Modulating the conformational stability of triple-helical collagen by chemical modification

Cara L. Jenkins,¹ **Kimberly M. Taylor**,² and **Ronald T. Raines**^{1,3} ¹Department of Chemistry, ²Graduate Program in Biophysics, and ³Department of Biochemistry,

University of Wisconsin-Madison, Madison, WI 53706, U.S.A.

Introduction

Collagen is composed of a triple helix of peptides with the sequence $(XaaYaaGly)_n$, where Xaa is often L-proline (Pro) and Yaa is often 4(R)-hydroxy-L-proline (Hyp). Each strand of collagen adopts a polyproline-II-like conformation. Natural collagen is found in approximately 19 different types, and is the most prevalent protein in animals. Triple helices comprised of the peptide (ProHypGly)₁₀ have been studied extensively as a model for collagen.

Previous work in our laboratory has shown that replacing the Hyp residues in $(ProHypGly)_{11}$ with 4(R)-fluoro-L-proline (Flp) residues increases dramatically the value of T_m . For example, in 50 mM acetic acid a (ProHypGly)₁₀ triple helix has a T_m (which is the temperature at the midpoint of the thermal transition) of 69 °C, whereas a $(ProFlpGly)_{10}$ triple helix has a T_m of 91 °C [1]. We hypothesize that the greater electronwithdrawing ability of fluorine contributes to the greater conformational stability of $(ProFlpGly)_{10}$.

Results and Discussion

We have modified the hydroxyl groups in $(ProHypGly)_{10}$ with acetyl groups to explore further the contribution of electron-withdrawing ability to conformational stability. The synthesis of [ProHyp(OAc)Gly]₁₀ (Fig. 1) was performed using a slightly modified version of the method of Wilchek and Patchornik for selective O-acetylation of amino acids [2].

There is one previous report of the preparation of [ProHyp(OAc)Gly]₁₀. von Weber and Nitschmann used acetic anhydride as the acetylating agent and trifluoroacetic acid as the solvent. Their measured T_m value for triple-helical [ProHyp(OAc)Gly]₁₀ in 1 M NaCl was 25 °C [3]. In our hands, the $T_{\rm m}$ value for triple-helical [ProHyp(OAc)Gly]₁₀ in 50 mM acetic acid is 58 °C, which is approximately 11 degrees lower than that of (ProHypGly)10 under the same conditions. Interestingly, the T_m values for triple-helical [ProHyp(OAc)Gly]₁₀ and (ProHypGly)₁₀ in water are 56°C and 57°C, respectively (Fig. 2). We are in the process of making a series of O-acetylated (ProHypGly)10 peptides in which the acetyl groups contain one, two, or three fluorines. In this way, we can increase the electron-withdrawing ability of the 4(R) substituent inisologous collagen mimics. Moreover, unlike the incorporation of a 4(R) fluorine atom [1], these acetylation reactions can be performed on natural collagen with common reagents.

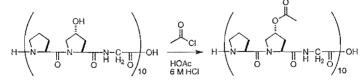


Fig. 1. Synthetic route to [ProHyp(OAc)Gly] 10-

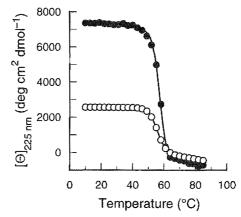


Fig. 2. Effect of temperature on the ellipticity at 225 nm of triple helices of $[ProHyp(OAc)Gly]_{10}$ (closed circles) and $(ProHypGly)_{10}$ (open circles) in water.

Conclusion

The conformational stability of triple helical $(ProHypGly)_{10}$ can be altered by chemical modification of the Hyp hydroxyl group.

Acknowledgments

This work was supported by the National Institutes of Health (R01 AR44276 and T32 GM08506), Arthritis Foundation, and Howard Hughes Medical Institute.

References

- 1. Holmgren, S.K., Taylor, K.M., Bretscher, L.E., and Raines, R.T., Nature 392 (1998) 666.
- 2. Wilchek, M. and Patchornik, A., J. Org. Chem. 29 (1964) 1629.
- 3. von Weber, R.W. and Nitschmann, R., Helv. Chim. Acta 61 (1978) 701.