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of the surface covered by the adsorbate. Thus, plots of -In (1 - 
0) versus time should be linear, with a slope proportional to the 
intrinsic rate of self-assembly. Figure 3 shows such a plot, for 
which 0 is calculated on the basis of data such as those depicted 
in Figure 2. As indicated, the data could be fit with a straight 
line (correlation factor ? = 0.99) with a near-zero intercept.6 The 
value of the intrinsic rate constant for self-assembly (k/[S]) based 
on spectral areas for six independent runs at  296 K was (1.15 f 
0.26) X s-I M-I, which compared well with that calculated 
on the basis of the height of the peaks, (0.95 f 0.18) X s-I 
M-I. That this value is smaller than the reported5 for OTS 
deposition on fused silica presumably arises from reactivity dif- 
ferences between the oxidelhydroxide layers of silicon and ger- 
manium. However, in as much as OTS deposition provides a 
close-packed film with no pendant functionality influencing the 
deposition process, it constitutes a benchmark for understanding 
the self-assembly of other siloxane-anchored monolayer films. 
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(6) During its initial stages, the rate of the deposition is the largest and 
the signals being observed are smallest. These factors introduce a large relative 
uncertainty in this part of the data compared to that obtained later in the 
deposition process. Despite the overall goodness of fit, close inspection of the 
early data reveals a possible deviation from linearity, a behavior that could 
be ascribed to the presence of a second class of surface sites displaying much 
faster kinetics. More detailed studies currently underway in this laboratory 
are expected to shed light on this phenomenon. 
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The interconversion of cis ( E )  and trans (Z) isomers of peptide 
bonds that include the nitrogen of proline residues can give rise 
to a slow kinetic phase during protein folding.i,2 This inter- 
conversion is catalyzed by the peptidyl-prolyl cis-trans isomerases 
( P P I a ~ e s ) . ~ s ~  Two of these enzymes, cyclophilin and FK-506 
binding protein (FKBP), have been studied extensively: (1) isotope 
effectsS and analyses of mutant enzymes6 suggest that the prolyl 
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Figure 1. Arrhenius plots for the cis to trans (A) and trans to cis (B) 
isomerizations of 1 in different solvents. The solvents (dielectric constant 
a t  25 "C) were as follows: , O ,  dioxane (2.21); 0, benzene (2.27); V, 
toluene (2.38); e, isopropyl alcohol (19.92); ., ethanol (24.55); e, tri- 
fluoroethanol (26.14); 0, acetonitrile (35.94); A, N,N-dimethylform- 
amide (36.71); B, water (78.30). Linear regression analysis is shown for 
each protic solvent (-) and all aprotic solvents (- - -). 

peptide bond does not suffer nucleophilic attack during catalysis, 
(2) calorimetry shows that binding to FKBP m u r s  with a large 
decrease in heat capacity,' and (3) structural studies of cyclophilinE 
and FKBP9 reveal active sites composed of hydrophobic side 
chains.I0 Consequently, desolvation has been proposed as a 
significant contributor to catalysis by the PPIases." This proposal 
is consistent with NMR line shape analyses of simple amides, 
which suggest that the rate of amide bond isomerization does 
indeed depend on solvent.12 To assess the contribution of de- 
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Figure 2. Plots of AG' for isomerization of 1 vs Y of amide I vibrational 
mode of Ac-Pro-OMe in different solvents. Symbols are as in Figure 1. 
Values of AG' were calculated by interpolating the Arrhenius plots of 
Figure 1 at 60 OC. Weighted linear regression analysis is shown for cis 
to trans [-, slope = -0.025 f 0.003 kcal.cm/mol] and trans to_ cis [- - -, 
slope = -0.029 f 0.002 kcal-cm/mol] isomerizations. AG'apratic - 
AG'wpfer = 1.3 f 0.2 kcal/mol. 

solvation to catalysis by the PPIases, we have determined the effect 
of solvent on the energetics of prolyl peptide bond isomerization 
(eq 1). 
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We performed our analyses on the simplest dipeptide that 
contains a prolyl peptide bond. Racemic A~-Gly-[j3,6-'~C]Pro- 
OMe (1) was synthesized using standard methods.I3 The N- and 
C-termini of 1 were protected so as to minimize intramolecular 
electrostatic interactions.I4 Solvent effects on the rate constants 
for the isomerization of the prolyl peptide bond of 1 were de- 
termined using inversion transfer I3C NMR s p e c t r o s ~ o p y . ~ ~ ~ ~ ~  
These measurements were performed at  temperatures at  which 
the rate constants were in the range detectable by NMR spec- 
troscopy.17 Solvent effects on the amide I vibrational mode of 
Ac-Pro-OMe, a model of 1 with only one amide bond, were 
determined using IR spectroscopy.'* 
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The origin of the barrier to the isomerization of amide bonds 
is commonly attributed to the double-bond character of the C-N 
bond, which results in a net transfer of charge from nitrogen to 
the carbonyl carbonI9 or oxygenm (or both21). If the amide group 
has greater charge separation when planar than when orthogonal, 
then its isomerization via an orthogonal transition state should 
be faster in less polar solvents.22 Further, if the partial charge 
on oxygen is greater in planar than in orthogonal amides, then 
protic solvents should restrict isomerization by forming a hydrogen 
bond to o ~ y g e n . ' ~ - ~ ~  

Temperature effects on the rate constant for the isomerization 
of 1 in different solvents are shown as Arrhenius plots in Figure 
1. The data in Figure 1 indicate qualitatively that protic solvents 
restrict isomerization of 1. The rate constants for the isomerization 
of 1 do not, however, correlate with the solvent dielectric constant 
or with other measuresz2 or solvent polarity. The rate constants 
do correlate with the ability of a solvent to donate a hydrogen 
bond. The relationship between the free energy of activation for 
the isomerization of 1 and the frequency of its amide I absorption 
band is shown in Figure 2. The amide I vibrational mode, which 
is primarily a C=O stretch, absorbs at  lower frequencies with 
increasing strength of a hydrogen bond to the amide ~ x y g e n . ~ ~ ~ ~ '  
The data in Figure 2 therefore suggest that the barrier to isom- 
erization (Act) is proportional to the strength of hydrogen bonds 
formed to the amide oxygen (given by v). These results are 
consistent with conventional pictures of amide resonance (eq l), 
which require transfer of charge between oxygen and nitrogen 
during isomerization.20*z' 

Solvent effects on the equilibrium constant for the isomerization 
of 1 are small. The value of the equilibrium constant for all 
solvents studied was K = kEZ/kzE = 4.3 f 0.9 at 60 "C, as 
calculated by interpolating the Arrhenius plots of Figure 1.% Thii 
lack of a solvent effect on K is also evident from the parallel lines 
in Figure 2. The absence of a dramatic solvent effect on K is 
consistent with the behavior observed for other amides.3d 

Activation parameters indicate that the bamer to isomerization 
of 1 is almost entirely enthalpic in all solvents studied, as observed 
with other  amide^.'^,^' The values of AG* (Figure 2) for the 
isomerization of 1 are, however, 1-2 kcal/mol smaller than the 
analogous values for acyclic tertiary amides.lZavd The smaller 
barriers for prolyl peptide bond isomerization may result from 
pyramidalization of the prolyl nitrogen, which decreases amide 
resonance.28 

The PPIases decrease the free energy of activation for prolyl 
peptide bond isomerization by 8 k ~ a l / m o l . ~ ~  Desolvation alone 

(18) IR experiments were done on a Nicolet 5PC spectrometer at  25 OC 
using NaCl or CaF2 plates or a ZnSe crystal. Samples contained 0.01 M 
Ac-Pro-OMe (Bachem Bioscience, Inc.), except for water and dimethylform- 
amide, which contained 2 M Ac-Pro-OMe. The frequency of the amide I 
vibrational mode was determined to within 3 cm-' and was not altered by 
doubling the concentration of Ac-Pro-OMe or by raising the temperature to 
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can apparently account for 1.3 kcal/mol of this decrease (Figure 
2).29 Similar medium effects may modulate the stability of planar 
peptide bonds during the folding,'*2 function,30 or lysis28 of proteins. 
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We present in situ atomic force microscope (AFM) images of 
two different structures of Bi underpotentially deposited' (upd) 
on Au( 1 1 1). The two different structures are correlated with the 
activity of this surface toward the electroreduction of H 2 0 2  to 
H 2 0  in acid electrolyte. 

The upd of Bi on Au( 1 1 1) has been well studied because the 
Bi overlayer acts as a catalyst for electroreduction proce~ses .~-~ 
The electrocatalytic activity of this surface is known to be de- 
pendent on the coverage of Bi. Three distinct stages in reactivity 
as a function of potential (and hence Bi coverage) have been 
~bserved.~ Electrodes with intermediate coverage of Bi are sig- 
nificantly more active toward reduction of H202 than either the 
full monolayer-covered surface or the bare Au( 1 1 1). The Bi on 
Au system has been intensively studied, and general voltammetric 
resp0nse,3.~~ electrosorption valency:-' I correlation between charge 
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Figure 1. AFM images ( 5  X 5 nm) of Bi upd on A u ( l l 1 )  in 0.1 M 
HClO,. (a) Au( l l1)  surface found positive of Bi upd peaks. Atomatom 
distance is 0.29 nm. (b) (2 X 2)-Bi adlattice found a t  200 mV vs EBi3+io. 
Atom-atom distance is 0.57 f 0.02 nm. (c) Uniaxially commensurate, 
rectangular Bi adlattice found a t  100 mV. Atom-atom distance is 0.34 
f 0.02 nm. (d) Schematic of Bi structures: left, rectangular lattice 
where P and U are primitive and nonprimitive unit cell vectors, respec- 
tively; right, (2 X 2)-Bi adlattice showing open Au and Bi sites. The Bi 
adatoms are larger than Au; they are shown smaller here for clarity. 

and ~ t r u c t u r e , ~ ~ ~ ~ ~  desorption  kinetic^,'^*'^ surface conductivity,16 
and specular reflectivity9J7 have all been examined. However, 
there is no direct insight available into the structures present on 
the surface, nor to the structural changes responsible for the 
changes in electrocatalytic activity. In order to understand the 
catalytic process, detailed in situ studies of the upd structures are 
necessary. 

Figure l a  shows the AFM image obtained in 1 mM Bi3+ + 0.1 
M HC104 at potentials positive of the first Bi upd peak, which 
occurs at 360 mV.'* This lattice exhibits a hexagonal orientation 
and 0.29 f 0.02 nm atomatom spacing which corresponds to the 
bare Au( 1 1 1) surface. When the potential is moved to between 
250 and 190 mV, an overlayer of Bi atoms forms (Figure lb). 
This upd overlayer is an open, hexagonal structure with an 
atom-atom spacing of 0.57 i 0.02 nm, which is 2 times the Au 
spacing. This lattice exhibits < 5 O  rotation relative to the Au lattice 
and is thus equivalent to a (2 X 2)-Bi commensurate structure. 
The right side of Figure Id shows one arrangement of this (2 X 
2)-Bi lattice; other arrangements with the Bi in 3-fold hollow or 
bridging sites are also possible. 
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