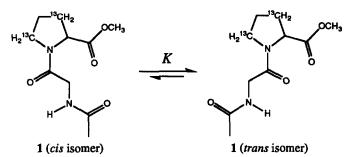
Thermodynamic Origin of Prolyl Peptide Bond Isomers


Eric S. Eberhardt, Stewart N. Loh, and Ronald T. Raines*

Department of Biochemistry University of Wisconsin-Madison, Madison, WI 53706-1569 USA

Abstract: The preference for the trans isomer of prolyl peptide bonds arises almost entirely from enthalpy in aqueous buffer and in toluene.

The trans (Z) isomer of a typical peptide bond is favored greatly over the cis (E) isomer. In contrast, a trans bond involving the nitrogen atom of a proline residue is favored only slightly, and both isomers are common in peptides and folded proteins.¹ Knowing the thermodynamic origin for the relative stability of X-Pro bond isomers is essential for understanding the conformation of peptides and proteins containing such bonds.² The difference in enthalpy for the *cis* and *trans* isomers of X–Pro bonds in aqueous solution has been reported to be zero for model peptides,³ or small (ca. 1.2 kcal/mol) for poly(Pro–Gly).⁴ The difference in free energy for the *cis* and *trans* isomers of amides has been calculated with the 6-31G** basis set of the Gaussian 82 *ab initio* program to be largely enthalpic in the gas phase.⁵ We have synthesized a peptide containing ¹³C-labeled proline, and used ¹³C NMR spectroscopy to determine the precise difference in enthalpy and entropy between the X–Pro bond isomers in protic and aprotic solvents.

Racemic Ac-Gly-[$\beta_0\delta^{-13}$ C]Pro-OMe (1) was synthesized by using standard methods.⁶ The N- and C-

termini of 1 were capped to minimize intramolecular electrostatic interactions, which have been shown to alter the relative stability of the *cis* and *trans* isomers of X-Pro bonds.⁷ The equilibrium constant (K) for the isomerization of 1 was determined by integration of the

 C_n resonances observed with ¹³C NMR spectroscopy at temperatures relevant for the study of protein stability.⁸

The effect of temperature on the value of K in aqueous buffer and in toluene is shown in Fig. 1. Van't Hoff analysis of these results (assuming $\Delta C_p^{\circ} = 0$) indicates that the difference in free energy for the X-Pro isomers of 1 originates almost entirely from enthalpic differences between these isomers. Further, the similarity of the enthalpies determined in aqueous buffer [$\Delta H^{\circ} = -(1.27 \pm 0.04)$ kcal/mol] and in toluene [$\Delta H^{\circ} = -(1.27 \pm 0.06)$ kcal/mol] suggests that the enthalpic forces that differentiate the *cis* and *trans* isomers of prolyl peptide bonds are similar in protic and aprotic environments. Differences in entropy, though

small, favor the *cis* isomer in both aqueous buffer and toluene. This entropic preference is, however, less in aqueous buffer $[\Delta S^{\circ} = -(0.25 \pm 0.11) \text{ cal·mol/K}]$ than in toluene $[\Delta S^{\circ} = -(0.71 \pm 0.18) \text{ cal·mol/K}]$. This result is consistent with the lower solvent accessibility of the amide C=O group in the *trans* isomer of 1, which diminishes the ability of this group to restrict H,O molecules through hydrogen bonding.⁹

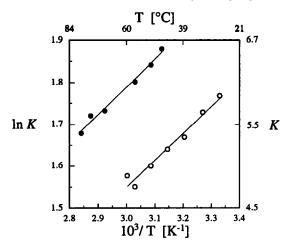


Fig. 1. Van't Hoff plot for the *cis* to *trans* isomerization of 1.

•, aqueous buffer: $\Delta H^\circ = -(1.27 \pm 0.04) \text{ kcal/mol}$ $\Delta S^\circ = -(0.25 \pm 0.11) \text{ cal·mol/K}$ O, toluene: $\Delta H^\circ = -(1.27 \pm 0.06) \text{ kcal/mol}$ $\Delta S^\circ = -(0.71 \pm 0.18) \text{ cal·mol/K}$ At 25°C in aqueous buffer: $\Delta G^\circ = -(1.34 \pm 0.05) \text{ kcal/mol}$ At 25°C in toluene: $\Delta G^\circ = -(1.48 \pm 0.08) \text{ kcal/mol}$

ACKNOWLEDGMENTS: E.S.E. is a Wharton Predoctoral Fellow. S.N.L. is supported by Cellular and Molecular Biology Training Grant GM07215 (NIH). R.T.R. is a Presidential Young Investigator (NSF), Searle Scholar (Chicago Community Trust), and Shaw Scientist (Milwaukee Foundation). The National Magnetic Resonance Facility at Madison is supported by Grant RR02301 (NIH).

REFERENCES AND NOTES

- (a) Thomas, W.A.; Williams, M.K. J. Chem. Soc., Chem. Commun. 1972, 994. (b) Evans, C.A.; Rabenstein, D.L. J. Am. Chem. Soc. 1974, 96, 7312-7317. (c) Stewart, D.E.; Sarkar, A.; Wampler, J.E. J. Mol. Biol. 1990, 214, 253-260.
- (a) Evans, P.A.; Kautz, R.A.; Fox, R.O.; Dobson, C.M. Biochemistry 1989, 28, 362-370. (b) Alexandrescu, A.T.; Hinck, A.P.; Markley, J.L. Biochemistry 1990, 29, 4516-4525. (c) Schultz, D.A.; Baldwin, R.L. Protein Sci. 1992, 1, 910-916.
- (a) Madison, V.; Schellman, J. Biopolymers 1970, 9, 511-567. (b) Maia, H.L.; Orrell, K.G.; Rydon, H.N. J. Chem. Soc., Chem. Commun. 1971, 1209-1210. (c) Raleigh, D.P.; Evans, P.A.; Pitkeathly, M.; Dobson, C.M. J. Mol. Biol. 1992, 228, 338-342.
- 4. Torchia, D.A. Biochemistry 1972, 11, 1462-1468.
- 5. Radzicka, A.; Pedersen, L.; Wolfenden, R. Biochemistry 1988, 27, 4538-4541.
- (a) Eberhardt, E.S.; Loh, S.N.; Hinck, A.P.; Raines, R.T. J. Am. Chem. Soc. 1992,14, 5437-5439. (b) Hinck, A.P.; Eberhardt, E.S.; Markley, J.L., submitted.
- 7. Grathwohl, C.; Wüthrich, K. Biopolymers 1981, 20, 2623-2633.
- NMR experiments were performed on a Bruker AM500 instrument. Samples contained 0.1 M 1 in 100 mM sodium phosphate buffer, pH 7.2, containing 20% (v/v) D₂O, or in dry toluene-d₈. ¹³C NMR of 1 (125.77 MHz, CDCl₃, 25 °C) δ 29.01 (C_β, trans), 31.26 (C_β, cis), 45.96 (C₈, trans), 46.61 (C₈, cis). δ was essentially independent of solvent or temperature.
- 9. Loh, S.N.; Eberhardt, E.S.; Edison, A.S.; Weinhold, F.; Raines, R.T.; Markley, J.L., submitted.

(Received in USA 2 February 1993)