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ABSTRACT: The 1,3-dipolar cycloaddition between azides and
alkynes provides new means to probe and control biological processes.
A major challenge is to achieve high reaction rates with stable
reagents. The optimization of alkynyl reagents has relied on two
strategies: increasing strain and tuning electronics. We report on the
integration of these strategies. A computational analysis suggested that
a CH → N aryl substitution in dibenzocyclooctyne (DIBO) could be
beneficial. In transition states, the nitrogen of 2-azabenzo-benzocy-
clooctyne (ABC) engages in an n→π* interaction with the C=O of α-
azidoacetamides and forms a hydrogen bond with the N−H of α-
diazoacetamides. These dipole-specific interactions act cooperatively
with electronic activation of the strained π-bond to increase reactivity.
We found that ABC does indeed react more quickly with α-azidoacetamides and α-diazoacetamides than its constitutional isomer,
dibenzoazacyclooctyne (DIBAC). ABC and DIBAC have comparable chemical stability in a biomimetic solution. Both ABC and
DIBO are accessible in three steps by the alkylidene carbene-mediated ring expansion of commercial cycloheptanones. Our findings
enhance the accessibility and utility of 1,3-dipolar cycloadditions and encourage further innovation.

■ INTRODUCTION
The discovery of “spring-loaded”1 but chemoselective reactions
has transformed chemical biology, polymer chemistry, materials
chemistry, and allied fields. In this realm, a particular 1,3-dipolar
cycloaddition2,3 the strain-promoted azide−alkyne cyclo-
addition (SPAAC)4−6 has been at the forefront. Its
preeminence is attributable to the attractive features of the
azido group7−9 along with the formation of an aromatic
product,10,11 enabling high chemoselectivity.12,13

Efforts to both understand14−23 and optimize24−29 SPAAC
reactivity have focused on two strategies (Figure 1A): (1)
increasing strain (i.e., predistortion), and (2) tuning elec-
tronics.30−32 After the discovery of the reactivity of cycloalkynes
in SPAACs in chemical contexts,4−6 the utility of OCT was
demonstrated in a biological context.7 The installation of fluoro
groups at the propargylic position via a 10-step synthetic route
generated DIFO and further increased reaction rates24 while
compromising reagent stability.33 Initial theoretical investiga-
tions attributed the higher SPAAC reactivity to LUMO-
lowering.15,19 More recently, specific orbital interactions that
elicit a low-energy transition state (TS) have become
apparent.21,22 The exocyclic fluoro groups are gauche relative
to the forming C−N bonds. In contrast, optimal orbital overlap
(i.e., antiperiplanar) is achievable with endocyclic heteroatoms.
Studies in model systems34,35 and the subsequent substitution of
heteroatoms into cyclooctynes such as diF-SNO-OCT and
cyclononynes demonstrated the utility of this design princi-
ple.21,22,27−29

In parallel efforts, rate acceleration was pursued by increasing
strain. In particular, benzannulation to give DIBO36 and
DIBAC37,38 led to reaction rates comparable to those attained
with electronic tuning and without compromise to reagent
stability (Figure 1A). However, computations revealed steric
repulsion between the incoming dipole and the “flagpole” C−H
group (Figure 1B).18,39

Limited success has been achieved in the integration of
electronic tuning with strain. The installation of remote
heteroatoms has led to only incremental increases in reactivity40

and compromised reagent stability.26,40,41 Hence, reagents that
harness both strategies are absent from the landscape.
We sought a hybrid cyclooctyne reagent for SPAAC. To

begin, we performed computational analyses to guide reagent
development. We discovered that a single C−H → N
substitution at the “flagpole” position effects electronic
activation in a dibenzocyclooctyne (Figure 1C). Notably, a
C−N antibonding orbital of 2-azabenzo-benzocyclooctyne (2-
ABC) lies syn-periplanar relative to forming bonds, effectively
stabilizing the transition state. Additional stabilization can be
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attained by dipole-specific interactions between substituents on
the dipole and the azabenzo lone pair. This new class of
cyclooctyne provides a rate for cycloadditions that surpasses
those of commercially available cyclooctyne reagents with
negligible impact on stability in the presence of biological
nucleophiles.

■ RESULTS AND DISCUSSION
Design of an Optimal Dipolarophile. Our goal was to

identify a modification of the dibenzocyclooctyne scaffold to
accelerate its 1,3-dipolar cycloaddition with azides and diazo
compounds. We focused our computations on nitrogen
substitution, as the valency of nitrogen enables an isologous
C−H → N substitution within a benzo group. In accordance
with recent studies,23,42 we used Gaussian 16 to employ both the
M06-2X level of theory43,44 with the 6-311++G(d,p) basis set
(including the IEFPCM solvation model) and the B97D level of
theory45 with the 6-311+G(d,p) basis set (including the CPCM
solvation model). First, we modeled the 1,3-dipolar cyclo-
addition reactions of both N-methylazidoacetamide (1) and N-
methyldiazoacetamide (2) with DIBO and DIBAC, as well as a
series of constitutional isomers of DIBAC: azabenzo-benzocy-
clooctynes (ABCs; Tables 1 and S1).
We found that installing a nitrogen in DIBO can lower the

predicted energy barriers for cycloaddition with dipoles 1 and 2
(Scheme 1). Negligible differences in activation energies (ΔE‡)
and free energies of activation (ΔG‡) were observed for 3-, 4-,
and 5-ABC in their reactions with dipoles 1 and 2. In contrast, 2-
ABC and 6-ABC were predicted to be more reactive than the
other constitutional isomers. Notably, 2-ABC and 6-ABC
contain a propargylic C−N bond that enables a direct
interaction between the alkyne π-bond and the C−N
antibonding orbital (σ*CN).

22 Interestingly, the preferred
regioisomeric transition states generally favored the anti
approach of substituents on dipoles 1 or 2 relative to the
azabenzo group in all reactions except that with 2-ABC.
A comparison of optimized geometries and NBO charges on

each alkyne carbon of DIBO, DIBAC, 2-ABC, and 6-ABC
illustrates the effects of direct πCC→σ*CN interactions between

the alkyne and propargylic acceptors (Figure 2). Both 2-ABC
and 6-ABC display greater asymmetry and polarization as a
result of the proximal C−N bonds. In 2-ABC, the syn-periplanar

Figure 1.Optimization strategies employed to accelerate the strain-promoted cycloaddition reactivity of cyclooctynes. (A)Heteroatom-incorporation
tunes alkyne electronics; benzannulation increases strain. (B) Cyclooctyne substitutions can engender steric repulsion or electrostatic attraction. (C)
Strategic heteroatom placement in azabenzo-benzocyclooctyne (ABC) combines electronic-tuning with increasing strain while replacing steric
repulsion with a potentially dipole-specific n→π* interaction or hydrogen bond. Second-order rate constants (M−1 s−1) are for the reaction with benzyl
azide,30 2-azido-N-benzylacetamide,a or 2-diazo-N-benzylacetamideb (this work).

Scheme 1. Effect of Nitrogen Placement in
Dibenzocyclooctynesa

aActivation parameters (kcal/mol) were calculated at the M06-2X/6-
311++G(d,p) employing the IEFPCM solvation model (water).
Preferred regioisomers are indicated with energies in bold typeface.
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orientation of the C−N acceptor (relative to the obtuse lobe of
the bent alkyne) provides 5.7 kcal/mol of πCC→σ*CN
stabilization, whereas the anti-periplanar orientation in 6-ABC

provides 6.6 kcal/mol, quantified via the second-order
perturbation of NBO analysis from NBO 7.0 software (Figure
2B).46 The relatively minor difference in interaction energies,

Figure 2.Combining increased strain with electronic activation. (A)Optimized geometries andNBO charge on the alkynyl carbons of DIBO, DIBAC,
2-ABC, and 6-ABC calculated at the M06-2X/6-311++G(d,p) employing the IEFPCM solvation model (water). (B) Interactions of the distorted
alkyne with the syn-periplanar C−N bond in 2-ABC and the antiperiplanar C−N bond in 6-ABC. Shown are natural bonding orbitals depicting πCC→
σ*CN interactions, second-order perturbations energies, and PNBO overlap integrals (S). Strain energies (SE) were calculated with the isodesmic
equation in Figure S3.17

Figure 3. Computational analysis of cycloadditions withN-methylazidoacetamide (1) andN-methyldiazoacetamide (2). (A, B) Optimized transition
state geometries and free energies of activation (kcal/mol) calculated at the M06-2X/6-311++G(d,p) level employing the IEFPCM solvation model
(water). (C) Distortion/Interaction (Strain−Activation) analysis.
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despite the formal charge on the nitrogen in 6-ABC, is in
agreement with previous computational studies in which the syn-
periplanar geometry was found to offset the energy cost of
symmetric bending nearly as efficiently as the anti-periplanar
geometry in 1-fluoro-2-butyne.21 These direct interactions
between the alkyne π-bond and the propargylic C−N bonds
in 2-ABC and 6-ABC account for the asymmetry and alkyne
polarization.
Although the propargylic C−N bonds in 2-ABC and 6-ABC

lower the barriers to cycloaddition with azide 1 and diazo
compound 2, the two dipoles are affected differentially. For
instance, the barrier for the reaction of azide 1 with 2-ABC is
∼0.6 kcal/mol higher in energy than that for its reaction with 6-
ABC (21.9 versus 21.3 kcal/mol), whereas the same comparison
with diazo compound 2 shows a decrease of 0.2 kcal/mol (19.5
for 2-ABC versus 19.7 kcal/mol for 6-ABC).47 Such differences
can be exploited to develop chemoselective reactions between
similar dipoles that are mutually orthogonal.29,48,49

To understand the reactivity of 2-ABC with the intent of
exploiting differential reactivity toward different dipoles, we
employed distortion/interaction (strain−activation) analy-
sis.14,16,50−52 In particular, we sought to compare the reactivity
of 2-ABC with those of DIBO and DIBAC (Figure 3, Tables S2
and S3). We found that the transition states for the reaction of
each dipole with 2-ABC display the strongest interactions
(−10.9 and −14.3 kcal/mol for 1−2-ABC-TS and 2−2-ABC-
TS, respectively). Diazoacetamide 2 also provides a decrease in
distortion energies for both the dipole (16.8 kcal/mol) and the
cyclooctyne (3.7 kcal/mol) in 2−2-ABC-TS relative to both 2−
DIBO-TS and 2−DIBAC-TS.53 Meanwhile, azidoacetamide 1
displays both a dipole distortion energy (16.6 kcal/mol) and an
alkyne distortion energy (2.6 kcal/mol) in 1−2-ABC-TS that are
similar to those in 1−DIBAC-TS.
The origins of the favorable distortion and interaction

energies for both 2-ABC transition states became apparent
upon inspection of optimized geometries (Figures 3 and 4). The
propargylic C−N bond within 2-ABC facilitates bond
formation,22 resulting in shortened incipient bonds at the
internal N/Cwithin the 2-ABC-TS relative to the corresponding
DIBO-TS and DIBAC-TS, for each 1,3-dipole.
Interactions between the aryl nitrogen in 2-ABC and the

acetamide in both dipoles 1 and 2 are evident from large
interaction energies in optimized transition state geometries. In
addition, 2-ABC is the sole constitutional isomer in which the
syn approach of substituents on the incoming dipole relative to
the azabenzo ring is favored for both azide 1 and diazo
compound 2 (Scheme 1). Having found that interactions in
both 1−2-ABC-TS and 2−2-ABC-TS enable each dipole to
overcome alkyne polarization in 2-ABC (Figure 2), we next
examined the nature of the interactions that enhance cyclo-
addition reactivity.
We found that azide 1 adopts a conformation containing an

intramolecular N···H−N hydrogen bond within a 5-membered
ring. That hydrogen bond is retained in 1−2-ABC-TS (Figure
4). There, significant stabilization via an nN→π*C=O interaction
from the aryl nitrogen to the acetamide carbonyl of azide 1 is
apparent from an N···C=O distance of 2.89 Å, N···C=O angle of
θ = 105.2°, and energy of 2.0 kcal/mol (Figure 4). Such an n→
π* interaction54 is unprecedented in a SPAAC. In contrast to
azide 1, the diazo compound 2 does not form an intramolecular
hydrogen bond. Instead, we found an intermolecular hydrogen
bond with an N···H−N distance of 2.17 Å and energy of 3.9
kcal/mol in 2−2-ABC-TS. That strong hydrogen bond leads to a

lower activation barrier for diazoacetamide 2 than that for azide
1.

Synthesis of ABC. We sought to experimentally test the
computational results. When considering the available synthetic
methods to access strained alkynes, we were challenged by the
inherent limitations posed by an azabenzo group. Common
routes to cyclooctynes rely on the synthesis of parent alkenes,
dibromination, and subsequent elimination of HBr (2 × ), often
requiring extended synthetic routes.30,37,38 A possible circum-
vention is the Friedel−Crafts reaction of electron-rich benzyl
phenyl ethers with tetrachlorocyclopropene, followed by
hydrolysis to generate a biaryl cyclopropenone and UV
irradiation to form a cycloalkyne.26 Unfortunately, an azabenzo
group is not compatible with a Friedel−Crafts reaction.
To overcome these challenges, we reasoned that we could

harness the high energy that is inherent in an alkylidene carbene
to accomplish a [1,2]-rearrangement that yields strained alkynes
(Scheme 2). In analogy to the Fritsch−Buttenberg−Wiechell
rearrangement55−57 (which is the second step of the Corey−
Fuchs reaction58), we sought to enlist the dehydrative
fragmentation of a 5-hydroxyalkyl-1H-tetrazole, accessed via
N-morpholinomethyl-5-lithiotetrazole that is generated in
situ.59,60 Specifically, we found that the nucleophilic addition
of N-morpholinomethyl-5-lithiotetrazole to commercially avail-
able ketone 3, which is a precursor to the antihistamine
loratadine (Claritin),61 proceeded smoothly in THF and
afforded tetrazole 4 after acid hydrolysis. Dehydration with
EDC in THF gave a tetraazafulvene intermediate, which
expelled dinitrogen to generate an unstable alkylidene
carbene.62 Its [1,2]-rearrangement63 afforded the desired
cyclooctyne. Adventitiously, this opportunistic route to ABC
affords a chloro group that is an ideal handle for functionaliza-
tion through well-established aryl chloride coupling chem-

Figure 4. Comparison of interactions in 2-ABC cycloadditions withN-
methylazidoacetamide (1) and N-methyldiazoacetamide (2). (A)
Second-order perturbations obtained from an NBO analysis. (B) Key
stabilizing orbital interactions: N···C=O n→π* interaction with azide 1
and N···H−N hydrogen bond with diazo compound 2.
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istry.64,65 We also applied the alkylidene carbene ring-expansion
strategy for the expedient synthesis of DIBO, and we anticipate
its utility in the synthesis of other cycloalkynes as well.
Reactivity of ABC.With ABC in hand, we examined its 1,3-

dipolar cycloaddition with common dipoles. We focused on 2-
azido-N-benzylacetamide (5) and 2-diazo-N-benzylacetamide
(6).48,49,53,66−68 We measured the rates for the reaction of
dipoles 5 and 6 with ABC in both aprotic (CH2Cl2) and protic
solvents (MeOH and PBS containing 2% v/v DMSO).69 We
assessed the depletion of ABC by using HPLC and calculated
second-order rate constants from the slope of a plot of [ABC]−1

versus time. As a benchmark, we also measured the rate of the
reaction of DIBO with each dipole.30

We found the reaction rates with ABCwere exceptionally high
(Figure 5). In all solvent conditions, each acetamide dipole
displayed rate constants with ABC that exceed those attainable
with commercially available cyclooctyne reagents. In CH2Cl2,
the rate constants are among the highest reported for both
SPAAC and the analogous reaction with diazo compounds. The
strategic CH→N substitution that converts DIBO to ABC leads
to 30- and 1200-fold rate increases with 2-azido-N-benzylace-
tamide (5) and 2-diazo-N-benzylacetamide (6), respectively.
A significantly larger rate constant for diazoacetamide 6 over

azidoacetamide 5 provides experimental corroboration of the
computational predictions (Scheme 1 and Figure 3). With
DIBO, 2-azido-N-benzylacetamide reacts 2- to 3-fold faster than
2-diazo-N-benzylacetamide, consistent with reactions of DI-
BAC9b and DIBONE.66 Thus, the ∼20-fold rate increase of the
diazoacetamide over the azidoacetamide with ABC exceeds the
difference observed with both DIBAC and DIBONE as well as
with SNO-OCTs.28,29

To provide a benchmark for the general use of ABC in a
SPAAC, we performed a competition experiment. Specifically,
wemixed 1 equiv of ABCwith 1 equiv of both azide 5 and benzyl
azide. The product ratios indicated a preferential reaction with
azide 5 (71:29 in CH2Cl2 and 65:35 in MeOH), consistent with
a favorable n→π* interaction in its TS (Figure 4) that is not

accessible by benzyl azide. We conclude that α-azidoacetamides
(like azide 5) are ideal for a SPAAC with ABC but other azides
can react rapidly as well. Moreover, ABC avails of tunability that
is atypical for SPAAC reactivity.66,70,71

Basis for ABC Reactivity.We sought the basis for the high
reactivity of ABC beyond electronic tuning of the LUMO energy
via direct orbital interactions (Figure 2). We began by
corroborating the existence of an intramolecular hydrogen
bond in an α-azidoacetamide (Figure 4). We found that azide 5
does indeed adopt a conformation containing an N···H−N
hydrogen bond within a 5-membered ring. That hydrogen bond
is evident from the large downfield 1H NMR chemical shift of
the donor proton (6.64 ppm in CDCl3) compared with the
analogous H−N proton in N-benzylacetamide (5.87 ppm in
CDCl3), which lacks an azido group.
Next, we probed for the formation of an intermolecular n→π*

interaction and hydrogen bond upon cycloaddition with ABC
(Figure 4) by ascertaining the regiochemistry of cycloadducts.
Because N-methylation of the amide in 5 and 6 should impede
intermolecular interactions in both 1−2-ABC-TS and 2−2-
ABC-TS (Figure 4), regioselectivity should report on their
importance. As expected, 1H NMR spectra revealed that
regioselectivity is attained only when these interactions are
accessible in the two transition states (Figure 6A,B).
To further assess the effect of the putative hydrogen bond in

2−2-ABC-TS (Figure 4), we tested the reactivity of ABC and
DIBO with benzyl 2-diazoacetate (7), which lacks a hydrogen
bond donor. We found that the rate constant for the reaction of
ABCwith ester 7was nearly 200-fold lower than that with amide
5. This decrease is substantially greater than the 5-fold decrease
in rate constant for the reaction of these same dipoles withDIBO
(Figure 5).
Lastly, we found that the use of protic solvents has little effect

on the rate constant for the reaction of ABC with azide 5 but
lowers the rate constant for the reaction with diazo compound 6
(Figure 6C). These data are consistent with reports that protic
solvents both strengthen and weaken aspects of an n→π*
interaction,72,73 like that in 1−2-ABC-TS, but weaken hydrogen

Scheme 2. Synthesis of ABC and Putative Mechanism for the
Alkylidene Carbene Ring-Expansion of the Intermediate

Figure 5. Second-order rate constants for the 1,3-dipolar cycloaddition
of DIBO or ABC with dipoles 5−7 in CH2Cl2. Values are the mean ±
SE from triplicate experiments.
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bonding,74,75 like that in 2−2-ABC-TS (Figure 4B). Still, the
reaction rates observed in protic solvents are among the highest
reported for 1,3-dipolar cycloadditions.30

Stability of ABC. Only a stable alkyne has utility for a
SPAAC in a physiological context. Accordingly, we determined
the stability of ABC in the presence of biological nucleophiles.
To do so, we employed the nucleophiles within glutathione,76

which contains amino, carboxyl, and sulfhydryl groups. As a
comparator, we used DIBAC. Specifically, we incubated ABC
and DIBAC in a solution of reduced glutathione (1 mM) and
oxidized glutathione (0.2 mM) in PBS containing DMSO (2%
v/v) at 37 °C (Figure S7). The rates of degradation of ABC and
DIBAC under these conditions were comparable, with t1/2 = 1.9
h and t1/2 = 3.8 h, respectively.

■ CONCLUSIONS
In summary, computations were successful in guiding the design
of ABC, which is the first known heterobiarylcyclooctyne. Its
combination of alkynyl strain and electronic tuning provides rate

constants that are among the highest reported for a SPAAC.
Moreover, the reaction of ABC with a diazo compound can be
>10-fold faster than that with an azido analog, further expanding
utility. The three-step synthetic route to ABC (and DIBO) is the
first example of accessing a strained alkyne using an alkylidene
carbene-mediated ring expansion. This route is shorter than that
for accessing any other cyclooctyne used for SPAACs.30 Finally,
ABC could harbinger a new class of dipolarophiles that exploit
cooperative elements of molecular recognition (e.g., an n→π*
interaction or hydrogen bond).
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Jesús M. Dones − Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139,
United States

Nile S. Abularrage − Department of Chemistry, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139,
United States; orcid.org/0000-0002-3112-2591

Namrata Khanal − Department of Chemistry and Chemical
Biology, University of New Mexico, Albuquerque, New Mexico
87131, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/jacs.1c03133

Notes
The authors declare the following competing financial
interest(s): The Massachusetts Institute of Technology has
applied for a patent on technology described in this article.

■ ACKNOWLEDGMENTS
This work was supported by Grant R01 GM044783 (NIH).
High-performance calculations made use of resources at the
UNM Center for Advanced Research Computing, which is
supported in part by the National Science Foundation. We
would like to thank Brian J. Graham (Massachusetts Institute of
Technology) and Dr. Matthew R. Aronoff (ETH−Zürich) for
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