Efficient metal-free conversion of glucose to 5-hydroxymethylfurfural using a boronic acid

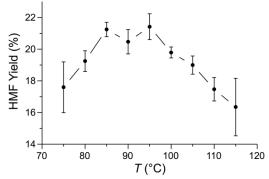
Brian J. Graham¹ • Ronald T. Raines¹

¹Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322, USA; ²Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA; ³Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA

Ronald T. Raines rtraines@mit.edu (+1) 617-253-1470

Graham & Raines

Table S1 Screen			version of glucose to I		
D · · · 1	HMF Yield (%)	HMF Yield (%)	D 1 1	HMF Yield (%)	HMF Yield (%)
Boronic acid	(anhydrous)	(aqueous)	Boronic acid HO _B OH	(anhydrous)	(aqueous)
HO、 _B _OH OH	20.3	0.3		7.0	0.1
HO_B_OH	6.9	0	HO _B OH	24.5	18.5
HO _B -OH	0.4	19.6	HO _B OH	3.4	4.5
HO _{`B} OH O N [*] O	15.1	0.2	HO _B OH	9.5	0.1
HO _B OH NH ₂	0.4	2.2	HO _B OH	6.6	0.1
HO_B_OH	24.1	44.1	HO, B, OH	8.2	0.6
HO _B OH H	23.9	0.5	HO _B OH	10.0	0.2
HO _B OH	4.1	0.0	HO _B OH	16.3	0.3
HO _B OH	10.6	0.7	HO. _B .CH	1.6	0.1
HO _B OH	12.8	0.3	HO _B OH	8.2	0.4
HO _B OH	0	0	None	0.15	0


Table S1	Screen of h	oronic acids	for the meta	l-free conversion	n of glucose t	o HMF in	[BMIM]Cl a
I able SI	Sereen or be	stonic actus	101 the meta		ii of glucose i		

^a Reaction conditions: [BMIM]Cl (1.0 g), glucose (10% w/v), and boronic acid (1 equiv), shaken (650 rpm) at 105 °C for 2 h. Two reactions were performed with each boronic acid: one with no added water (anhydrous) and one with added water (60 µL, 12 equiv) to mimic water from the MgCl₂·6H₂O (2 equiv) in Caes et al. (2013).

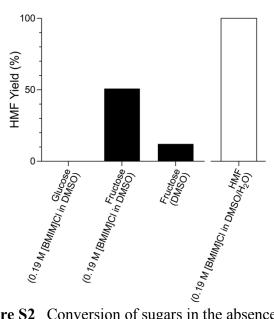

glucose to HMF in DMF. ^a						
Boronic Acid	HMF Yield (%)	Boronic Acid	HMF Yield (%)			
HO _B OH	0.0	HO.B.OH	0.0			
HO_B_OH	3.3	HO. B.OH	0.0			
HO B OF	0.0	HO _B OH	0.0			
HO _B OH NH ₂	0.0	HO _B OH	0.0			
HO _B OH OH	58.2	HO	0.0			
HO _B OH	0.0	HO ^B ,OH	0.0			
HO _B OH	0.0	HO,B,OH	0.0			
HO _B OH	0.0	HO.B-O	0.0			
HO.B.OH	0.0	HO, B, OH	16.3			

Table S2Screen of boronic acids for the metal-free conversion of
glucose to HMF in DMF.^a

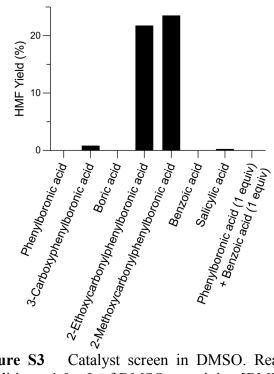

^a Reaction conditions: A 0.5-mL solution of DMF containing [BMIM]Cl (0.19 M), glucose (10% w/v), and catalyst (1 equiv); shaken (650 rpm) at 95 °C for 1 h.

Figure S1 Temperature-dependence of the conversion of glucose to HMF in [BMIM]Cl. Reaction conditions: [BMIM]Cl (1.0 g), glucose (10% w/v), and 2-CPBA (1 equiv), shaken (650 rpm) at the specified temperature for 2 h. n = 4 at each temperature.

Figure S2 Conversion of sugars in the absence of a boronic acid. Reaction conditions: 1.0 mL of solvent containing sugar (10% w/v), shaken (650 rpm) at 95 °C for 2 h. The solution containing HMF had 0.2 mL of added water to allow for HMF hydrolysis.

Figure S3 Catalyst screen in DMSO. Reaction conditions: 1.0 mL of DMSO containing [BMIM]Cl (0.19 M), glucose (10% w/v), and catalyst (1 equiv); 95 °C, 1 h, shaking at 650 rpm.