SUPPORTING INFORMATION

Substituted 2-Azabicyclo[2.1.1]hexanes as Constrained Proline Analogs: Implications for Collagen Stability

Cara L. Jenkins, Guoliang Lin, Jingqi Duo, Deepa Rapolu, Ilia A. Guzei, Ronald T. Raines,* and Grant R. Krow*

Department of Chemistry and Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, and Department of Chemistry, Temple University, Philadelphia, PA 19122

Page	Contents
S-1	Table of Contents
S-2,3	¹ H and ¹³ C NMR spectra for 8
S-4,5	¹ H and ¹³ C NMR spectra for 9
S-6,7	¹ H and ¹³ C NMR spectra for 10
S-8,9	¹ H and ¹³ C NMR spectra for 11
S-10,11	¹ H and ¹³ C NMR spectra for 12
S-12,13	¹ H and ¹³ C NMR spectra for 13
S-14,15	¹ H and ¹³ C NMR spectra for 14
S-16,17	¹ H and ¹³ C NMR spectra for 5 ([13 C]CH ₃ -labeled)
S-18,19	¹ H and ¹³ C NMR spectra for 15
S-20,21	¹ H and ¹³ C NMR spectra for 16
S-22,23	¹ H and ¹³ C NMR spectra for 17
S-24,25	¹ H and ¹³ C NMR spectra for 18
S-26,27	¹ H and ¹³ C NMR spectra for 19
S-28,29	¹ H and ¹³ C NMR spectra for 20
S-30,31	¹ H and ¹³ C NMR spectra for 21
S-32,33	¹ H and ¹³ C NMR spectra for 22
S-34,35	¹ H and ¹³ C NMR spectra for 23 ([¹³ C]CH ₃ -labeled)
S-36,37	¹ H and ¹³ C NMR spectra for 6 ($[^{13}C]CH_3$ -labeled)
S-38,39	¹ H and ¹³ C NMR spectra for 7
S-40-49	X-ray crystallographic data for 6

raines@biochem.wisc.edu; grantkrow@aol.com

page S-2

udd

c13k.gk

፳

BnO₂C、

9

i

- -

÷. 1

 \sim

page S-18

page S-20

ЪРN

20

.

page S-26

page S-27

page S-29

page S-31

page S-32

page S-33

•

.

page S-37

page S-39

1

Figure S-1. The crystal structure of Ac–methano-hyp–OMe (6). Top: Molecule A; Bottom: Molecule B. The Supporting Information uses the nomenclature in this figure.

Figure S-2. Molecule A of Ac-methano-hyp-OMe (6).

Figure S-3. Packing diagram of Ac–methano-hyp–OMe (6) viewed in the c direction.

Figure S-4. Superposition of the two crystallographically independent molecules of Ac-methano-hyp-OMe (6).

Identification code	rai03	
Empirical formula	$C_9H_{13}NO_4$	
Formula weight	199.20	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	$P\overline{1}$	
Unit cell dimensions	a = 9.6797(10) Å	$\alpha = 80.629(2)^{\circ}$
	b = 9.963(1) Å	$\beta = 72.380(2)^{\circ}$
	c = 10.7145(10) Å	$\gamma = 80.362(1)^{\circ}$
Volume	963.98(17) Å ³	
Ζ	4	
Density (calculated)	1.373 Mg/m ³	
Absorption coefficient	0.108 mm ⁻¹	
<i>F</i> (000)	424	
Crystal size	$0.50 \times 0.40 \times 0.40 \text{ mm}^3$	
Theta range for data collection	2.01–26.35°	
Index ranges	$-11 \le h \le 12, -12 \le k \le 12$	$l \le l \le 13$
Reflections collected	12437	
Independent reflections	3638 [<i>R</i> (int) = 0.0284]	
Completeness to theta = 26.35°	92.2%	
Absorption correction	Empirical with SADABS	
Max. and min. transmission	0.9579 and 0.9478	
Refinement method	Full-matrix least-squares of	on F^2
Data / restraints / parameters	3638 / 0 / 259	
Goodness-of-fit on F ²	1.000	
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0735, wR2 = 0.213	52
<i>R</i> indices (all data)	R1 = 0.0822, wR2 = 0.219	9
Largest diff. peak and hole	0.341 and -0.391 e.Å-3	

Table S-1. Crystal data and structure refinement for Ac-methano-hyp-OMe (6).

	X	У	Ζ	U(eq)
O(1)	6543(2)	6489(2)	5853(2)	43(1)
O(2)	10187(2)	1683(2)	4942(2)	31(1)
O(3)	10004(2)	1630(2)	7091(2)	39(1)
O(4)	6762(2)	827(2)	8093(2)	36(1)
O(5)	11863(2)	1075(2)	388(2)	35(1)
O(6)	7908(2)	5524(2)	2673(2)	34(1)
O(7)	6757(2)	4747(2)	1450(2)	39(1)
O(8)	6213(2)	2369(2)	3947(2)	37(1)
N(1)	7079(2)	3049(2)	7515(2)	30(1)
N(2)	8063(2)	2036(2)	2142(2)	30(1)
C(1)	6644(3)	5066(3)	6186(3)	32(1)
C(2)	8246(3)	4390(3)	5720(3)	28(1)
C(3)	8059(3)	2864(3)	6186(3)	28(1)
C(4)	6876(3)	4536(3)	7575(3)	32(1)
C(5)	8470(3)	4877(3)	6956(3)	31(1)
C(6)	9507(3)	1985(3)	6176(3)	27(1)
C(7)	11629(3)	893(3)	4769(3)	34(1)
C(8)	6485(3)	2022(3)	8382(3)	29(1)
C(9)	5481(3)	2377(3)	9695(3)	35(1)
C(10)	10578(3)	1539(3)	1325(3)	28(1)
C(11)	10053(3)	3099(3)	1027(3)	28(1)
C(12)	8680(3)	3269(3)	2215(3)	28(1)
C(13)	9123(3)	1401(3)	1026(3)	30(1)
C(14)	9437(3)	2666(3)	-18(3)	31(1)
C(15)	7646(3)	4571(3)	2063(3)	29(1)
C(16)	7045(3)	6855(3)	2586(3)	36(1)
C(17)	6837(3)	1674(3)	3015(3)	29(1)
C(18)	6210(3)	459(3)	2841(3)	40(1)

Table S-2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for crystalline Ac-methano-hyp-OMe (6). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

molecule A: $-x + 1, -y$	+ 1, $-z$ + 1; molecule 1	B: $-x + 2, -y, -z + 1.$	
$\overline{O(1)-C(1)}$	1.399(3)	N(2)–C(12)	1.475(3)
O(2) - C(6)	1.346(3)	C(1)-C(2)	1.549(4)
O(2)-C(7)	1.458(3)	C(1)-C(4)	1.565(4)
O(3)–C(6)	1.198(3)	C(2)-C(3)	1.544(4)
O(4)-C(8)	1.244(3)	C(2)–C(5)	1.568(4)
O(5)-C(10)	1.404(3)	C(3)–C(6)	1.521(4)
O(6)-C(15)	1.333(3)	C(4)–C(5)	1.555(4)
O(6)–C(16)	1.450(3)	C(8)–C(9)	1.506(4)
O(7)–C(15)	1.207(3)	C(10)–C(11)	1.565(4)
O(8)–C(17)	1.250(3)	C(10)–C(13)	1.568(4)
N(1)–C(8)	1.344(4)	C(11)–C(12)	1.545(4)
N(1)–C(4)	1.471(3)	C(11)–C(14)	1.563(4)
N(1)–C(3)	1.474(3)	C(12)–C(15)	1.518(4)
N(2)–C(17)	1.333(4)	C(13)–C(14)	1.548(4)
N(2)–C(13)	1.472(3)	C(17)–C(18)	1.502(4)
C(6)–O(2)–C(7)	114.9(2)	O(2)–C(6)–C(3)	108.7(2)
C(15)-O(6)-C(16)	116.6(2)	O(4)-C(8)-N(1)	120.4(3)
C(8)-N(1)-C(4)	131.4(2)	O(4)–C(8)–C(9)	122.0(2)
C(8)-N(1)-C(3)	123.8(2)	N(1)-C(8)-C(9)	117.6(2)
C(4)-N(1)-C(3)	104.8(2)	O(5)–C(10)–C(11)	113.1(2)
C(17)–N(2)–C(13)	133.5(2)	O(5)–C(10)–C(13)	115.1(2)
C(17)–N(2)–C(12)	121.8(2)	C(11)–C(10)–C(13)	81.53(19)
C(13)–N(2)–C(12)	104.7(2)	C(12)-C(11)-C(14)	102.6(2)
O(1)-C(1)-C(2)	111.0(2)	C(12)-C(11)-C(10)	99.9(2)
O(1)-C(1)-C(4)	115.2(2)	C(14)–C(11)–C(10)	86.28(19)
C(2)-C(1)-C(4)	81.87(19)	N(2)-C(12)-C(15)	112.0(2)
C(3)-C(2)-C(1)	100.9(2)	N(2)-C(12)-C(11)	97.24(19)
C(3)-C(2)-C(5)	102.3(2)	C(15)–C(12)–C(11)	114.4(2)
C(1)-C(2)-C(5)	86.5(2)	N(2)-C(13)-C(14)	101.4(2)
N(1)-C(3)-C(6)	114.2(2)	N(2)-C(13)-C(10)	99.4(2)
N(1)-C(3)-C(2)	97.0(2)	C(14)-C(13)-C(10)	86.7(2)
C(6)–C(3)–C(2)	112.2(2)	C(13)–C(14)–C(11)	82.22(19)
N(1)-C(4)-C(5)	101.1(2)	O(7)–C(15)–O(6)	124.6(2)
N(1)-C(4)-C(1)	99.7(2)	O(7)–C(15)–C(12)	126.0(2)
C(5)-C(4)-C(1)	86.4(2)	O(6)–C(15)–C(12)	109.3(2)
C(4)–C(5)–C(2)	81.60(19)	O(8)–C(17)–N(2)	119.4(3)
O(3)–C(6)–O(2)	124.2(2)	O(8)–C(17)–C(18)	121.2(3)
O(3)–C(6)–C(3)	127.0(2)	N(2)–C(17)–C(18)	119.4(2)

Table S-3. Bond lengths	Å] and angle	es [°] for crystalline	e Ac–methano-hyp–OMe
-------------------------	--------------	------------------------	----------------------

(6). Symmetry transformations used to generate equivalent atoms:

takes the form: $-2\pi^2[h^2a^{*2}U^{11} + + 2hka^*b^*U^{12}]$.						
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	33(1)	25(1)	63(2)	6(1)	-11(1)	-2(1)
O(2)	34(1)	29(1)	31(1)	-8(1)	-12(1)	2(1)
O(3)	41(1)	44(1)	35(1)	-6(1)	-18(1)	1(1)
O(4)	41(1)	26(1)	41(1)	0(1)	-16(1)	-5(1)
O(5)	35(1)	31(1)	36(1)	-3(1)	-10(1)	4(1)
O(6)	42(1)	22(1)	44(1)	-8(1)	-21(1)	-1(1)
O(7)	44(1)	28(1)	55(1)	-8(1)	-31(1)	2(1)
O(8)	36(1)	37(1)	36(1)	-8(1)	-10(1)	2(1)
N(1)	31(1)	25(1)	33(1)	-6(1)	-5(1)	-5(1)
N(2)	36(1)	21(1)	35(1)	-7(1)	-11(1)	-5(1)
C(1)	29(1)	23(1)	44(2)	0(1)	-10(1)	-5(1)
C(2)	28(1)	27(1)	31(1)	-1(1)	-11(1)	-6(1)
C(3)	33(1)	24(1)	28(1)	-4(1)	-11(1)	-5(1)
C(4)	31(1)	26(1)	37(2)	-6(1)	-5(1)	-5(1)
C(5)	31(1)	27(1)	37(2)	-5(1)	-11(1)	-6(1)
C(6)	33(1)	21(1)	29(1)	-4(1)	-10(1)	-7(1)
C(7)	33(1)	29(1)	42(2)	-10(1)	-14(1)	4(1)
C(8)	29(1)	27(1)	34(1)	0(1)	-16(1)	-4(1)
C(9)	36(1)	40(2)	30(1)	1(1)	-10(1)	-9(1)
C(10)	34(1)	24(1)	28(1)	-3(1)	-11(1)	-1(1)
C(11)	31(1)	22(1)	33(1)	-2(1)	-14(1)	-4(1)
C(12)	35(1)	22(1)	32(1)	-6(1)	-15(1)	-3(1)
C(13)	34(1)	23(1)	34(2)	-8(1)	-10(1)	-3(1)
C(14)	35(1)	30(1)	32(1)	-4(1)	-14(1)	-4(1)
C(15)	34(1)	23(1)	31(1)	-3(1)	-12(1)	-7(1)
C(16)	41(2)	23(1)	48(2)	-8(1)	-16(1)	-2(1)
C(17)	31(1)	24(1)	32(1)	0(1)	-14(1)	2(1)
C(18)	43(2)	28(2)	50(2)	-2(1)	-12(1)	-11(1)

Table S-4. Anisotropic displacement parameters $(Å^2 \times 10^3)$ for

Ac-methano-hyp-OMe (6). The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2hka^* b^* U^{12}]$.

	x	У	Z	U(eq)
H(1)	5677	6804	5869	64
H(5)	12402	519	770	53
H(1A)	5916	4616	5961	39
H(2)	8875	4672	4816	34
H(3)	7551	2505	5647	33
H(4)	6231	4940	8381	38
H(5A)	9208	4281	7334	37
H(5B)	8586	5860	6864	37
H(7A)	12293	1443	4932	51
H(7B)	12007	652	3866	51
H(7C)	11557	54	5393	51
H(9A)	5036	1565	10191	53
H(9B)	4712	3110	9553	53
H(9C)	6040	2686	10194	53
H(10)	10580	1239	2262	34
H(11)	10766	3785	760	33
H(12)	8957	3188	3053	34
H(13)	8970	524	777	35
H(14A)	8557	3258	-165	37
H(14B)	10175	2470	-858	37
H(16A)	7198	7231	1657	54
H(16B)	7345	7476	3049	54
H(16C)	6008	6758	2992	54
H(18A)	5971	-139	3679	60
H(18B)	6928	-52	2168	60
H(18C)	5321	775	2563	60

Table S-5. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for Ac–methano-hyp–OMe (6).

O(1)-C(1)-C(2)-C(3)	-179.6(2)	C(17)–N(2)–C(12)–C(11)	178.1(2)
C(4)-C(1)-C(2)-C(3)	66.4(2)	C(13)–N(2)–C(12)–C(11)	1.1(2)
O(1)-C(1)-C(2)-C(5)	78.6(3)	C(14)-C(11)-C(12)-N(2)	42.4(2)
C(4)-C(1)-C(2)-C(5)	-35.43(18)	C(10)-C(11)-C(12)-N(2)	-46.0(2)
C(8)–N(1)–C(3)–C(6)	-65.0(3)	C(14)-C(11)-C(12)-C(15)	-75.7(3)
C(4)–N(1)–C(3)–C(6)	118.7(2)	C(10)-C(11)-C(12)-C(15)	-164.1(2)
C(8)-N(1)-C(3)-C(2)	176.8(2)	C(17)-N(2)-C(13)-C(14)	138.8(3)
C(4)-N(1)-C(3)-C(2)	0.5(2)	C(12)-N(2)-C(13)-C(14)	-44.6(2)
C(1)-C(2)-C(3)-N(1)	-45.3(2)	C(17)–N(2)–C(13)–C(10)	-132.7(3)
C(5)-C(2)-C(3)-N(1)	43.5(2)	C(12)-N(2)-C(13)-C(10)	43.8(2)
C(1)-C(2)-C(3)-C(6)	-165.1(2)	O(5)-C(10)-C(13)-N(2)	-177.2(2)
C(5)-C(2)-C(3)-C(6)	-76.3(3)	C(11)-C(10)-C(13)-N(2)	-65.5(2)
C(8)-N(1)-C(4)-C(5)	139.5(3)	O(5)-C(10)-C(13)-C(14)	-76.2(2)
C(3)-N(1)-C(4)-C(5)	-44.6(2)	C(11)-C(10)-C(13)-C(14)	35.44(18)
C(8)-N(1)-C(4)-C(1)	-132.3(3)	N(2)-C(13)-C(14)-C(11)	63.6(2)
C(3)-N(1)-C(4)-C(1)	43.7(2)	C(10)-C(13)-C(14)-C(11)	-35.40(18)
O(1)-C(1)-C(4)-N(1)	-174.4(2)	C(12)-C(11)-C(14)-C(13)	-63.8(2)
C(2)-C(1)-C(4)-N(1)	-64.9(2)	C(10)-C(11)-C(14)-C(13)	35.52(18)
O(1)-C(1)-C(4)-C(5)	-73.7(2)	C(16)-O(6)-C(15)-O(7)	0.4(4)
C(2)-C(1)-C(4)-C(5)	35.77(18)	C(16)-O(6)-C(15)-C(12)	178.0(2)
N(1)-C(4)-C(5)-C(2)	63.9(2)	N(2)-C(12)-C(15)-O(7)	-29.0(4)
C(1)-C(4)-C(5)-C(2)	-35.30(18)	C(11)-C(12)-C(15)-O(7)	80.4(3)
C(3)-C(2)-C(5)-C(4)	-64.7(2)	N(2)-C(12)-C(15)-O(6)	153.5(2)
C(1)-C(2)-C(5)-C(4)	35.72(19)	C(11)-C(12)-C(15)-O(6)	-97.1(3)
C(7)-O(2)-C(6)-O(3)	-1.2(4)	C(13)-N(2)-C(17)-O(8)	173.7(3)
C(7)-O(2)-C(6)-C(3)	177.3(2)	C(12)-N(2)-C(17)-O(8)	-2.4(4)
N(1)-C(3)-C(6)-O(3)	-12.6(4)	C(13)-N(2)-C(17)-C(18)	-7.8(4)
C(2)-C(3)-C(6)-O(3)	96.6(3)	C(12)-N(2)-C(17)-C(18)	176.2(2)
N(1)-C(3)-C(6)-O(2)	169.0(2)		
C(2)-C(3)-C(6)-O(2)	-81.9(3)		
C(4)-N(1)-C(8)-O(4)	176.2(2)		
C(3)-N(1)-C(8)-O(4)	0.9(4)		
C(4)-N(1)-C(8)-C(9)	-3.5(4)		
C(3)-N(1)-C(8)-C(9)	-178.8(2)		
O(5)-C(10)-C(11)-C(12)	-179.2(2)		
C(13)-C(10)-C(11)-C(12)	67.1(2)		
O(5)-C(10)-C(11)-C(14)	78.7(2)		
C(13)-C(10)-C(11)-C(14)	-35.05(18)		
C(17)-N(2)-C(12)-C(15)	-61.9(3)		
C(13)-N(2)-C(12)-C(15)	121.1(2)		

Table S-6. Torsion angles [°] for Ac–methano-hyp–OMe (6). Symmetry transformations used to generate equivalent atoms: molecule A: -x + 1, -y + 1, -z + 1; molecule B: -x + 2, -y, -z + 1.

Table S-7. Hydrogen bonds for Ac-methano-hyp-OMe (6) [Å and °]. Symmetry
transformations used to generate equivalent atoms: molecule A: $-x + 1, -y + 1, -z + 1$;
molecule B: $-x + 2, -y, -z + 1$.

D–H…A	<i>d</i> (D–H)	<i>d</i> (H···A)	<i>d</i> (D····A)	∠(DHA)
$\overline{O(1)-H(1)\cdots O(8)}$ (molecule A)	0.84	1.84	2.678(3)	173(1)
$O(5)-H(5)\cdots O(4)$ (molecule B)	0.84	1.91	2.734(3)	168(1)