \), 206.0172; found, 206.0171

IR (neat): 2133 (diazo), 1361, 1204, 1067, 923, 643 cm\(^{-1}\)

Analytical HPLC: 10–95\% v/v MeCN (0.1\% v/v formic acid) in water (0.1\% v/v formic acid) over 10 min (Figure S5)
V. Experimental Procedure for the Pd-Catalyzed C—H Arylation

V-1. C—H Arylation of 1

General Procedure A. The C—H arylation of 1 to synthesize \(N \)-succinimidyl 2-aryl-2-diazoacetates 2a–2j

\[
\begin{align*}
\begin{array}{c}
\text{H} & \text{O} & \text{N} \\
\text{O} & \text{N} & \text{O}
\end{array}
\end{align*}
\]

\(\text{1 (SM)} \) +

\[
\begin{align*}
\begin{array}{c}
\text{Ar} & \text{I} \\
\text{Ar} & \text{O}
\end{array}
\end{align*}
\]

\[
\begin{align*}
Pd(OAc)_2 (5 \text{ mol%}) & \quad \text{tri(furan-2-yl)phosphane (10 mol%)} \\
Ag_2CO_3 (0.5 \text{ equiv}) & \quad NEt_3 (1.5 \text{ equiv}), \text{EtOAc}, \text{rt}
\end{align*}
\]

The cross-coupling reaction condition was adapted from the original procedure by Yu et al.\(^a\) Aryl iodide (1.62 mmol, 1.5 equiv), tri(furan-2-yl)phosphane (25 mg, 0.11 mmol, 10 mol%), Pd(OAc)\(_2\) (12 mg, 0.054 mmol, 5 mol%), and Ag\(_2\)CO\(_3\) (151 mg, 0.54 mmol, 0.50 equiv) were added to a 40-mL reaction vial with a TFE septa cap, which was then evacuated and backfilled with \(N_2 (g) \). Subsequently, compound 1 (200 mg, 1.08 mmol, 1.0 equiv) and Et\(_3\)N (166 mg, 1.62 mmol, 1.5 equiv) in EtOAc (22 mL, 0.05M) was added in one portion to the reaction vial. The reaction mixture was stirred at room temperature for 6 h under \(N_2(g) \). The progress of the reaction was monitored by TLC (Figure S3). The reaction mixture was filtered through a Celite pad using fitted syringe and washed with EtOAc to remove insoluble catalysts and silver salts. The filtrate was concentrated under reduced pressure and purified by silica gel chromatography to get desired product unless otherwise specified.

![Figure S3](image)

Figure S3. General purification procedure to obtain the arylated product (P). (A) Filtration using fitted syringe, (B) column chromatography with yellow product band, (C) TLC stained with vanillin stain (left) and TLC under a handheld UV lamp (254 nm), and (D) purified product and its structure.
V-2. C—H Arylation of NHPI-DA (S4)

Synthesis of NHPI-DA (S4): Prepared according to the literature procedure.

\[
\begin{align*}
\text{S1} & \quad \text{p-Ts-NH-NH}_2 \\
& \quad 2.5 \text{M HCl, H}_2\text{O} \\
\Rightarrow & \quad \text{S2 (78\%)} \\
& \quad 1. (\text{COCl})_2 (1.5 \text{ equiv}) \\
& \quad \text{DCM, DMF(cat), 0}^\circ\text{C to r.t., ON} \\
& \quad 2. \text{NHPI (2.0 equiv)} \\
& \quad 2,6\text{-lutidine (3.0 equiv), DCM, r.t., 4h} \\
\Rightarrow & \quad \text{S4} \\
\end{align*}
\]

Hand column (46 \%)
Recrystallization (22 \%)

Synthesis of aryl diazoacetate (S5–S7): Prepared according to the literature procedure.

\[
\begin{align*}
\text{(Het)Ar—I} \quad + & \quad \text{S4} \\
& \quad \text{Pd(OAc)}_2 (5 \text{ mol\%}) \\
& \quad \text{P(2-Fu)}_3 (10 \text{ mol\%}) \\
& \quad \text{Ag}_2\text{CO}_3 \\
& \quad \text{NEt}_3, \text{EtOAc} \\
& \quad \text{r.t., 4 h} \\
\Rightarrow & \quad \text{S5–S7} \\
\end{align*}
\]

S5 represents the standard substrate that will lead to reported bioreversible aryl diazoamide reagent 3c (Figure S1)
S6 represents 3-position substituted aryl group
S7 represents the substrate with a site for bioconjugation
VI. Experimental Procedure for Aminolysis

VI-1. Aminolysis of N-Phthalimidyl 2-Aryl-2-Diazoacetates (S5–S7)

Table S1. Optimization of Aminolysis

<table>
<thead>
<tr>
<th>entry</th>
<th>mmol</th>
<th>Ar-NHPI</th>
<th>HNR(^{1,2}) equiv</th>
<th>base</th>
<th>equiv</th>
<th>additive</th>
<th>solvent</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02</td>
<td>S5</td>
<td>-</td>
<td>Et(_3)N</td>
<td>0.0</td>
<td>THF</td>
<td>100 equiv</td>
<td>no reaction</td>
</tr>
<tr>
<td>2</td>
<td>0.02</td>
<td>S5</td>
<td>A</td>
<td>Et(_3)N</td>
<td>1.0</td>
<td>THF</td>
<td>0 equiv</td>
<td>degradation</td>
</tr>
<tr>
<td>3</td>
<td>0.02</td>
<td>S5</td>
<td>A</td>
<td>Et(_3)N</td>
<td>1.2</td>
<td>THF</td>
<td>0 equiv</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.02</td>
<td>S5</td>
<td>A</td>
<td>Et(_3)N</td>
<td>1.2</td>
<td>THF</td>
<td>0 equiv</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.02</td>
<td>S5</td>
<td>A</td>
<td>Et(_3)N</td>
<td>1.2</td>
<td>THF</td>
<td>0 equiv</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0.02</td>
<td>S5</td>
<td>A</td>
<td>Et(_3)N</td>
<td>1.2</td>
<td>THF</td>
<td>0 equiv</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.01</td>
<td>S5</td>
<td>A</td>
<td>Et(_3)N</td>
<td>1.2</td>
<td>THF</td>
<td>0 equiv</td>
<td>trace</td>
</tr>
<tr>
<td>8</td>
<td>0.01</td>
<td>S5</td>
<td>B</td>
<td>Et(_3)N</td>
<td>1.2</td>
<td>THF</td>
<td>0 equiv</td>
<td>trace</td>
</tr>
<tr>
<td>9</td>
<td>0.02</td>
<td>S5</td>
<td>A</td>
<td>Et(_3)N</td>
<td>5.0</td>
<td>THF</td>
<td>0 equiv</td>
<td>trace, Na ascorbate</td>
</tr>
<tr>
<td>10</td>
<td>0.02</td>
<td>S5</td>
<td>B</td>
<td>Et(_3)N</td>
<td>5.0</td>
<td>THF</td>
<td>0 equiv</td>
<td>trace, Na ascorbate</td>
</tr>
<tr>
<td>11</td>
<td>0.02</td>
<td>S6</td>
<td>A</td>
<td>Et(_3)N</td>
<td>5.0</td>
<td>THF</td>
<td>0 equiv</td>
<td>trace, Na ascorbate</td>
</tr>
<tr>
<td>12</td>
<td>0.02</td>
<td>S6</td>
<td>B</td>
<td>Et(_3)N</td>
<td>5.0</td>
<td>THF</td>
<td>0 equiv</td>
<td>trace, Na ascorbate</td>
</tr>
<tr>
<td>13</td>
<td>0.01</td>
<td>S6</td>
<td>B</td>
<td>Et(_3)N</td>
<td>1.0</td>
<td>THF</td>
<td>0 equiv</td>
<td>trace, Na ascorbate</td>
</tr>
<tr>
<td>14</td>
<td>0.01</td>
<td>S6</td>
<td>B</td>
<td>Et(_3)N</td>
<td>1.0</td>
<td>THF</td>
<td>0 equiv</td>
<td>trace, Na ascorbate</td>
</tr>
<tr>
<td>15</td>
<td>0.01</td>
<td>S6</td>
<td>B</td>
<td>Et(_3)N</td>
<td>1.0</td>
<td>MeCN</td>
<td>0 equiv</td>
<td>trace, MeCN</td>
</tr>
<tr>
<td>16</td>
<td>0.01</td>
<td>S6</td>
<td>B</td>
<td>Et(_3)N</td>
<td>1.0</td>
<td>MeCN</td>
<td>0 equiv</td>
<td>trace, MeCN</td>
</tr>
<tr>
<td>17</td>
<td>0.02</td>
<td>S7</td>
<td>A</td>
<td>Et(_3)N</td>
<td>5.0</td>
<td>THF</td>
<td>0 equiv</td>
<td>trace, Na ascorbate</td>
</tr>
<tr>
<td>18</td>
<td>0.02</td>
<td>S7</td>
<td>B</td>
<td>Et(_3)N</td>
<td>5.0</td>
<td>THF</td>
<td>0 equiv</td>
<td>trace, Na ascorbate</td>
</tr>
<tr>
<td>19</td>
<td>0.01</td>
<td>S7</td>
<td>B</td>
<td>Et(_3)N</td>
<td>1.0</td>
<td>THF</td>
<td>0 equiv</td>
<td>trace, SM left</td>
</tr>
<tr>
<td>20</td>
<td>0.01</td>
<td>S7</td>
<td>B</td>
<td>Et(_3)N</td>
<td>1.0</td>
<td>THF</td>
<td>0 equiv</td>
<td>trace, SM left</td>
</tr>
<tr>
<td>21</td>
<td>0.01</td>
<td>S7</td>
<td>B</td>
<td>Et(_3)N</td>
<td>1.0</td>
<td>MeCN</td>
<td>0 equiv</td>
<td>trace, SM left</td>
</tr>
<tr>
<td>22</td>
<td>0.01</td>
<td>S7</td>
<td>B</td>
<td>Et(_3)N</td>
<td>1.0</td>
<td>MeCN</td>
<td>0 equiv</td>
<td>trace, SM left</td>
</tr>
</tbody>
</table>

Each reaction was analyzed by LC–MS and TLC to determine the production formation and the conversion of starting material. Sodium ascorbate was added to minimize the degradation of redox-active NHPI ester.
TLC of selected reactions from Table S1:

VI-2. Aminolysis of \(N\)-Succinimidyl 2-Aryl-2-Diazoacetate

General Procedure B. Aminolysis of \(N\)-succinimidyl 2-aryl-2-diazoacetate (2)

Adapting literature procedures,\(^6,7\) an 8-mL scintillation vial was charged with a magnetic stir bar, aryl diazoester 2 (0.17 mmol, 1.0 equiv), and \(Et_3N\) (0.85 mmol, 5.0 equiv) in dry THF (1.7 mL), and cooled to 0 °C in an ice bath. A solution of amine (0.85 mmol, 5.0 equiv) and \(Et_3N\) (0.85 mmol, 5.0 equiv) in dry THF (1.7 mL) was then added dropwise to a final concentration of 0.05 M. The reaction mixture was stirred at 0 °C for 1 h and allowed to warm to room temperature for an additional 2 h. The progress of the reaction was monitored by TLC, and product formation was indicated by the precipitation of \(N\)-hydroxysuccinimide (\(NHS\)-OH) as well as the color of solution changing from yellowish to darker orange (**Figure S4**). The reaction mixture was concentrated under reduced pressure and purified by column chromatography (50% v/v EtOAc in hexanes) to afford the desired \(\alpha\)-aryl-\(\alpha\)-diazoamide.

Note: Using 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) or sodium hydride (NaH) instead of \(Et_3N\) led to degradation or no product formation, respectively.

Figure S4. (A) Aminolysis of 2e, (B) color change and precipitation upon product (3g) and NHS-OH formation, respectively, and (C) TLC of starting material (2e), crude reaction (rxn), and co-staining (co) in 33% v/v EtOAc in hexanes.
VII. Aminolysis with Primary Amines

The scope of the aminolysis was analyzed via LC–MS using six aryl diazoesters (2d, 2e, 2f, 2g, 2h, and 2j) and four primary amines (1–4). Reaction conditions for screening were adopted from General Procedure B on a small scale (0.15 mmol/reaction). Each reaction was done with a final concentration of 0.01 M in THF (1.5 mL). After stirring overnight (17 h), the reaction mixture was concentrated under pressure and redissolved in 1 mL of MeCN. 100 µL of the reaction solution was added to 900 µL of 50% v/v MeCN in H₂O for LC–MS analysis with the gradient shown in Figure S5. The product distribution was analyzed by the total ion count (TIC) and UV absorbance plots at 210 nm, 250 nm, and 280 nm. Generally, ionized mass with the loss of N₂ was observed.

Scheme S1. The Predicted Structure of Diazoamides upon Aminolysis

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2f</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2j</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0.1% Formic Acid in Water (%)</th>
<th>0.1% Formic Acid in Acetonitrile (%)</th>
<th>Flow (mL/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>90</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>1.00</td>
<td>90</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>11.00</td>
<td>5</td>
<td>95</td>
<td>0.4</td>
</tr>
<tr>
<td>12.00</td>
<td>0</td>
<td>100</td>
<td>0.4</td>
</tr>
<tr>
<td>12.50</td>
<td>90</td>
<td>10</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Figure S5. LC–MS Gradient. 10–95% v/v MeCN (0.1% v/v formic acid) in water (0.1% v/v formic acid) over 10 min.
VII-1. Aminolysis of 2d

<table>
<thead>
<tr>
<th>cmpd</th>
<th>Ar-NHS</th>
<th>amine</th>
<th>Molecular Weight</th>
<th>LCMS (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>2d-1</td>
<td>1</td>
<td>1</td>
<td>327.2</td>
<td>300.3</td>
</tr>
<tr>
<td>2d-2</td>
<td>2</td>
<td>2</td>
<td>327.2</td>
<td>267.2</td>
</tr>
<tr>
<td>2d-3</td>
<td>3</td>
<td>3</td>
<td>327.2</td>
<td>432.4</td>
</tr>
<tr>
<td>2d-4</td>
<td>4</td>
<td>4</td>
<td>327.2</td>
<td>474.4</td>
</tr>
</tbody>
</table>
VII-2. Aminolysis of 2e

<table>
<thead>
<tr>
<th>cmpd</th>
<th>Ar-NHS</th>
<th>amine</th>
<th>Molecular Weight</th>
<th>LCMS (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ar-NHS amine product [M+H]⁺ [M+Na]⁺ [M+H-N₂]⁺</td>
<td></td>
</tr>
<tr>
<td>2e-1</td>
<td></td>
<td>1</td>
<td>355.4 88.2 328.5</td>
<td>329.5 351.5 301.5</td>
</tr>
<tr>
<td>2e-2</td>
<td></td>
<td>2</td>
<td>355.4 55.1 295.4</td>
<td>296.4 318.4 268.4</td>
</tr>
<tr>
<td>2e-3</td>
<td></td>
<td>3</td>
<td>355.4 220.3 460.7</td>
<td>461.7 483.7 433.7</td>
</tr>
<tr>
<td>2e-4</td>
<td></td>
<td>4</td>
<td>355.4 262.3 502.6</td>
<td>503.6 525.6 475.6</td>
</tr>
</tbody>
</table>
VII-3. Aminolysis of 2f

<table>
<thead>
<tr>
<th>cmpd</th>
<th>Ar-NHS</th>
<th>amine</th>
<th>Molecular Weight</th>
<th>LCMS (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ar-NHS</td>
<td>amine</td>
</tr>
<tr>
<td>2f-1</td>
<td>1</td>
<td>2</td>
<td>289.2</td>
<td>88.2</td>
</tr>
<tr>
<td>2f-2</td>
<td>2</td>
<td>2</td>
<td>289.2</td>
<td>55.1</td>
</tr>
<tr>
<td>2f-3</td>
<td>3</td>
<td>2</td>
<td>289.2</td>
<td>220.3</td>
</tr>
<tr>
<td>2f-4</td>
<td>4</td>
<td>2</td>
<td>289.2</td>
<td>262.3</td>
</tr>
</tbody>
</table>
VII-4. Aminolysis of 2g

<table>
<thead>
<tr>
<th>cmpd</th>
<th>Ar-NHS</th>
<th>amine</th>
<th>Molecular Weight</th>
<th>LCMS (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ar-NHS</td>
<td>amine</td>
</tr>
<tr>
<td>2g-1</td>
<td>1</td>
<td>1</td>
<td>275.2</td>
<td>88.2</td>
</tr>
<tr>
<td>2g-2</td>
<td>2</td>
<td>2</td>
<td>275.2</td>
<td>55.1</td>
</tr>
<tr>
<td>2g-3</td>
<td>3</td>
<td>3</td>
<td>275.2</td>
<td>220.3</td>
</tr>
<tr>
<td>2g-4</td>
<td>4</td>
<td>4</td>
<td>275.2</td>
<td>262.3</td>
</tr>
</tbody>
</table>
VII-5. Aminolysis of 2h

<table>
<thead>
<tr>
<th>cmpd</th>
<th>Ar-NHS</th>
<th>amine</th>
<th>Molecular Weight</th>
<th>LCMS (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ar-NHS</td>
</tr>
<tr>
<td>2h-1</td>
<td></td>
<td>1</td>
<td>327.2</td>
<td>300.3</td>
</tr>
<tr>
<td>2h-2</td>
<td></td>
<td>2</td>
<td>327.2</td>
<td>267.2</td>
</tr>
<tr>
<td>2h-3</td>
<td></td>
<td>3</td>
<td>327.2</td>
<td>432.4</td>
</tr>
<tr>
<td>2h-4</td>
<td>2h</td>
<td>4</td>
<td>327.2</td>
<td>474.4</td>
</tr>
</tbody>
</table>
VII-6. Aminolysis of 2j

<table>
<thead>
<tr>
<th>cmpd</th>
<th>Ar-NHS</th>
<th>amine</th>
<th>Molecular Weight</th>
<th>LCMS (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ar-NHS</td>
<td>amine</td>
</tr>
<tr>
<td>2j-1</td>
<td></td>
<td>1</td>
<td>561.6</td>
<td>88.2</td>
</tr>
<tr>
<td>2j-2</td>
<td></td>
<td>2</td>
<td>561.6</td>
<td>55.1</td>
</tr>
<tr>
<td>2j-3</td>
<td></td>
<td>3</td>
<td>561.6</td>
<td>220.3</td>
</tr>
<tr>
<td>2j-4</td>
<td></td>
<td>4</td>
<td>561.6</td>
<td>262.3</td>
</tr>
</tbody>
</table>

SM denotes the standard mixture. Each graph shows the corresponding chromatogram and spectrum for each compound (2j-1 to 2j-4) with peaks labeled for the respective compounds.
VIII. Esterification of Aryl α-Diazoamides

Pivalic acid (A, pKₐ 5.03), rhodamine B (B, pKₐ 4.2), coumarin-3-carboxylic acid (C), biotin (D, alkyl carboxylate pKₐ ~5), and l-glutamic acid α-methyl ester/HGluOMe (E, pKₐ ~4.2) are chosen to represent sterically versatile and biologically relevant substrates. For diazo compounds, 3h is selected to represent the reagent suitable for bioconjugation, 3j to represent 3-position-substituted with an electron-donating group, and 3l to represent 3-position-substituted with an electron-withdrawing group. Stock solutions of small molecules containing a carboxylic acid (A–E) in 100 mM MES–NaOH buffer, pH 6.0, and diazo compound (3h, 3j, and 3l) in MeCN (50 mM) were prepared. To a 4-mL reaction vial, the stock solution of one carboxylic acid (300 µL) and that of one diazo compound (300 µL) were mixed to have 50% v/v MeCN in the MES–NaOH buffer (final volume: 3 mL). The reaction mixture was stirred on the Titer plate shaker (speed 1) at room temperature for 19 h (overnight). Each reaction was analyzed by LC–MS using anthracene (0.04 mM in 1/1 MeCN:H₂O) as an internal standard (IS). To a solution with internal standard (900 µL), the reaction mixture (100 µL) was added and analyzed by LC–MS using the standard gradient (Figure S5–S6). The distribution of esterified product (Prod) and hydrolyzed byproduct (Hyd) is shown in Table S2.

Note: Some carboxylic acid stock solutions in aqueous buffer was not fully soluble. For those stock solutions, the equal volume of slurry was added to the reaction vial.

Figure S6. Top) chemical structures of diazoamide starting materials (Diazo-SM) and carboxylic acid starting materials (COOH-SM). Bottom) the UV trace (210 nm) of internal standard (anthracene).
Table S2. Product Distribution of Esterification

<table>
<thead>
<tr>
<th></th>
<th>IS</th>
<th>Diazo-SM</th>
<th>Hydrolyzed</th>
<th>Product</th>
<th>Hyd / IS</th>
<th>Prod / IS</th>
<th>% Hyd</th>
<th>% Prod</th>
<th>Prod / Hyd</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-3h</td>
<td>11243.2</td>
<td>0.0</td>
<td>8024.6</td>
<td>9105.6</td>
<td>0.7</td>
<td>0.8</td>
<td>47</td>
<td>53</td>
<td>1.1</td>
</tr>
<tr>
<td>A-3j</td>
<td>10834.1</td>
<td>0.0</td>
<td>4858.1</td>
<td>5678.2</td>
<td>0.4</td>
<td>0.5</td>
<td>46</td>
<td>54</td>
<td>1.2</td>
</tr>
<tr>
<td>A-3l</td>
<td>10858.7</td>
<td>0.0</td>
<td>3769.3</td>
<td>4401.7</td>
<td>0.3</td>
<td>0.4</td>
<td>46</td>
<td>54</td>
<td>1.2</td>
</tr>
<tr>
<td>B-3h</td>
<td>6892.5</td>
<td>0.0</td>
<td>529.1</td>
<td>1909.8</td>
<td>0.1</td>
<td>0.3</td>
<td>22</td>
<td>78</td>
<td>3.6</td>
</tr>
<tr>
<td>B-3j</td>
<td>5537.7</td>
<td>0.0</td>
<td>1799.4</td>
<td>1738.7</td>
<td>0.3</td>
<td>0.3</td>
<td>51</td>
<td>49</td>
<td>1.0</td>
</tr>
<tr>
<td>B-3l</td>
<td>5555.5</td>
<td>0.0</td>
<td>290.7</td>
<td>1181.4</td>
<td>0.1</td>
<td>0.2</td>
<td>20</td>
<td>80</td>
<td>4.1</td>
</tr>
<tr>
<td>C-3h</td>
<td>5090.5</td>
<td>0.0</td>
<td>3921.2</td>
<td>6390.3</td>
<td>0.8</td>
<td>1.3</td>
<td>38</td>
<td>62</td>
<td>1.6</td>
</tr>
<tr>
<td>C-3j</td>
<td>5118.5</td>
<td>0.0</td>
<td>1464.5</td>
<td>3376.5</td>
<td>0.3</td>
<td>0.7</td>
<td>30</td>
<td>70</td>
<td>2.3</td>
</tr>
<tr>
<td>C-3l</td>
<td>5719.5</td>
<td>0.0</td>
<td>2790.7</td>
<td>5228.6</td>
<td>0.5</td>
<td>0.9</td>
<td>35</td>
<td>65</td>
<td>1.9</td>
</tr>
<tr>
<td>D-3h</td>
<td>5194.4</td>
<td>0.0</td>
<td>2501.2</td>
<td>4056.2</td>
<td>0.5</td>
<td>0.8</td>
<td>38</td>
<td>62</td>
<td>1.6</td>
</tr>
<tr>
<td>D-3j</td>
<td>5129.2</td>
<td>0.0</td>
<td>3151.4</td>
<td>2994.7</td>
<td>0.6</td>
<td>0.6</td>
<td>51</td>
<td>49</td>
<td>1.0</td>
</tr>
<tr>
<td>D-3l</td>
<td>5153.0</td>
<td>0.0</td>
<td>2066.1</td>
<td>2349.6</td>
<td>0.4</td>
<td>0.5</td>
<td>47</td>
<td>53</td>
<td>1.1</td>
</tr>
<tr>
<td>E-3h</td>
<td>5199.5</td>
<td>0.0</td>
<td>2498.7</td>
<td>1157.2</td>
<td>0.5</td>
<td>0.2</td>
<td>68</td>
<td>32</td>
<td>0.5</td>
</tr>
<tr>
<td>E-3j</td>
<td>5167.9</td>
<td>0.0</td>
<td>3603.2</td>
<td>1449.7</td>
<td>0.7</td>
<td>0.3</td>
<td>71</td>
<td>29</td>
<td>0.4</td>
</tr>
<tr>
<td>E-3l</td>
<td>5138.7</td>
<td>0.0</td>
<td>1351.3</td>
<td>627.5</td>
<td>0.3</td>
<td>0.1</td>
<td>68</td>
<td>32</td>
<td>0.5</td>
</tr>
</tbody>
</table>

From left to right, the area of internal standard (at 210 nm), diazo starting material, hydrolyzed product, and esterified product are shown. Assuming the area of starting material + product + hydrolyzed = 100%, the normalized yield (Hyd/IS, Prod/IS), % yield (% Hyd, % Prod), and the ratio of carboxylic acid over water selectivity (Prod/Hyd) are shown.
VIII-1. Esterification of Pivalic Acid (A)

A-3h

\[
\text{COOH-5M} + \text{3h} \rightarrow \text{hydrolyzed} \quad \text{or} \quad \text{product}
\]

Molecular Weight: 102.1330
Molecular Weight: 311.4600
Molecular Weight: 301.4610
Molecular Weight: 385.5790

A-3j

\[
\text{COOH-5M} + \text{3j} \rightarrow \text{hydrolyzed} \quad \text{or} \quad \text{product}
\]

Molecular Weight: 102.1330
Molecular Weight: 245.2820
Molecular Weight: 235.2830
Molecular Weight: 319.4010
VIII-2. Esterification of Rhodamine B (B)

B-3h

\[\text{COOH-SM} + \begin{array}{c} \text{Molecular Weight: 443.5665} \\ \text{TMS} \end{array} \rightarrow \begin{array}{c} \text{3h} \\ \text{Molecular Weight: 311.4600} \end{array} \rightarrow \begin{array}{c} \text{hydrolyzed} \\ \text{Molecular Weight: 301.4610} \end{array} \rightarrow \begin{array}{c} \text{product} \\ \text{Molecular Weight: 727.0125} \end{array} \]

B-3j

\[\text{COOH-SM} + \begin{array}{c} \text{Molecular Weight: 443.5665} \\ \text{Molecular Weight: 245.2820} \end{array} \rightarrow \begin{array}{c} \text{3j} \\ \text{Molecular Weight: 235.2830} \end{array} \rightarrow \begin{array}{c} \text{hydrolyzed} \\ \text{Molecular Weight: 225.2800} \end{array} \rightarrow \begin{array}{c} \text{product} \\ \text{Molecular Weight: 660.8345} \end{array} \]
VIII-3. Esterification of Coumarin-3-carboxylic acid (C)

C-3h

![Chemical Structures and Spectra]

C-3j

![Chemical Structures and Spectra]
VIII-4. Esterification of Biotin (D)

D-3h

\[
\text{COOH-SM} \quad + \quad \text{SM} \quad \rightarrow \quad \text{product}
\]

Molecular Weight: 244.3090
Molecular Weight: 311.4600
Molecular Weight: 301.4610
Molecular Weight: 527.7550

COOH-SM

\[\text{hyd} \quad \text{prod} \quad \text{IS}\]

\[\text{hyd} \quad \text{prod}\]

D-3j

\[
\text{COOH-SM} \quad + \quad \text{SM} \quad \rightarrow \quad \text{product}
\]

Molecular Weight: 244.3090
Molecular Weight: 245.2820
Molecular Weight: 235.2830
Molecular Weight: 461.5770

COOH-SM

\[\text{hyd} \quad \text{prod} \quad \text{IS}\]

hyd

prod
D-3I

Molecular Weight: 244.3090
Molecular Weight: 283.2542
Molecular Weight: 273.2552
Molecular Weight: 499.5492

COOH-SM
3I

hydrolyzed
product

MSD1 SPC, time=5.782, 6.140 of D:\Data\Users\raines\2020-08-02

Max: 277546

MSD1 SPC, time=6.513, 6.650 of D:\Data\Users\raines\2020-08-02

Max: 554727

-536-
VIII-5. Esterification of HGluOMe (E)

E-3h

- COOH-SM
 - Molecular Weight: 161.1570
- 3h
 - Molecular Weight: 231.4800
- Hydrolyzed
 - Molecular Weight: 301.4610
 - OR
 - Molecular Weight: 444.6030

E-3j

- COOH-SM
 - Molecular Weight: 161.1570
- 3j
 - Molecular Weight: 245.2820
- Hydrolyzed
 - Molecular Weight: 235.2830
 - OR
 - Molecular Weight: 378.4250

- **3D1 SPC:** time=4.363/4.535 of D:\Data\Users\raines\2020-08-02
 - Maxi: 1.38655e+056
- **MSD1 SPC:** time=4.535/4.793 of D:\Data\Users\raines\2020-08-02
 - Maxi: 37238.7
E-3l

Molecular Weight: 101.1570
COOH-5M

Molecular Weight: 293.2542
3l

Molecular Weight: 273.2662
hydrolyzed

Molecular Weight: 416.3972
product

COOH-5M

prod

hyd

IS

SD1 SPC, time=5.1665.510 of D:\Data\Users\raines\2020-08-02
Max: 214419

MSD1 SPC, time=5.7826.640 of D:\Data\Users\raines\2020-08-02
Max: 397125

-538-
IX. Experimental Procedure for Hydrolysis

In order to study bioreversibility of aryl diazoamide compounds, the small molecule model system is designed to test the hydrolytic cleavage of pendant ester bond formed by 3j.

IX-1. Designing the Model Compound AcGluNH$_2$ (5)

- **General Hydrolysis**

- **Esterase Cleavage**

- **Backbone Amine Attack**

Scheme S2. The model compound 5 was designed to study the bioreversibility of esterification by aryl diazoamide 3j. Because glutamic acid itself can lead to three possible routes to yield alcohol 7, compound 5 was designed to block backbone amine attack and backbone carboxylic acid esterification.
IX-2. Synthesis and Characterization of Compound 5–7

Coupling

\[
\text{Fmoc Glu(OAll)} \quad \text{4-Methylpiperidine} \quad \text{Ac}_2\text{O} \quad \text{DIPEA}
\]

1. **Fmoc Deprotection**
2. **N-Acylation**

Esterification

\[
\text{Ac}_2\text{O} \quad \text{Pyridine} \quad \text{AcOEt}
\]

1. **Alloc Deprotection**

TFA Cleavage

\[
\text{TFA} \quad \text{H}_2\text{O}
\]

Figure S7. Solid-Phase Synthesis and Esterification. **AA** is Fmoc-Glu(OAll)-OH (CAS Number 133464-46-7), HATU (CAS Number 148893-10-1) is a peptide coupling reagent, Ac₂O is acetic anhydride, DIPEA is N,N-diisopropylethylamine, and TFA is trifluoroacetic acid.
AcGluNH$_2$ (Compound 5): Adapting the literature procedure,9 the synthesis of 5 was entirely performed on solid phase, using Rink Amide resin (ProTide). Coupling Fmoc-Glu(OAll)-OH (AA) onto the resin, Fmoc group elimination, acetylation of N^α, removal of the Alloc-protecting group, and resin cleavage led to 5. Washing between coupling, deprotection, and subsequent capping steps were carried out with DMF (3 mL × 5) and DCM (3 mL × 5).

Note: This compound (AcGluNH$_2$ / acetyl-L-glutamic acid α-amide, CAS: 25460-87-1) is commercially available from AK Scientific.

HRMS (ESI–TOF): calc’d for C$_7$H$_{13}$N$_2$O$_4$ [M + H]$^+$, 189.0870; found, 189.0870

Analytical LC–MS (crude reaction): 5–50% v/v MeCN in 10 min (Figure S8)
Compound 6: 500 µL of compound 5 (50 mM in Bis-TRIS buffer, pH 6.5) and 500 µL of diazo compound 3j (200 mM in MeCN) were added to a 4-mL vial, and the reaction mixture was stirred overnight. The product was purified by reverse phase HPLC (30–80% v/v MeCN (0.1% v/v TFA) in H₂O (0.1% v/v TFA) over 40 min). The desired product eluted around 60% v/v MeCN in H₂O.

Physical State: white solid

¹H NMR (500 MHz, CDCl₃, δ): 7.92 (s, 1H), 7.32 (t, J = 7.7 Hz, 2H), 7.12 (s, 1H), 7.07–6.91 (m, 4H), 6.57 (d, J = 7.8 Hz, 1H), 6.09 (s, 1H), 5.98 (s, 1H), 5.77 (d, J = 29.5 Hz, 2H), 4.81 (q, J = 3.3 Hz, 1H), 4.59 (d, J = 7.3 Hz, 1H), 3.82 (d, J = 7.0 Hz, 4H), 3.66–3.34 (m, 6H), 3.15–3.02 (m, 2H), 2.71–2.62 (m, 1H), 2.62–2.45 (m, 2H), 2.43–2.23 (m, 2H), 2.10 (d, J = 6.5 Hz, 2H), 2.03 (d, J = 3.5 Hz, 4H), 2.01–1.69 (m, 6H)

¹³C NMR (126 MHz, CDCl₃, δ): 172.5, 172.2, 171.7, 170.6, 167.1, 166.9, 160.3, 160.2, 134.8, 134.4, 130.4, 130.3, 121.2, 121.1, 115.4, 115.1, 114.5, 114.4, 74.9, 74.5, 55.6, 55.5, 52.6, 51.7, 46.8, 46.7, 46.2, 31.5, 30.8, 29.2, 27.1, 26.2, 23.9, 23.9, 23.2, 22.9

Analytical LC–MS: 5–50% v/v MeCN in 10 min (Figure S8)
Compound 7: Compound 7 was obtained by purifying the byproduct from the esterification reaction above. The desired product was purified by reverse phase HPLC (30–80% v/v MeCN (0.1% v/v TFA) in H₂O (0.1% v/v TFA) over 40 min), eluting around 40% v/v MeCN in H₂O.

Physical State: white solid

¹H NMR (500 MHz, CDCl₃, δ): 7.28 (d, J = 7.7 Hz, 1H), 6.98–6.80 (m, 3H), 5.01 (s, 1H), 3.80 (s, 3H), 3.61 (d, J = 5.2 Hz, 1H), 3.49 (d, J = 4.8 Hz, 1H), 3.38 (dd, J = 6.4, 3.6 Hz, 1H), 2.94–2.87 (m, 1H), 1.90–1.72 (m, 4H)

¹³C NMR (126 MHz, CDCl₃, δ): 170.7, 160.2, 140.5, 130.1, 120.3, 114.4, 113.2, 72.7, 55.5, 46.8, 46.0, 26.0, 24.0

HRMS (ESI–TOF): calc’d for C₁₃H₁₈NO₃ [M + H]⁺, 236.1281; found, 236.1274

Analytical LC–MS: 10–95% v/v MeCN in H₂O over 10 min (Figure S5)
IX-3. Hydrolytic Cleavage of Compound 6

A 1-mM stock solution of compound 6 was prepared in water. 10.8 mg of pig liver esterase (PLE, 15 U/mg) was dissolved in 578 µL of 100 mM sodium phosphate buffer, pH 7.2, to have 28 U (activity unit) per 100 µL. 100 µL of compound 6 (0.14 µmole, 1 equiv) was added to each reaction vial containing 100 µL of buffer solution with or without PLE (Table S3). Phosphate buffer (100 mM) solutions of physiologically relevant pH (pH 5.8, 7.2, and 8.0) were prepared to measure the background hydrolysis without PLE. The progress of hydrolysis was analyzed by LC–MS. For the samples with PLE, PLE was removed by spin filtration (Amicon Ultra 0.5-mL centrifugal filters, MWCO 10 kDa) prior to LC–MS analysis.

Table S3. Hydrolysis Conditions

<table>
<thead>
<tr>
<th>condition</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>compound 6</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>buffer</td>
<td>pH 7.2</td>
<td>pH 7.2</td>
<td>pH 7.2</td>
<td>pH 7.2</td>
<td>pH 7.2</td>
<td>pH 8.0</td>
</tr>
<tr>
<td>PLE</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>temp</td>
<td>room temp</td>
<td>room temp</td>
<td>37 °C</td>
<td>37 °C</td>
<td>37 °C</td>
<td>37 °C</td>
</tr>
</tbody>
</table>

LC–MS Condition for Polar Substrates:

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0.1 % Formic Acid in Water (%)</th>
<th>0.1 % Formic Acid in MeCN (%)</th>
<th>Flow (mL/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>95</td>
<td>5</td>
<td>0.4</td>
</tr>
<tr>
<td>1.00</td>
<td>95</td>
<td>5</td>
<td>0.4</td>
</tr>
<tr>
<td>11.00</td>
<td>50</td>
<td>50</td>
<td>0.4</td>
</tr>
<tr>
<td>12.00</td>
<td>0</td>
<td>100</td>
<td>0.4</td>
</tr>
<tr>
<td>12.50</td>
<td>95</td>
<td>5</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Figure S8. LC–MS gradient for polar compounds. 5 to 50% v/v MeCN in water over 10 min.
Figure S9. Hydrolysis Condition 1–4. (A) Reaction scheme, (B) crude LC–MS data (UV trace at 280 nm) for reactions done at room temperature, (C) crude LC–MS data (UV trace at 280 nm) for reactions done at 37 °C, and (D) background subtracted hydrolyzed product 7 at three different time points. Area of 7 from condition 2 (or 4) was subtracted from that from condition 1 (or 3) to represent the amount of hydrolysis achieved by PLE.
Figure S10. Hydrolysis Condition 5–6. (A) Reaction scheme, (B) crude LC–MS data (TIC and UV trace at 280 nm) for reactions done at pH 5.8, and (C) at pH 8.0.
X. Characterization Data for 2a–2j

2,5-Dioxopyrrolidin-1-yl 2-diazo-2-[(4-methoxyphenyl)acetate (2a): General Procedure A was applied using 1 (200 mg, 1.09 mmol) and 1-iodo-4-methoxybenzene (383 mg, 1.64 mmol). Pd(OAc)$_2$ (24 mg, 0.11 mmol, 10 mol%) and P(2-Fu)$_3$ (51 mg, 0.22 mmol, 20 mol%) were used to afford higher product yield. The reaction was quenched after 6 h. The crude product was purified by column chromatography (20% v/v EtOAc in pentane) to afford compound 2a as an orange solid (250 mg, 0.86 mmol, 79% yield). The compound is recommended to use within one to three days.

Physical State: orange solid

TLC: $R_f = 0.5$ (1:1 pentane/EtOAc)

1H NMR (500 MHz, CD$_3$CN, δ): 7.41 (d, $J = 8.9$ Hz, 2H), 7.02 (d, $J = 8.9$ Hz, 2H), 3.80 (s, 3H), 2.80 (s, 4H)

13C NMR (126 MHz, CD$_3$CN, δ): 171.3, 160.1, 128.1, 115.9, 115.8, 60.9 (diazo carbon, validated by HMBC), 56.1, 26.4

Note: The diazo carbon (C=N=N) signal is not observed in 13C NMR as mentioned in General Information (page S6).10

HRMS (ESI–TOF): calc’d for C$_{13}$H$_{12}$NO$_5$ [M + H – N$_2$]$^+$, 262.0710; found, 262.0707

IR (neat): 2102 (diazo), 1734, 1508, 1160, 1067, 813, 644 cm$^{-1}$
Stability of 2a: Based on NMR analysis, the slow degradation of compound 2a in weakly acidic organic solvents (chloroform, dichloromethane, etc.) was observed. Hence, we recommend using this compound within 1–3 days. Storing the compound as solid in a −20 °C freezer can slow down the degradation.

Degradation peaks (*) observed in CDCl$_3$/TMS

Degraded 2a in v/v 0.03 % TMS in CDCl$_3$ (2-3 days)

2a in v/v 0.03 % TMS in CDCl$_3$ (overnight)

2a in v/v 0.03 % TMS in CDCl$_3$ (fresh sample)

Degradation peaks (*) observed in DMSO/TMS

2a in 0.03% (v/v) TMS in DMSO-d6 (t= 7h)

2a in 0.03% (v/v) TMS in DMSO-d6 (t= 0h)
2,5-Dioxopyrrolidin-1-yl 2-diazo-2-(4-(trifluoromethoxy)phenyl)acetate (2b): General Procedure A was applied using 1 (37 mg, 0.2 mmol) and 1-iodo-4-(trifluoromethoxy)benzene (86 mg, 0.3 mmol, 1.5 equiv). Pd(OAc)$_2$ (4 mg, 0.02 mmol, 10 mol%) and P(2-Fu)$_3$ (9 mg, 0.4 mmol, 20 mol%) were used to afford higher product yield. The reaction was quenched after 6 h. The crude product was purified using Biotage (10–80% over 20 min; product eluted at 35–55% v/v EtOAc in hexanes) to yield the title compound (45 mg, 65% yield).

Physical State: yellow solid

TLC: R$_f$ = 0.5 (1:1 pentane/EtOAc)

1H NMR (500 MHz, CDCl$_3$, δ): 7.54–7.45 (m, 2H), 7.33–7.25 (m, 2H), 2.88 (s, 4H)

13C NMR (126 MHz, CDCl$_3$, δ): 169.4, 160.2, 148.0, 125.9, 123.9 (q, J_{CF} = 258.3 Hz), 122.3, 121.9, 121.5 (q, J_{CF} = 258.3 Hz), 119.46 (q, J_{CF} = 258.3 Hz), 117.4 (q, J_{CF} = 258.3 Hz), 61.3 (diazo carbon validated by HMBC), 25.6

19F NMR (471 MHz, CDCl$_3$, δ): −57.98

HRMS (ESI–TOF): calc’d for C$_{13}$H$_9$F$_3$NO$_5$ [M + H – N$_2$]$^+$, 316.0427; found, 316.0427

IR (neat): 2105 (diazo), 1734, 1457, 1374, 1189, 1073, 907, 646 cm$^{-1}$
2,5-Dioxopyrrolidin-1-yl 2-diazo-2-(p-tolyl)acetate (2c): General Procedure A was applied using 1 (200 mg, 1.09 mmol, 1.0 equiv) and 1-iodo-4-methylbenzene (356 mg, 1.64 mmol, 1.5 equiv). The reaction was quenched after 6 h. The crude product was purified by column chromatography (25% v/v EtOAc in pentane) to yield the title compound (229 mg, 77% yield).

Physical State: yellowish orange solid

TLC: Rf = 0.6 (1:1 EtOAc/pentane)

1H NMR (400 MHz, CDCl$_3$, δ): 7.32 (d, $J = 8.4$ Hz, 2H), 7.22 (d, $J = 8.1$ Hz, 2H), 2.88 (s, 4H), 2.35 (s, 3H)

1H NMR spectrum of 3c matched with the literature.4

HRMS (ESI–TOF): calc’d for C$_{13}$H$_{12}$NO$_4$ [M + H − N$_2$]$^+$, 246.0761; found, 246.0753

IR (neat): 2946, 2102 (diazo), 1604, 1571, 1514, 1430, 1369, 1285, 1237, 1199, 1170, 1100, 1069, 1045, 992, 903, 812, 734, 702, 641, 595, 544, 500, 456 cm$^{-1}$
2,5-Dioxopyrrolidin-1-yl 2-diazo-2-(4-(trifluoromethyl)phenyl)acetate (2d): General Procedure A was applied using 1 (335 mg, 1.83 mmol) and 1-iodo-4-(trifluoromethyl)benzene (996 mg, 3.66 mmol, 2.0 equiv). Pd(OAc)$_2$ (41 mg, 0.18 mmol, 10 mol%) and P(2-Fu)$_3$ (85 mg, 0.37 mmol, 20 mol%) were used to afford higher product yield. The reaction was quenched after 6 h. The crude product was purified by column chromatography (40% v/v EtOAc in pentane) to yield the title compound (531 mg, 89% yield).

Physical State: dark yellow, brownish solid or yellow amorphous solid

TLC: $R_f = 0.4$ (1:1 EtOAc/pentane)

1H NMR (400 MHz, CDCl$_3$, δ): 7.64 (d, $J = 8.5$ Hz, 2H), 7.54 (d, $J = 8.4$ Hz, 2H), 2.86 (s, 4H)

13C NMR (101 MHz, CDCl$_3$, δ): 169.3, 159.7, 128.8, 128.5, 127.9 (m), 126.1 (q, $J = 3.8$ Hz), 125.2, 123.9, 122.5, 25.5

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).

19F NMR (376 MHz, CDCl$_3$, δ): −62.65

HRMS (ESI–TOF): calc’d for C$_{13}$H$_8$F$_3$N$_3$O$_4$Na [M + Na]$^+$, 350.0359; found, 350.0361

IR (neat): 2107 (diazo), 1734,1653, 1558, 1540, 1507, 1457, 906 cm$^{-1}$
2,5-Dioxopyrrolidin-1-yl 2-diazo-2-(4-((trimethylsilyl)ethynyl)phenyl)acetate (2e): General Procedure A was applied using 1 (200 mg, 1.09 mmol) and ((4-iodophenyl)ethynyl)trimethylsilane (491 mg, 1.64 mmol, 1.5 equiv). The reaction was quenched after 6 h. The crude product was purified by column chromatography (25% v/v EtOAc in pentane) to yield the title compound (368 mg, 95% yield).

Physical State: sticky reddish orange solid

TLC: Rf = 0.64 (1:1 EtOAc/pentane)

1H NMR (400 MHz, CDCl$_3$, δ): 7.49 (d, $J = 8.5$ Hz, 2H), 7.36 (d, $J = 8.3$ Hz, 2H), 2.87 (s, 4H), 0.24 (s, 9H)

13C NMR (101 MHz, CDCl$_3$, δ): 169.4, 160.0, 132.9, 123.7, 123.5, 121.7, 104.4, 95.5, 25.7, 0.0

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).

HRMS (ESI–TOF): calc’d for C$_{17}$H$_{18}$N$_3$O$_4$Si [M + H]$^+$, 356.1061; found, 356.1066

IR (neat): 2159, 2100 (diazo), 1700, 1197, 1071, 853, 759, 661 cm$^{-1}$
General Procedure A was applied using 1 (260 mg, 1.4 mmol) 1-iodo-3-methoxybenzene (498 mg, 2.13 mmol, 1.5 equiv). The reaction was quenched after 6 h. The crude product was purified by column chromatography (20% v/v EtOAc in pentane) to yield the title compound (342 mg, 83% yield).

Physical State: orange solid

TLC: $R_f = 0.5$ (1:1 EtOAc/pentane)

1H NMR (500 MHz, CDCl$_3$, δ): 7.31 (t, J = 8.1 Hz, 1H), 7.05 (t, J = 2.2 Hz, 1H), 6.94 (dd, J = 7.9, 1.8 Hz, 1H), 6.78 (dd, J = 8.4, 2.5 Hz, 1H), 3.79 (s, 3H), 2.84 (s, 4H)

13C NMR (126 MHz, CDCl$_3$, δ): 169.4, 160.2, 130.2, 124.6, 116.3, 112.6, 110.1, 61.7 (diazocarbon, verified by HMBC and HSQC), 55.3, 25.5

HRMS (ESI–TOF): calc’d for $C_{13}H_{11}N_3O_5Na [M + Na]^+$, 312.0591; found, 312.0586

IR (neat): 2106 (diazocarbon), 1734, 1653, 1198, 1072 cm$^{-1}$
2,5-Dioxopyrrolidin-1-yl 2-diazo-2-(3-hydroxyphenyl)acetate (2g): General Procedure A was applied using 1 (37 mg, 0.2 mmol) and 3-iodophenol (66 mg, 0.3 mmol, 1.5 equiv). Pd(OAc)$_2$ (4 mg, 0.02 mmol, 10 mol%) and P(2-Fu)$_3$ (9 mg, 0.04 mmol, 20 mol%) were used to afford higher product yield. The reaction was quenched after 6 h. The crude product was purified by column chromatography (40% v/v EtOAc in pentane) to yield the title compound (50 mg, 90% yield).

Physical State: reddish film

TLC: R_f = 0.4 (1:1 EtOAc/pentane)

1H NMR (500 MHz, THF-d_8, δ): 8.42 (s, 1H), 7.14 (t, $J = 8.0$ Hz, 1H), 6.91 (t, $J = 2.2$ Hz, 1H), 6.88–6.80 (m, 1H), 6.58 (dd, $J = 8.1$, 2.4 Hz, 1H), 2.74 (s, 4H)

13C NMR (126 MHz, THF-d_8, δ): 170.1, 161.2, 159.4, 130.9, 125.8, 115.8, 114.7, 112.1, 61.4 (diazo carbon, validated by HMBC), 26.2

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).

HRMS (ESI–TOF): calc’d for C$_{12}$H$_{10}$NO$_5$ [M + H – N$_2$]$^+$, 248.0553; found, 248.0558
calc’d for C$_{12}$H$_9$N$_3$O$_5$Na [M + Na – N$_2$]$^+$, 298.0434; found, 298.0451

IR (neat): 2127 (diazo), 1700, 1361, 1196, 1066, 944, 645 cm$^{-1}$
2,5-Dioxopyrrolidin-1-yl 2-diazo-2-(3-(trifluoromethyl)phenyl)acetate (2h): General Procedure A was applied using 1 (200 mg, 1.09 mmol) and 1-iodo-3-(trifluoromethyl)benzene (445 mg, 1.64 mmol, 1.5 equiv). The reaction was quenched after 6 h. The crude product was purified by column chromatography (40% v/v EtOAc in pentane) to yield the title compound (292 mg, 82% yield).

Physical State: yellow solid

TLC: \(R_f = 0.4 \) (1:1 EtOAc/pentane)

\(^1H\) NMR (400 MHz, CDCl$_3$, \(\delta \)): 7.75 (s, 1H), 7.59–7.45 (m, 3H), 2.86 (s, 4H)

\(^{13}C\) NMR (101 MHz, CDCl$_3$, \(\delta \)): 169.4, 159.9, 131.5 (q, \(J = 32.6 \) Hz), 129.7, 126.9, 124.9, 123.5(q, \(J = 3.7 \) Hz), 122.4, 120.7 (q, \(J = 3.9 \) Hz), 25.5

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).

\(^{19}F\) NMR (376 MHz, CDCl$_3$, \(\delta \)): −62.95

HRMS (ESI–TOF): C$_{13}$H$_8$F$_3$N$_3$O$_4$Na [M + Na]$^+$, 350.0359; found, 350.0349

IR (neat): 2107 (diazo), 1700, 1327, 1411, 1080, 927, 797, 695, 643 cm$^{-1}$
General Procedure A was applied using 1 (200 mg, 1.09 mmol) and 1-iodo-4-methylbenzene (447 mg, 2.18 mmol, 2.0 equiv). The reaction was quenched after 6 h. The crude product was purified by column chromatography (1:1 EtOAc/pentane with 2.5% v/v MeOH) to yield the title compound (228 mg, 80% yield).

Physical State: light orange solid

TLC: Rf = 0.22 (1:1 pentane/EtOAc with 2.5% v/v MeOH)

1H NMR (400 MHz, CDCl$_3$, δ): 8.70–8.43 (m, 2H), 7.50–7.28 (m, 2H), 2.90 (s, 4H)

13C NMR (126 MHz, CDCl$_3$, δ): 169.2, 158.9, 150.3, 133.6, 117.5, 25.7

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).10

HRMS (ESI–TOF): calc’d for $\text{C}_{11}\text{H}_9\text{N}_4\text{O}_4$ [M + H]$^+$, 261.0618; found, 261.0615

IR (neat): 2114 (diazo), 1722, 1583, 1457, 1372, 1198, 1072, 814, 644 cm$^{-1}$
N-(14-Azido-3,6,9,12-tetraoxatetradecyl)-2-(4-iodophenyl)acetamide (S2j): To a solution of 2-(4-iodophenyl)acetic acid (100 mg, 0.38 mmol, 1 equiv) and azido-4PEG-NH₂ (120 mg, 0.42 mmol, 1.1 equiv) in DCM (5.75 mL), hydroxybenzotriazole (HOBt) (65 mg, 0.46 mmol, 1.2 equiv) and N,N-diisopropylethylamine (DIEA) (199 µL, 1.14 mmol, 3 equiv) were added. The reaction mixture was cooled down to 0 °C and N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDCI) (88 mg, 0.46 mmol, 1.2 equiv) was added. After stirring at room temperature for 12 h, the reaction mixture was quenched by adding water at 0 °C. The reaction solution was then extracted with EtOAc and organic layer was concentrated under reduced pressure. The residue was purified by silica chromatography (5% v/v MeOH in DCM) to afford the title compound in 76% yield. (146.8 mg, 0.29 mmol).

Physical State: white solid

TLC: Rf = 0.38 (5% v/v MeOH in DCM) Staining of azide is done by PPh₃/ninhydrin stain.¹¹

¹H NMR (400 MHz, CDCl₃, δ): 7.46 (d, J = 8.2 Hz, 2H), 6.87 (d, J = 8.2 Hz, 2H), 6.53 (s, 1H), 3.53–3.39 (m, 14H), 3.35 (t, J = 5.3 Hz, 2H), 3.29 (s, 2H), 3.26–3.17 (m, 4H)

¹³C NMR (126 MHz, CDCl₃, δ): 170.0, 137.1, 134.7, 130.9, 92.0, 77.5, 77.2, 76.8, 70.1, 70.0, 67.0, 69.7, 69.5, 69.1, 50.1, 42.3, 39.0

*Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).*¹⁰

HRMS (ESI–TOF): calc’d for C₁₈H₂₁lN₄O₅ [M + H]⁺, 507.1099; found, 507.1100

Analytical LC–MS: 10–95% v/v MeCN in 10 min (Figure S5)
General Procedure A was applied using 1 (37 mg, 0.2 mmol, 1.0 equiv) and \(\text{S}_2j \) (152 mg, 0.3 mmol, 1.2 equiv). Pd(OAc)$_2$ (4 mg, 0.02 mmol, 10 mol%) and P(2-Fu)$_3$ (9 mg, 0.04 mmol, 20 mol%) were used to afford higher product yield. The reaction was quenched after 6 h. The crude product was purified by column chromatography (4:8:2 pentane/EtOAc/MeOH) to yield the title compound (74 mg, 66% yield).

Physical State: yellow film

TLC: \(R_f = 0.32 \) (4:8:2 pentane/EtOAc/MeOH) Staining of azide was done by PPh$_3$/ninhydrin stain.11

1H NMR (400 MHz, CDCl$_3$, δ): 7.40 (d, \(J = 8.4 \) Hz, 2H), 7.34 (d, \(J = 8.3 \) Hz, 2H), 6.29 (s, 1H), 3.58–3.51 (m, 10H), 3.60–3.49 (m, 8H), 3.40 (m, 4H), 2.88 (s, 4H)

13C NMR (126 MHz, CDCl$_3$, δ): 172.2, 170.7, 169.4, 160.3, 134.2, 130.2, 124.8, 122.1, 70.7, 70.6, 70.6, 70.5, 70.2, 70.0, 69.7, 50.7, 43.0, 39.5, 25.6

HRMS (ESI–TOF): calc’d for C$_{24}$H$_{31}$N$_7$O$_9$Na [M + Na]$^+$, 584.2075; found, 584.2070

IR (neat): 2102 (diazo), 1700, 1206, 1073 cm$^{-1}$
XI. Characterization Data for S2k

2-Diazo-1-(4-(4-iodophenyl)piperezin-1-yl)ethan-1-one (S2k): General Procedure A was applied using 1 (200 mg, 1.09 mmol) and 1-(4-iodophenyl)piperazine (314 mg, 1.1 mmol, 1 equiv). The reaction was quenched after 6 h. The crude product was purified by column chromatography (33% v/v EtOAc in pentane) to yield the title compound (91 mg, 23% yield).

Physical State: light yellow solid

TLC: Rf = 0.16 (1:1 pentane/EtOAc)

1H NMR (400 MHz, CDCl$_3$, δ): 7.53 (d, J = 8.9 Hz, 2H), 6.67 (d, J = 8.9 Hz, 2H), 5.07 (s, 1H), 3.56 (s, 4H), 3.14 (dd, J = 6.2, 4.2 Hz, 4H)

13C NMR (101 MHz, CDCl$_3$, δ): 164.9, 150.5, 138.0, 118.6, 82.4, 48.9, 46.6

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).10

HRMS (ESI–TOF): calc’d for C$_{12}$H$_{13}$IN$_2$O [M + H]$^+$, 357.0207; found, 357.0206

IR (neat): 2970, 2928, 2105 (diazo), 1585m 1465m 1379, 1231, 1160, 816, 489, 433 cm$^{-1}$
XII. Characterization Data for S4–S7

N-Phthalimidoyl 2-diazoacetate (NHPI-DA, S4): Synthesized as previously reported procedure.10b

Physical State: pale yellow white solid

1H NMR (500 MHz, CDCl\textsubscript{3}, 6): 7.91–7.89 (m, 2H), 7.81–7.79 (m, 2H), 5.17 (br s, 1 H) ppm

1H NMR spectrum of S4 matched with the literature.10b

IR (neat): 2140 (diazo), 1734, 1653, 1370, 1185, 969, 877, 695, 518 cm-1

Note: NHPI-DA S4 can be obtained from Key Organics (SO-3001, CAS 816437-80-6).
Compound S5: Synthesized as previously reported procedure.¹

Physical State: yellow solid

¹H NMR (500 MHz, CDCl₃, δ): 7.91 (dd, J = 5.5, 3.1 Hz, 2H), 7.80 (dd, J = 5.5, 3.1 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 2.35 (s, 3H)

¹³C NMR (126 MHz, CDCl₃, δ): 162.3, 161.6, 137.1, 135.0, 130.1, 129.0, 125.6, 124.2, 120.1, 21.2

¹H and ¹³C NMR spectra of S5 were matched with the literature.³

IR (neat): 2097 (diazo), 1700, 1367, 1187, 1240, 1187, 1101, 984, 813, 696 cm⁻¹
Compound S6: Synthesized as previously reported procedure.³

Physical State: yellow solid

¹H NMR (500 MHz, CDCl₃, δ): 7.90 (dd, \(J = 5.5, 3.1 \text{ Hz}, 2H \)), 7.79 (dd, \(J = 5.5, 3.1 \text{ Hz}, 2H \)), 7.53–7.43 (m, 2H), 7.39 (d, \(J = 8.6 \text{ Hz}, 2H \)), 0.24 (s, 9H)

¹³C NMR (126 MHz, CDCl₃, δ): 162.2, 160.9, 135.0, 132.8, 128.9, 124.2, 123.7, 123.6, 121.6, 104.4, 95.4

¹H and ¹³C NMR spectra of S6 were matched with the literature.³

IR (neat): 2104 (diazo), 1700, 1377, 1178, 955, 684 cm⁻¹
Compound S7: Synthesized as previously reported procedure.³

Physical State: yellow solid

¹H NMR (500 MHz, CDCl₃, δ): 7.90 (dd, J = 5.5, 3.1 Hz, 2H), 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 7.53–7.43 (m, 2H), 7.39 (d, J = 8.6 Hz, 2H), 0.24 (s, 9H)

¹³C NMR (126 MHz, CDCl₃, δ): 162.2, 161.0, 135.0, 132.8, 128.9, 124.2, 123.7, 123.6, 121.6, 104.4, 95.4, 77.4, 77.2, 76.9, 0.0

¹H and ¹³C NMR spectra of S7 were matched with the literature.³

IR (neat): 2098 (diazo), 1700, 1509, 1346, 1234, 1186, 1100, 1016, 982, 837, 694, 599, 518 cm⁻¹
XIII. Characterization Data for 3a–3l

Figure S12. Examples of aminolysis. (A) Parallel synthesis of diazoamides. The product formation is indicated by precipitation of NHS-OH. (B) TLC analysis of crude reaction mixtures. The reaction yield is generally quantitative, but the isolated yield is low possibly due to product degradation during silica column purification. (C) Chemical structures of each reaction shown in TLC.
2-Diazo-\(N,N\)-dimethyl-2-(4-(trifluoromethoxy)phenyl)acetamide (3a): General Procedure B was applied using 2b (22 mg, 0.08 mmol, 1.0 equiv) and dimethylamine solution (2.0 M) in THF (0.2 mL, 0.4 mmol, 5.0 equiv). The reaction was quenched after 1 h. The crude product was purified by column chromatography (20% v/v EtOAc in hexanes) to yield the title compound (5.6 mg, 25% yield).

Physical State: orange oil

TLC: \(R_f = 0.31\) (1:2 EtOAc/hexanes)

\(^1\)H NMR (500 MHz, CDCl\(_3\), \(\delta\)): 7.28–7.26 (m, 2H), 7.25–7.20 (m, 2H), 3.00 (s, 6H)

\(^{13}\)C NMR (126 MHz, CDCl\(_3\), \(\delta\)): 165.3, 130.4, 126.7, 125.6, 121.9, 121.2, 37.8

Note: The diazo carbon (\(C=N=N\)) signal is not observed as mentioned in General Information (page S6).\(^{10}\)

HRMS (ESI–TOF): calc’d for C\(_{11}\)H\(_{11}\)F\(_3\)N\(_3\)O\(_2\) [M + H]\(^+\), 274.0798; found, 274.0807

calc’d for C\(_{11}\)H\(_{10}\)F\(_3\)N\(_3\)O\(_2\)Na [M + Na]\(^+\), 296.0617; found, 296.0618

IR (neat): 2929, 2061 (diazo), 1755, 1633, 1508, 1383, 1252, 1207, 1160, 1063, 1005, 921, 846, 805, 735, 675 cm\(^{-1}\)
2-Diazo-1-(pyrrolidin-1-yl)-2-(4-(trifluoromethoxy)phenyl)ethan-1-one (3b): General Procedure B was applied using 2b (22 mg, 0.08 mmol, 1.0 equiv) and pyrrolidine (28 mg, 0.4 mmol, 5.0 equiv). The reaction was quenched after 1 h. The crude product was purified by column chromatography (33% v/v EtOAc in hexanes) to yield the title compound (16.6 mg, 69% yield).

Physical State: dark orange solid

TLC: Rf = 0.33 (1:1 EtOAc/hexanes)

1H NMR (500 MHz, CDCl$_3$, δ): 7.36 (d, J = 8.8 Hz, 2H), 7.23–7.19 (m, 2H), 3.49–3.40 (m, 4H), 1.96–1.89 (m, 4H)

13C NMR (126 MHz, CDCl$_3$, δ): 163.2, 147.1 (q, J = 2.2 Hz), 132.3, 130.4, 126.3, 126.2, 121.8, 47.9, 25.5

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).

19F NMR (471 MHz, CDCl$_3$, δ): -57.98

HRMS (ESI–TOF): calc’d for C$_{13}$H$_{13}$F$_3$N$_3$O$_2$ [M + H]$^+$, 300.0954; found, 300.0954

IR (neat): 2974, 2879, 2056 (diazo), 1622, 1507, 1389, 1250, 1203, 1151, 1113, 1055, 1013, 972, 835, 738, 656 cm$^{-1}$
2-Diazo-\(N,N\)-dimethyl-2-(\(p\)-tolyl)acetamide (3c): General Procedure B was applied using 2c (48 mg, 0.17 mmol, 1.0 equiv) and dimethylamine solution (2.0 M) in THF (0.43 mL, 0.85 mmol, 5.0 equiv). The reaction was quenched after 3 h. The crude product was purified by column chromatography (20% v/v EtOAc in hexanes) to yield the title compound (12 mg, 34% yield).

Physical State: red solid (orange solution in MeCN)

TLC: \(R_f = 0.24\) (3:1 hexanes/EtOAc)

\(^1\)H NMR (400 MHz, CDCl\(_3\), \(\delta\)): 7.18 (d, \(J = 8.2\) Hz, 2H), 7.10 (d, \(J = 8.2\) Hz, 2H), 2.95 (s, 6H), 2.33 (s, 3H)

\(^1\)H NMR spectrum of 3c matched with the literature.\(^4\)

HRMS (ESI–TOF): calc'd for C\(_{11}\)H\(_{14}\)NO [M + H-N\(_2\)]\(^+\), 262.0710; found, 262.0707

IR (neat): 2922, 2054 (diazo), 1648, 1521, 1490, 1473, 1419, 809, 668, 495 cm\(^{-1}\)
2-Diazo-1-(pyrrolidin-1-yl)-2-(p-tolyl)ethan-1-one (3d): General Procedure B was applied using 2c (48 mg, 0.17 mmol, 1.0 equiv) and pyrrolidine (60 mg, 0.85 mmol, 5.0 equiv). The reaction was quenched after 1 h. The crude product was purified by column chromatography (20% v/v EtOAc in hexanes) to yield the title compound (27 mg, 69% yield).

Physical State: reddish orange amorphous solid (yellow solution in MeCN)

TLC: \(R_f = 0.25 \) (3:1 hexanes/EtOAc)

\(^1H \) NMR (400 MHz, CDCl\textsubscript{3}, \(\delta \)): 7.23–7.13 (m, 4H), 3.40 (s, 4H), 2.33 (s, 3H), 1.93–1.83 (m, 4H)

\(^{13}C \) NMR (101 MHz, CDCl\textsubscript{3}, \(\delta \)): 164.1, 136.0, 129.8, 125.6, 124.1, 47.9, 29.8, 25.5, 21.2

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page 56).

HRMS (ESI–TOF): calc’d for \(C_{13}H_{26}N_3O \) \([M + H]^+\) 230.1288; found, 230.1291

IR (neat): 2971, 2048 (diazo), 1617, 1387, 814, 736, 668, 496 cm-1
2-Diazo-\(N,N\)-dimethyl-2-{4-(trifluoromethyl)phenyl}acetamide (3e): General Procedure B was applied using 2d (57 mg, 0.17 mmol, 1.0 equiv) and dimethylamine solution (2.0 M) in THF (0.43 mL, 0.85 mmol, 5.0 equiv). The reaction was quenched after 3 h. The crude product was purified by column chromatography (20% v/v EtOAc in hexanes) to yield the title compound (17 mg, 38% yield).

Physical State: yellow amorphous solid

TLC: \(R_f = 0.28\) (2:1 hexanes/EtOAc)

\(^1\)H NMR (500 MHz, CDCl\(_3\), \(\delta\)): 7.59 (d, \(J = 8.3\) Hz, 2H), 7.32 (d, \(J = 8.3\) Hz, 2H), 3.02 (s, 6H)

\(^{13}\)C NMR (126 MHz, CDCl\(_3\), \(\delta\)): 164.8, 132.2, 129.5, 126.1 (q, \(J = 3.8\) Hz), 123.9, 37.8

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).

HRMS (ESI–TOF): calc’d for \(\text{C}_{11}\text{H}_{11}\text{F}_{3}\text{NO}\) [\(M + H - \text{N}_2\)]\(^+\), 230.0787; found, 230.0790

IR (neat): 2928, 2062 (diazo), 1670, 1576, 737, 595, 522 cm\(^{-1}\)
2-Diazo-1-(pyrrolidin-1-yl)-2-(4-(trifluoromethyl)phenyl)ethan-1-one (3f): General Procedure B was applied using 2d (57 mg, 0.17 mmol, 1.0 equiv) and pyrrolidine (60 mg, 0.85 mmol, 5.0 equiv). Reaction was quenched after 3 h. The crude product was purified by column chromatography (20% v/v EtOAc in hexanes) to yield the title compound (36 mg, 74% yield).

Physical State: orange amorphous solid

TLC: Rf = 0.26 (3:1 hexanes/EtOAc)

^1^H NMR (500 MHz, CDCl\textsubscript{3}, \(\delta\)): 7.58 (d, \(J = 8.2\) Hz, 2H), 7.43 (d, \(J = 8.4\) Hz, 2H), 3.47 (s, 4H), 2.04–1.80 (m, 4H)

^13^C NMR (126 MHz, CDCl\textsubscript{3}, \(\delta\)): 162.6, 131.9, 129.5, 125.9 (q, \(J = 3.8\) Hz), 124.3, 47.9, 25.5

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).^10^

HRMS (ESI–TOF): calc’d for C\textsubscript{13}H\textsubscript{13}F\textsubscript{3}N\textsubscript{3}O \([M + H]^+\), 284.1005; found, 284.1008

IR (neat): 2980, 2058 (diazo), 1613, 1319, 1109, 1069, 1011 cm-1
2-Diazo-\(N,N\)-dimethyl-2-\(\text{4-} ((\text{trimethylsilyl})\text{ethynyl})\text{phenyl})\text{acetamide (3g)}\) General Procedure B was applied using 2e (60 mg, 0.17 mmol, 1.0 equiv) and dimethylamine solution (2.0 M) in THF (0.43 mL, 0.85 mmol, 5.0 equiv). The reaction was quenched after 3 h. The crude product was purified by column chromatography (20% v/v EtOAc in hexanes) to yield the title compound (36.5 mg, 75% yield). Also see Figure S4 for additional information.

Physical State: orange oil (orange solution in MeCN)

TLC: \(R_f = 0.41\) (2:1 hexanes/EtOAc)

\(^1\)H NMR (400 MHz, CDCl\(_3\), \(\delta\)): 7.50–7.38 (m, 2H), 7.20–7.01 (m, 2H), 2.97 (s, 6H), 0.24 (s, 9H)

\(^1^3\)C NMR (101 MHz, CDCl\(_3\), \(\delta\)): 165.3, 132.8, 128.0, 123.8, 120.2, 104.9, 94.7, 37.8, 0.1

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).

HRMS (ESI–TOF): calc’d for C\(_{15}\)H\(_{19}\)N\(_3\)OSiNa [M + Na]\(^+\), 308.1190; found, 308.1189

IR (neat): 2154, 2055 (diazo), 1630, 1503, 1378, 1248, 1127, 758, 660, 528 cm\(^{-1}\)
2-Diazo-1-(pyrrolidin-1-yl)-2-(4-((trimethylsilyl)ethynyl)phenyl)ethan-1-one (3h): General Procedure B was applied using 2e (60 mg, 0.17 mmol, 1.0 equiv) and pyrrolidine (60 mg, 0.85 mmol, 5.0 equiv). The reaction was quenched after 3 h. The crude product was purified by column chromatography (33% v/v EtOAc in hexanes) to yield the title compound (37 mg, 70% yield).

Physical State: orange amorphous solid

TLC: \(R_f = 0.52 \) (2:1 hexanes/EtOAc)

\(^1\)H NMR (400 MHz, CDCl\(_3\), \(\delta \)): 7.47 (d, \(J = 8.5 \) Hz, 2H), 7.27 (d, \(J = 8.6 \) Hz, 2H), 3.46 (s, 4H), 1.99–1.88 (m, 4H), 0.27 (s, 9H)

\(^13\)C NMR (101 MHz, CDCl\(_3\), \(\delta \)): 163.2, 132.6, 127.7, 124.3, 120.3, 105.0, 94.6, 47.9, 25.5, 0.1

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).

HRMS (ESI–TOF): calc’d for C\(_{17}\)H\(_{22}\)N\(_3\)OSi [M + H]\(^+\), 312.1527; found, 312.1527

calc’d for C\(_{17}\)H\(_{21}\)N\(_3\)OSiNa [M + Na]\(^+\), 334.1346; found, 334.1346

IR (neat): 2154, 2051 (diazo), 1734, 1387, 1248, 835, 758, 659, 541 cm\(^{-1}\)
2-Diazo-2-(3-methoxyphenyl)-N,N-dimethylacetamide (3i): General Procedure B was applied using 2f (50 mg, 0.17 mmol, 1.0 equiv) and dimethylamine solution (2.0 M) in THF (0.43 mL, 0.85 mmol, 5.0 equiv). The reaction was quenched after 1 h. No precipitation was observed. The crude product was purified by column chromatography (25% v/v EtOAc in hexanes) to yield the title compound (12 mg, 31% yield).

Physical State: yellow amorphous solid

TLC: Rf = 0.18 (3:1 hexanes/EtOAc)

1H NMR (500 MHz, CDCl$_3$, δ): 7.30–7.26 (m, 1H), 6.84–6.72 (m, 2H), 6.71 (ddd, J = 8.3, 2.5, 0.9 Hz, 1H), 3.80 (s, 3H), 2.97 (s, 6H)

13C NMR (126 MHz, CDCl$_3$, δ): 165.8, 160.3, 130.2, 129.3, 117.0, 111.4, 110.3, 55.4, 37.9

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).

HRMS (ESI–TOF): calc’d for C$_{11}$H$_{14}$NO$_2$ [M + H − N$_2$]$^+$, 192.1019; found, 192.1010

IR (neat): 2927, 2056 (diazo), 1489, 1381, 1238, 1121, 1017, 774, 687 cm$^{-1}$
3j

2-Diazo-2-(3-methoxyphenyl)-1-(pyrrolidin-1-yl)ethan-1-one (3j): General Procedure B was applied using 2f (50 mg, 0.17 mmol, 1.0 equiv) and pyrrolidine (60 mg, 0.85 mmol, 5.0 equiv). The reaction was quenched after 1 h. The crude product was purified by column chromatography (25%v/v EtOAc in hexanes) to yield the title compound (33 mg, 76% yield).

Physical State: red film

TLC: *Rf* = 0.19 (3:1 hexanes/EtOAc)

1H NMR (500 MHz, CDCl3, δ): 7.27 (t, *J* = 8.0 Hz, 1H), 6.93 (s, 1H), 6.86 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.72 (dd, *J* = 8.3, 2.5 Hz, 1H), 3.80 (s, 4H), 3.43 (m, 4H), 1.93–1.87 (m, 4H)

13C NMR (126 MHz, CDCl3, δ): 163.7, 160.2, 130.0, 128.8, 117.5, 111.7, 110.8, 63.1 (diazo carbon, verified by HBMC and HSQC), 55.4, 47.9, 25.5

HRMS (ESI–TOF): calc’d for C13H16N3O2 [M + H]+, 246.1237; found, 246.1226

IR (neat): 2971, 2050 (diazo), 1627, 1278, 1038 cm⁻¹
2-Diazo-N,N-dimethyl-2-(3-(trifluoromethyl)phenyl)acetamide (3k): General Procedure B was applied using 2h (59 mg, 0.18 mmol, 1.0 equiv) and dimethylamine solution (2.0 M) in THF (0.45 mL, 0.9 mmol, 5.0 equiv). The reaction was quenched after 3 h. The crude product was purified by column chromatography (20% v/v EtOAc in hexanes) to yield the title compound (17 mg, 37% yield).

Physical State: orange film

TLC: \(R_f = 0.39 \) (2:1 hexanes/EtOAc)

\(^1H \) NMR (400 MHz, CDCl\(_3\), \(\delta \)): 7.50 (d, \(J = 1.7 \) Hz, 1H), 7.49–7.36 (m, 3H), 3.01 (s, 6H)

\(^13C \) NMR (101 MHz, CDCl\(_3\), \(\delta \)): 164.9, 129.6, 129.2, 127.1, 122.3 (q, \(J = 3.8 \) Hz), 120.8 (q, \(J = 3.9 \) Hz), 37.8

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).

HRMS (ESI–TOF): calc’d for C\(_{11}\)H\(_{11}\)F\(_3\)N\(_3\)O [M + H]\(^+\), 258.0849; found, 258.0841

IR (neat): 2060 (diazon), 1734, 1659, 1419, 793, 679 cm\(^{-1}\)
2-Diazo-1-(pyrrolidin-1-yl)-2-(3-(trifluoromethyl)phenyl)ethan-1-one (3I): General Procedure B was applied using 2h (59 mg, 0.18 mmol, 1.0 equiv) and pyrrolidine (0.45 mL, 0.9 mmol, 5.0 equiv). Reaction was quenched after 6 h. The crude product was purified by column chromatography (20% v/v EtOAc in hexanes) to yield the title compound (33 mg, 65% yield).

Physical State: orange film

TLC: Rf = 0.41 (2:1 hexanes/EtOAc)

^1H NMR (400 MHz, CDCl₃, δ): 7.61 (d, J = 2.2 Hz, 1H), 7.53–7.36 (m, 3H), 3.47 (d, J = 6.2 Hz, 4H), 1.98–1.88 (m, 4H)

^13C NMR (101 MHz, CDCl₃, δ): 162.8, 129.4, 128.8, 127.6, 122.3 (q, J = 3.7 Hz), 121.3 (q, J = 3.9 Hz), 47.9, 25.4

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6)\(^ {10} \).

HRMS (ESI–TOF): calc’d for C₁₃H₁₃F₃N₃O [M + H]*, 284.1005; found, 284.1005

IR (neat): 2056 (diazo), 1734, 1700, 1647, 1419, 794, 682 cm⁻¹
XIV. Characterization Data for 4a–4e

2-Diazo-N-(pyridin-2-ylmethyl)-2-(p-tolyl)acetamide (4a): General Procedure B was applied using 2c (30 mg, 0.11 mmol, 1.0 equiv) and 2-picolyamine (36 mg, 0.33 mmol, 3.0 equiv). The reaction was quenched after 1.5 h. The crude product was purified by column chromatography (50% v/v EtOAc in hexanes) to yield the title compound (19 mg, 65% isolated yield).

Physical State: orange amorphous solid

TLC: Rf = 0.17 (1:1 EtOAc/hexanes)

1H NMR (500 MHz, CDCl$_3$, δ): 8.50 (dt, J = 4.8, 1.4 Hz, 1H), 7.68 (td, J = 7.7, 1.8 Hz, 1H), 7.33–7.31 (m, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.22–7.17 (m, 1H), 6.74 (d, J = 5.3 Hz, 1H), 4.68 (d, J = 5.1 Hz, 2H), 2.39 (s, 3H)

13C NMR (126 MHz, CDCl$_3$, δ): 165.2, 156.7, 149.3, 149.3, 137.8, 136.9, 130.5, 130.5, 127.6, 123.2, 122.5, 122.2, 45.2, 29.8, 21.3

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).

HRMS (ESI–TOF): calcd for C$_{15}$H$_{15}$N$_4$O [M + H]$^+$, 267.1240; found, 267.1243

IR (neat): 2922, 2854, 2076 (diazo), 2056, 1634, 1591, 1510, 1250, 815, 753, 512 cm$^{-1}$
N-(4-Bromophenethyl)-2-diazo-2-(p-tolyl)acetamide (4b): General Procedure B was applied using 2c (30 mg, 0.11 mmol, 1.0 equiv) and 4-bromophenethylamine (66 mg, 0.33 mmol, 3.0 equiv). The reaction was quenched after 1.5 h. The crude product was purified by column chromatography (1:6 EtOAc/pentane) to yield the title compound (31 mg, 78% isolated yield).

Physical State: yellow amorphous solid

TLC: Rf = 0.5 (1:2 EtOAc/pentane)

1H NMR (500 MHz, CDCl$_3$, δ): 7.47–7.36 (m, 2H), 7.19 (d, J = 8.1 Hz, 2H), 7.11–7.06 (m, 2H), 7.06–7.03 (m, 2H), 5.36 (t, J = 5.9 Hz, 1H), 3.56 (td, J = 6.9, 5.8 Hz, 2H), 2.80 (t, J = 7.0 Hz, 2H), 2.36 (s, 3H)

13C NMR (126 MHz, CDCl$_3$, δ): 165.0, 138.1, 137.8, 131.7, 130.5, 130.4, 127.8, 122.9, 120.4, 41.9, 35.3, 21.2

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).10

HRMS (ESI–TOF): calc’d for C$_{17}$H$_{17}$BrN$_3$O [M + H]$^+$, 358.0531; found, 358.0548

IR (neat): 2923, 2854, 2076 (diazo), 2055, 1624, 1510, 1258, 1011, 812 cm$^{-1}$
tert-Butyl-(2-(2-diazo-2-((p-tolyl)acetamido)ethyl)carbamate (4c): General Procedure B was applied using 2c (30 mg, 0.11 mmol, 1.0 equiv) and N-boc-ethylenediamine (53 mg, 0.33 mmol, 3.0 equiv). The reaction was quenched after 1.5 h. The crude product was purified by column chromatography (33% v/v EtOAc in hexanes) to yield the title compound (24 mg, 69% isolated yield).

Physical State: light orange solid

TLC: Rf = 0.33 (1:1 EtOAc/hexanes)

1H NMR (500 MHz, CDCl$_3$, δ): 7.24 (d, J = 2.0 Hz, 4H), 6.09–5.97 (m, 1H), 4.98 (t, J = 6.3 Hz, 1H), 3.44 (t, J = 5.8 Hz, 2H), 3.27 (q, J = 5.9 Hz, 2H), 2.36 (s, 3H), 1.39 (s, 9H)

13C NMR (126 MHz, CDCl$_3$, δ): 165.8, 156.9, 137.9, 130.5, 127.8, 123.0, 79.8, 41.4, 40.7, 28.4, 21.3

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).

HRMS (ESI–TOF): calc’d for C$_{16}$H$_{23}$N$_4$O$_3$ [M + H]$^+$, 319.1765; found, 319.1762

IR (neat): 3322, 2975, 2927, 2077 (diazo), 2056, 1690, 1621, 1509, 1391, 1249, 1164, 781, 610 cm$^{-1}$
2-Diazo-N-(prop-2-yn-1-yl)-2-(p-tolyl)acetamide (4d): General Procedure B was applied using 2c (48 mg, 0.17 mmol, 1.0 equiv) and propargylamine (48 mg, 0.87 mmol, 5.0 equiv). The reaction was quenched after 3 h. The crude product was purified by column chromatography (1:5 EtOAc/hexanes) to yield the title compound (21 mg, 57% yield).

Physical State: red orange solid

TLC: Rf = 0.29 (1:3 EtOAc/hexanes)

1H NMR (400 MHz, CDCl$_3$, δ): 7.28 (m, 4H), 5.53 (s, 1H), 4.17 (dd, $J = 5.4$, 2.6 Hz, 2H), 2.41 (s, 3H)

1H NMR spectrum of 4d matched with the literature.4

HRMS (ESI–TOF): calc’d for C$_{12}$H$_{12}$N$_3$O [M + H]$^+$, 214.0975 ; found, 214.0974

IR (neat): 2923, 2080 (diaz), 1637, 1508, 1259, 812, 495 cm$^{-1}$
N-(14-Azido-3,6,9,12-tetraoxatetradecyl)-2-diazo-2-(p-tolyl)acetamide (4e): General Procedure B was applied using \(2c\) (30 mg, 0.11 mmol, 1.0 equiv) and 14-azido-3,6,9,12-tetraoxatetradecan-1-amine (29 mg, 0.11 mmol, 1.0 equiv). The reaction was quenched after 3 h. The crude product was purified by column chromatography (4:8:1 pentane/EtOAc/MeOH) to yield the title compound (42 mg, 91% yield).

Physical State: orange film

TLC: \(R_f = 0.2\) dragging (4:8:1 pentane/EtOAc/MeOH) Staining of azide is done by \(PPh_3\)/ninhydrin stain.\(^{11}\)

\(^1H\ NMR (500 MHz, CDCl_3, \delta):** 7.28–7.22 (m, 4H), 5.95 (t, \(J = 5.5\) Hz, 1H), 3.69–3.54 (m, 20H), 3.38 (t, \(J = 5.1\) Hz, 2H), 2.38 (s, 3H)

\(^13C\ NMR (126 MHz, CDCl_3, \delta):** 165.1, 137.6, 130.4, 127.5, 127.5, 123.3, 70.8, 70.8, 70.7, 70.7, 70.6, 70.6, 70.3, 70.1, 70.1, 70.1, 50.8, 50.8, 39.9, 29.8, 21.2

Note: The diazo carbon (C=N=N) signal is not observed as mentioned in General Information (page S6).\(^{10}\)

HRMS (ESI–TOF): calc’d for \(C_{19}H_29N_6O_5\) [M + H]\(^+\), 421.2194; found, 421.2195

IR (neat): 2865, 2854, 2075 (diazo), 2056, 1639, 1510, 1455, 1348, 815, 610, 499 cm\(^{-1}\)
XV. 1H, 13C, and 19F NMR Spectra

1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of S2
1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 1

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 1
1H NMR (500 MHz, CD$_3$CN) of 2a

13C NMR (126 MHz, CD$_3$CN) of 2a
HMBC NMR (500 MHz, CD$_3$CN) of 2a

Zoom in:

Diazocarbon 6 at 60.9 ppm
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2b

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2b (taken at relaxation time D1 = 1.5 sec)

19F NMR (471 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2b
HMBC NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2b

Zoom in:

Diazocarbon 6 at 61.2 ppm
1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2c
1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2d

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2d
19F NMR (376 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2d
1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2e

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2e
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2f

1C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2f
HMBC NMR (500 MHz, CDCl₃ containing 0.03% v/v TMS) of 2f

Zoom in:

Diazot carbon 6 at 61.7 ppm
1H NMR (500 MHz, THF containing 0.03% v/v TMS) of 2g

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2g
HMBC NMR (500 MHz, THF-\textit{d}8) of \textbf{2g}

Zoom in:

Diazocarbon \textbf{6} at 61.4 ppm
1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2h

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2h
19F NMR (376 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2h
1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2i

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2i
\(^{1}\)H NMR (400 MHz, CDCl\(_3\) containing 0.03% v/v TMS) of S2j

\(^{13}\)C NMR (101 MHz, CDCl\(_3\) containing 0.03% v/v TMS) of S2
1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2j

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 2j
1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of S2k

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) of S2k
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of NHPI-DA (S4)
\[^1\text{H NMR} \ (500 \text{ MHz, CDCl}_3 \text{ containing } 0.03\% \text{ v/v TMS}) \text{ of } S5 \]

\[^13\text{C NMR} \ (126 \text{ MHz, CDCl}_3 \text{ containing } 0.03\% \text{ v/v TMS}) \text{ of } S5 \]
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of S6

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of S6
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of S7

![H NMR spectrum of S7](image)

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of S7

![C NMR spectrum of S7](image)
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3a

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3a
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3b

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3b
19F NMR (471 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3b
1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3c
1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3d

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3d
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3e

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{N}_2 \\
\text{N} & \quad \text{O} \\
\text{F}_3\text{C} & \quad \text{N}_2 \\
\text{N} & \quad \text{O} \\
3e
\end{align*}
\]

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3e

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{N}_2 \\
\text{N} & \quad \text{O} \\
\text{F}_3\text{C} & \quad \text{N}_2 \\
\text{N} & \quad \text{O} \\
3e
\end{align*}
\]
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3f

3f

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3f

3f
1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3g

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3g
1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3h

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3h
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3i

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3i
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3j

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3j
HMBC NMR (500 MHz, CDCl₃ containing 0.03% v/v TMS) of 3j

Zoom in:

HSQC NMR (500 MHz, CDCl₃ containing 0.03% v/v TMS) of 3j
This study was done to confirm the 13C signal peak at 63 ppm is not due to a tertiary carbon from protonated 3j. No proton signal was observed at corresponding 63 ppm 13C signal.
1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3k

\[\text{3k} \]

13C NMR (101 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3k

\[\text{3k} \]

-S120-
$\text{H NMR (400 MHz, CDCl}_3\text{ containing 0.03\% v/v TMS) of 3l}$

$\text{C NMR (101 MHz, CDCl}_3\text{ containing 0.03\% v/v TMS) of 3l}$
19F NMR (376 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 3I
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 4a

1C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 4a
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 4b

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 4b
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 4c

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 4c
1H NMR (400 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 4d
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 4e

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 4e
1H NMR (500 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 6

13C NMR (126 MHz, CDCl$_3$ containing 0.03% v/v TMS) of 6
Supporting Information

1H NMR (500 MHz, CDCl₃ containing 0.03% v/v TMS) of 7

![1H NMR spectrum of 7](image)

13C NMR (126 MHz, CDCl₃ containing 0.03% v/v TMS) of 7

![13C NMR spectrum of 7](image)
XVI. References

