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ABSTRACT

Connecting a genotype with a phenotype can provide immediate advantages in the context of
modern medicine. Especially useful would be an algorithm for predicting the impact of
nonsynonymous single-nucleotide polymorphisms in the gene for PTEN, a protein that is
implicated in most human cancers and connected to germline disorders that include autism.
We have developed a protein impact predictor, PTENpred, that integrates data from multiple
analyses using a support vector machine algorithm. PTENpred can predict phenotypes related
to a human PTEN mutation with high accuracy. The output of PTENpred is designed for use
by biologists, clinicians, and laymen, and features an interactive display of the three-
dimensional structure of PTEN. Using knowledge about the structure of proteins, in general,
and the PTEN protein, in particular, enables the prediction of consequences from damage to
the human PTEN gene. This algorithm, which can be accessed online, could facilitate the
implementation of effective therapeutic regimens for cancer and other diseases.

Key words: autism, cancer, mutation, phosphatase and tensin homolog deleted from chromosome

ten, support vector machine algorithm.

1. INTRODUCTION

PTEN or the phosphatase and tensin homolog deleted from chromosome ten, is a tumor-suppressor

enzyme (Song et al., 2012; Worby and Dixon, 2014). PTEN acts as a lipid and protein phosphatase in

several important cellular pathways. The gene encoding PTEN is mutated in 50%–80% of sporadic tumors.

Germline mutations to the PTEN gene give rise to an array of syndromes generally characterized by extreme

growth (Silva et al., 2008). Interestingly, known missense mutations result in dysfunctional PTENs that are

implicated in not only cancers but also syndromes as divergent as autism (Johnston and Raines, 2015).

Nonsynonymous single-nucleotide polymorphisms (SNPs) lead to variation in the amino acid sequence

of a protein. A variety of computational and structural machine learning methods have been used to probe

the effects of SNPs on protein structure and function (Chan et al., 2007; Miller et al., 2011; Thompson

et al., 2012). Current methods include some that use only multiple protein alignments, some that use only

structural information, and some that combine these two inputs (Katsonis et al., 2014). Especially notable
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are predictive approaches related to missense substitutions in mismatch repair genes that can underlie rapid,

noninvasive diagnoses in the clinic (Thompson et al., 2012).

Typical structure-based nonsynonymous SNP computational prediction methods calculate the change in

the conformational stability of a protein that results from an amino acid change (Topham et al., 1997).

These methods explore the three-dimensional environment proximal to an amino acid substitution, inser-

tion, or deletion (Capriotti and Altman, 2011). Changes to residues in the core of a protein often have

greater consequences for conformational stability than do changes on the surface (Cordes et al., 1996).

Consequently, typical methods are likely to undervalue changes that are important for protein–protein or

protein–ligand interactions. Also, only a small fraction of proteins have known three-dimensional struc-

tures, as is usually required by these methods.

Support vector machines (SVMs) are machine learning algorithms that are able to take input data points

that are associated with a class (Bishop, 2006). Each data point has a collection of information, called a

vector, collated from a variety of sources. The vector allows the SVM to associate particular sets of

information with classes. After taking in a number of vectors and their associated classes as training data,

SVMs predict the class of an unknown vector (Fig. 1).

As the central importance of PTEN in cancer and other syndromes becomes more and more apparent

(Song et al., 2012; Worby and Dixon, 2014), we reasoned that a predictor focused entirely on PTEN

mutations could have value. Here, we present such a predictor: PTENpred.

2. METHODS

PTENpred takes input from different analyses and combines them using an SVM algorithm (Bishop,

2006). Each feature is a score that has been calculated from the three-dimensional structure of PTEN (for

secondary structure or solvent-accessible surface area scores) or a score that is the result of a predictor

designed to predict the results of an amino acid change in PTEN. Secondary structure and solvent-

accessible surface area scores were derived from Protein Data Bank (PDB) entry 1d5r (Eisenhaber and

Argos, 1993; Frishman and Argos, 1995) or were predicted with SPIDER2 (Heffernan et al., 2015).

2.1. Variation data and classes

The input data on PTEN amino acid variations were derived from many different sources and are listed

in the Supplementary Material. The total number of variations (676) were sorted into four classes: null (70),

autism related (16), somatic cancer associated (502), and germline hamartoma tumor syndrome (PHTS)

associated (88). Null variants were derived from dbSNP (Sherry et al., 2001), the Human Gene Mutation

Database (HGMD) (Stenson et al., 2014), and variants found to be active in a yeast PI3K/PTEN system

(Rodriguez-Escudero et al., 2011; Rodriguez-Escudero et al., 2014). Autism-related variants and variants

related to PHTS were derived from the HGMD and other individual publications. Somatic cancer variants

were from the Catalogue of Somatic Mutations in Cancer [COSMIC (Forbes et al., 2015)].

As expected, we found significant overlap between mutations associated with somatic cancer and those

associated with germline PHTS. Two variables for somatic mutations were taken into account to distin-

guish these classes: (1) the number of times that a particular mutation has been found in somatic cancer

overall and (2) the average number of total changes to PTEN found in each sample. For example, the PTEN

variant Y155C occurs 10 times in tumor samples found in the COSMIC database. Of those 10 times, the

FIG. 1. Workflow for an SVM classifier. The SVM is presented

with a number of support vectors that are each associated with

a specified class here, A or B. The trained SVM is then able to

predict the class of a new queried support vector. SVM, support

vector machine.
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average number of total changes to PTEN is 1.3. From these numbers, we can hypothesize that Y155C is a

relatively common PTEN variation in somatic cancer and that this variation might indeed inactivate PTEN

fully. The Y155C variant is also found in a patient with Cowden Syndrome (Gicquel et al., 2003),

indicating that germline variation can result in inactivation of PTEN. Most changes found in both PHTS

and the COSMIC database are classed as PHTS variations.

2.2. Data set grouping

The contents of several classes were small compared to the total number of variations. Accordingly,

we thought it would be helpful to group classes in five different ways. For easy comparison to already

established predictors, we grouped classes into two types: ‘‘null and pathogenic’’ (where null is the null

class and pathogenic is a group of autism-related, somatic cancer-related, and PHTS-related classes,

hereby designated N/ASP) and ‘‘null-autism and pathogenic’’ (where null-autism contains both autism

and null classes and pathogenic contains somatic cancer and PHTS classes, hereby designated NA/SP).

We also established groups of three classes: ‘‘null, autism, and pathogenic’’ (where pathogenic is

somatic cancer and PHTS classes, hereby designated N/A/SP) and ‘‘null, mild affecting, and PHTS’’

(where mild affecting is somatic cancer and autism classes, hereby designated N/AS/P). The last

grouping has each class alone (designated N/A/S/P). A separate SVM classifier was trained on each of

the five groupings.

2.3. SVM classifier training

The SVM classifiers were trained using Python version 2.7.9 (Downey et al., 2002) and the scikit-learn

project package version 0.15.2 (Pedregosa et al., 2011), which is itself an implementation based on the

LIBSVM package (Chang and Lin, 2011). The data set was scaled using the StandardScaler object in scikit-

learn. Each classifier used the SVC method in scikit-learn with the radial basis function kernel. Class

weights were adjusted to be inversely proportional to their frequencies (i.e., classes with fewer members are

weighted more). Multiclass classification for the three- and four-class data sets is implemented using the

one-against-one approach (Knerr et al., 1990).

Accuracy was analyzed using nested cross-validation. Onefold from a randomized, stratified sixfold

division of the data was set aside for testing. Optimal hyperparameters (C and g) were then chosen using

grid search cross-validation with eight stratified folds on the training set. Optimization of hyperparameters

used the F1 score, the harmonic mean of precision and recall (Powers, 2011). This process was repeated six

times with each of the folds being set aside for testing once. The reported accuracy is the mean – standard

deviation of correctly predicted variations.

As the calculated accuracy was stable and did not vary widely for each of the sixfolds after iterative

nested cross-validation as tested by the analysis of variance (data not shown), finalized classifiers were

generated by the same method used on the training set: grid search cross-validation with eight stratified

folds on the entire data set.

2.4. Comparison to PROVEAN and Polyphen-2

For comparison, other impact predictors are based either completely on homology [SIFT (Ng and

Henikoff, 2001), MAPP (Stone and Sidow, 2005), and PROVEAN (Choi et al., 2012)], or on both ho-

mology and structural information [Polyphen-2 (Ramensky et al., 2002; Adzhubei et al., 2010), SuSPect

(Yates et al., 2014), and VarMod (Pappalardo and Wass, 2014)]. VarMod also incorporates protein in-

teraction data from Interactome3D (Mosca et al., 2013). To compare the performance of PTENpred to that

of PROVEAN, Polyphen-2, and VarMod, the test set of variations for each of the two-class classifiers was

run on each service. Receiver operating characteristic (ROC) curves and the area under the ROC curve

were generated using scikit-learn (Pedregosa et al., 2011) and the matplotlib Python-based computer

plotting package (Hunter, 2007).

2.5. Resources

The web application is implemented using Python version 2.7.6 on a server running Ubuntu 14.04.2 LTS

server edition.
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3. RESULTS AND DISCUSSION

3.1. PTENpred accuracy

We measured the accuracy of PTENpred using nested sixfold cross-validation for each of the class splits,

measuring the average percentage of classes predicted correctly on the test fold (Table 1). Nested cross-

validation was iterated, and a one-way ANOVA test was performed to ensure that no statistical difference

existed between iterated cross-validation scores.

3.2. Visualization of PTENpred predictions

We performed principal component analysis on our data to project data to a lower dimensional space,

keeping only the most significant features. We then trained our classifiers to those decomposed data. We

found that only the class splits with two classes (N/ASP and NA/SP) produced classifiers that were

consistent with classifiers trained on higher dimensional data, with consistency being tested with iterative

nested cross-validation. These classifiers were trained on all of the data and were used to generate contour

maps. We then plotted a randomized, stratified 20% of the data so as to visualize PTENpred predictions

(Fig. 2). To visualize predictions and accuracy further, we calculated and plotted ROC curves (Fig. 3).

These curves were generated by averaging ROC data over six stratified cross-validation folds.

Table 1. Accuracy Scores for PTENpred

Class split Accuracy (%)

Null/pathogenic 74 – 5

Null autism/pathogenic 66 – 3

Null/autism/pathogenic 78 – 3

Null/autism somatic/pathogenic 66 – 5

Null/autism/somatic/pathogenic 64 – 3

Values ( – SD) were estimated by stratified sixfold cross-validation.

The classifier was trained on fivefold of data and was used to predict the

last fold. Each fold was excluded as testing data once, and this value is

the mean of these six accuracy scores.

FIG. 2. Depiction of predictions of PTENpred projected on two principle components. Using principle component

analysis, 22 features from support vectors were projected onto two dimensions. The PTENpred classifier was trained on

the entire two-dimensional data set and was used to create the contour areas. A fraction (20%) of the available data was

then plotted to visualize correctly and incorrectly predicted residues. (A) N/ASP classifier predictions; (B) NA/SP

classifier predictions.
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3.3. PTENpred performance comparisons

To compare PTENpred performance to currently available protein impact predictors, we calculated

ROC curves in the same manner. An ideal point is in the upper left of the resulting plot (Fig. 4). Based

on the area under the ROC curve, PTENpred performs better than does Polyphen-2, PROVEAN, or

VarMod.

3.4. Web application

We implemented the PTENpred predictor on a local server in the Department of Biochemistry at the

University of Wisconsin–Madison. A user can input a variant of PTEN in the form of, for example,

‘‘L70P,’’ which indicates a change at the 70th codon of PTEN from leucine to proline. A user can also

select which of the five classifiers to use to classify the variant (N/ASP, NA/SP, N/A/SP, N/AS/P, or N/

A/S/P). The classifier can be accessed online at http://ptenpred.info.tm/index.php. As output, PTENpred

gives the predicted class information and also presents a JavaScript-implemented version of Jmol

( JSmol) (Hanson et al., 2013) to display the location of the wild-type residue in the query.

FIG. 3. Cross-validated ROC analysis on pre-

dictions of PTENpred for binary classifiers. ROC

curves were generated with two binary classifiers,

N/ASP and NA/SP. Six stratified folds of the data

were created, and the classifiers were trained on

fivefold. This procedure was performed six times

with each fold of data used once as the test set.

The resulting ROC curves were averaged to cre-

ate the depicted mean ROC curves. The area

under each ROC curve is indicated within pa-

rentheses. ROC, receiver operating characteristic.

FIG. 4. Predictions of PTENpred binary clas-

sifier with three other impact predictors. An ROC

curve was generated with the binary classifier N/

ASP. ROC analysis was also performed for

Polyphen-2 (Adzhubei et al., 2010), PROVEAN

(Choi et al., 2012), and VarMod (Pappalardo and

Wass, 2014). For each method, ROC curves for

each fold of data were generated, and these

curves were averaged to create the depicted mean

ROC plots. The area under each ROC curve is

indicated within parentheses.
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4. CONCLUSIONS

We introduce the first designer protein impact predictor for nonsynonymous SNPs that is focused on the

tumor suppressor PTEN, which is altered in most human cancer patients. PTENpred exceeds in accuracy

other protein predictors in accuracy (Fig. 4). Its focus on one protein allows for careful curation of

mutations and their correlation with specific disease states and phenotypes. PTENpred can be deployed by

clinicians and biologists to elucidate the consequences of any new PTEN variation identified in the

laboratory or clinic.
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