Bifunctional Peptide that Anneals to Damaged Collagen and Clusters TGF-β Receptors Enhances Wound Healing

Sayani Chattopadhyay, Leandro B. C. Teixeira, Laura L. Kiessling, Jonathan F. McAnulty, and Ronald T. Raines*

ABSTRACT: Transforming growth factor-β (TGF-β) plays important roles in wound healing. The activity of TGF-β is initiated upon the binding of the growth factor to the extracellular domains of its receptors. We sought to facilitate the activation by clustering these extracellular domains. To do so, we used a known peptide that binds to TGF-β receptors without diminishing their affinity for TGF-β. We conjugated this peptide to a collagen-mimetic peptide that can anneal to the damaged collagen in a wound bed. We find that the conjugate enhances collagen deposition and wound closure in mice in a manner consistent with the clustering of TGF-β receptors. This strategy provides a means to upregulate the TGF-β signaling pathway without adding exogenous TGF-β and could inspire means to treat severe wounds.

INTRODUCTION

The transforming growth factor β (TGF-β) family is a group of mammalian secretory proteins that play myriad roles in development and disease.1−4 Their biological activities are initiated upon interaction with two type-I receptors (TβRI) and two type-II receptors (TβRII).5−7 These cell-surface receptors are characterized by an extracellular TGF-β-binding domain, a transmembrane domain, and a cytosolic serine/threonine kinase domain.8 Upon binding to TGF-β, TβRII recruits TβRI into an activated heterotetrameric complex (Figure 1A). The cytosolic domain of TβRII then catalyzes the phosphorylation of the regulatory region of TβRI and thereby activates the adjacent serine/threonine kinase domain, ultimately leading to the phosphorylation of downstream effectors, Smad2 and Smad3, which translocate to the nucleus and mediate the gene expression.

Activation of the TGF-β signaling cascade can promote dermal fibrosis.9−13 For example, TGF-β administered to full-thickness wounds in rabbits by encapsulation in a collagen sponge scaffold accelerates re-epithelialization and contraction.14 Similarly, TGF-β applied topically or by injection heals wounds by increasing the tensile strength and promoting fibroblast proliferation and collagen deposition.15−20 These approaches, however, require the administration of exogenous TGF-β, which can have deleterious consequences.9−12

Using phage display, we identified dodecapeptides that bind to the extracellular domains of both TβRI and TβRII to form complexes with $K_d \approx 10^{-5}$ M.21 These peptides do not, however, antagonize the binding of TGF-β. In addition, we demonstrated that a multivalent display of these ligands on a polyethylene glycol (PEG)-based dendrimer increases their functional efficacy for the receptors.21 Likewise, immobilization of the ligands on a synthetic surface enables activation by subpicomolar concentrations of endogenous TGF-β.22 Gene expression profiles revealed that the surfaces regulate TGF-β-responsive genes selectively. Now, we sought to exploit these ligands in vivo.

Collagen is the major component of the extracellular matrix (ECM).23−25 We and others have reported on the use of collagen-mimetic peptides (CMPs) to anchor probes and growth factors in damaged or abnormal collagen.26−35 Here, we use a CMP conjugate to immobilize a peptidic ligand for TGF-β receptors in wound beds of mice. Our intent is to cluster cell-surface TβRI and TβRII and thereby enhance the sensitivity of cells to circulating TGF-β (Figure 1B). As TGF-β is involved in various stages of wound healing,9−12 we validate the efficacy of our approach by using a variety of assays.

Received: September 22, 2021
Accepted: January 12, 2022
Published: January 27, 2022
RESULTS AND DISCUSSION

Peptide Design. As an effector to sensitize cell-surface receptors to TGF-β signaling, we used the LTGKNFPMFHRN peptide.21 As a CMP, we chose (PPG)₇ because of its simplicity and demonstrated efficacy in relevant contexts in vitro, ex vivo, and in vivo.26,28,30,33,34 We note that the use of a CMP containing 4-fluoroproline residues could be advantageous in future studies.29,31,36 In its initial discovery, LTGKNFPMFHRN (Tβrl) was displayed as a fusion to the N-terminus of the PIII coat protein of the phage.71 We mimicked this display by conjugating Tβrl to the N-terminus of CMP. Accordingly, we synthesized the 33-mer peptide Tβrl-CMP and its Tβrl and CMP components by solid-phase peptide synthesis (SPPS).

Mouse Model. Wound healing is a complex process. Mouse models have illuminated the mechanisms that underlie wound healing and established translatable therapeutic strategies.37−40 We chose to use diabetic (db/db) mice as our model. These mice exhibit characteristics similar to those of adult human onset type II diabetes mellitus,41,42 including impaired wound healing.43 Excisional wounds in db/db mice show a delay in wound closure, decreased granulation tissue formation, decreased vascularization in the wound bed, and diminished cell proliferation.44 The course of wound healing in these mice follows closely the clinical observations of human diabetic patients.45 For example, these mice show delayed and reduced expression of keratinocyte growth factor and peripheral neuropathy,46 as do diabetic humans.47

We employed an excisional wound model, which heals from the wound margins and provides the broadest assessment of the various parameters for wound healing, such as epithelialization, fibrovascular proliferation, contracture, and angiogenesis.55 This wound model also offers large dorsal surfaces that simplify the application of topical agents directly into the wound bed and provides two wounds side-by-side on the same mouse.

Unsplinted Wounds. Wounds were created in the craniodorsal region of db/db mice under anesthesia and treated topically with Tβrl-CMP (25 μL of a 20 mM solution in 5% PEG/saline solution).48,49 CMP and Tβrl (25 μL of 20 mM solutions in 5% PEG/saline) were also tested individually. The delivery vehicle itself was tested as a control. The fibrovascular influx and the deposition of new collagen in wounds were measured by examining the picrosirius red-stained histologic sections under polarized light50 and expressed as a percentage of the total wound area. The picrosirius red stain highlights the areas of new collagen deposition, as well as extant dermal collagen. Due to more extensive cross-linking and maturation, older collagen is stained more brightly and densely in comparison to newly formed collagen. Upon its release from degranulating platelets, TGF-β1 can attract fibroblasts chemotactically to a wound site51−53 and stimulate their proliferation.54 As part of a

![Figure 1](https://example.com/figure1.png)

Figure 1. Representation of TGF-β receptor–ligand complex formation and its activation of the Smad2/3 proteins by their cytosolic kinase domains. (A) TGF-β induces the heterotetramerization of type-I and type-II receptors (TβRI and TβRII). (B) Clustering of TβRI and TβRII by binding to a ligand (Tβrl) that is immobilized in a wound bed upon the annealing of a pendant CMP.

![Figure 2](https://example.com/figure2.png)

Figure 2. Effect of Tβrl-CMP (0.5 μmol) and controls on the healing of unsplinted cutaneous wounds in mice. Values are the mean ± SE (n = 10 wounds in 5 mice) with *p < 0.05. (A) Fibrovascular influx in wounds on a scale of 0−4 on day 12 post-surgery. (B) Inflammation in wounds on a scale of 0−4 on day 12 post-surgery. (C) Re-epithelialization of wounds on day 16 post-surgery. (D) Wound closure on day 12 post-surgery, calculated as the wound size as a percentage of the original wound size on day 0.
positive feedback mechanism, fibroblasts release additional TGF-β in response and promote collagen biosynthesis.

Compared to the control wounds treated with TβrI, CMP, or the delivery vehicle, wounds exposed to TβrI–CMP exhibited a significant increase in the amount of collagen deposited in the wound bed (Figure 2A). This result is consistent with reports in which topical application of TGF-β in animal models enhanced the production of collagen and fibronectin by fibroblasts55,56 and potently stimulated granulation tissue formation in wound-healing models.57,58 In contrast, the production of collagen was diminished in the presence of anti–TGF-β antibodies.59

The wound-healing process is associated with the transient accumulation of fibroblasts that express elevated levels of TβRI and TβRII.35–39 The highest cellular density is observed in the deepest regions of the granulation tissue.60 TβrI–CMP tethered to the wound bed is poised to preorganize these receptors and thereby enhance the cellular sensitivity to endogenous TGF-β signaling and the consequent formation of new collagen, without a need for exogenous TGF-β (Figure 1).

Earlier work showed that tethering TGF-β to a PEG-based polymer scaffold caused a significant increase in matrix production and collagen deposition.55 Such a treatment also counteracted the attenuation of ECM production, which is observed otherwise in the presence of biomaterials containing cell-adhesive ligands.62 The TβrI–CMP conjugate can behave in a similar manner and promote cellular adhesion while strengthening the wound bed itself by enhancing collagen synthesis and consequent ECM production. TβrI alone cannot, however, access such preorganization and provides a response that is indistinguishable from that of the delivery vehicle (Figure 2A).

A similar outcome was apparent when wounds were analyzed for an inflammatory response. The concentration of TGF-β is ~1 pM in human serum.63 Upon cutaneous injury, TGF-β levels elevate rapidly.64,65 For example, TGF-β levels reach a peak at 3 days post 6 mm full-thickness wounding in transgenic mice, which coincides with the peak of the inflammation during early stages of wound healing.65 Subcutaneous injection of TGF-β affords a histological pattern for neutrophil and macrophage recruitment, fibroblast proliferation, and vascular growth, similar to the process of normal inflammation and repair in cutaneous wounds.66 In early stages, TGF-β is a highly chemotactic ligand for human peripheral blood monocytes,66 which is critical for the initiation of an inflammatory response. Through a positive feedback mechanism, the recruited monocytes and macrophages produce more TGF-β (thereby perpetuating their activation) as well as mitogenic and chemotactic substances that act on other cells. Wounds treated with TβrI–CMP showed an inflammatory influx significantly greater than that of TβrI, CMP, or the delivery vehicle (Figure 2B). The macrophages once activated or during maturation down-regulate their receptors for TGF-β and hence their ability to be stimulated further.66 The peripheral blood monocytes also become susceptible to deactivation by TGF-β,67 which inhibits the proteolytic environment created by inflammatory cells and eases the healing process into a proliferative phase.68

Re-epithelialization is the process by which keratinocytes both proliferate and migrate from the wound edges to create a barrier over the wound.69 The role of TGF-β in this process is not completely understood. In vitro, TGF-β inhibits the proliferation of keratinocyte but enhances their migration.70,71

In Vivo Data Are Contradictory. Transgenic mice that overproduced TGF-β show enhanced epithelialization in partial-thickness wounds,72 and anti–TGF-β antibodies administered to rabbits impair epithelialization.73 On the other hand, mice null for Smad3 show accelerated keratinocyte proliferation and epithelialization upon the administration of TGF-β compared to wild-type mice.74,75 In our experiment, we observed a tendency toward increased epithelialization of wound beds treated with TβrI–CMP (Figure 2C). This result is consistent with cells responding quickly to endogenous TGF-β, which modulates the proliferative and migratory properties of the keratinocytes.70,71

No discernible differences were apparent in the rate of wound closure in the treated wounds (Figure 2D). This equivalence could be due to the preponderance of wound closure by contracture in rodents. That obscures wound changes related to epithelial closure or from the formation of scabs, whose removal disturbs the newly formed epidermis and could make wound size measurements inconclusive. We therefore took an alternative, complementary experimental approach.

Splinted Wounds. Mouse skin models are informative but dissimilar from human skin models in that their major mechanism of wound closure is contraction; in humans, re-epithelialization and granulation tissue formation are the major phases.35–39 The use of splints around excisional wounds in mice forces healing to occur by granulocyte formation and re-epithelialization while minimizing the effects of contraction compared to those in unsplinted wound models.75 As described previously,78 we sutured silicone O-rings around the wound margins to act as splints. We increased the cohort size to eight mice per group. Wounds were treated with 25 μL of TβrI–CMP, TβrI, CMP, or the delivery vehicle, as with the unsplinted wounds. The wounded mice were then allowed to recover and monitored over a period of 16 days.

Histopathological analysis post-euthanasia on day 16 revealed that 15 of the 16 wounds treated with TβrI–CMP were closed completely (Figure 3). Likewise, the wound size

![Figure 3. Representative images of splinted wounds in mice on day 0 (i.e., immediately post-surgery) and on day 16 post-surgery after the removal of splints but before euthanasia. Wounds were treated with vehicle (5% PEG/saline), TβrI (0.5 μmol), CMP (0.5 μmol), or TβrI–CMP (0.5 μmol). In mice treated with TβrI–CMP, 15 of the 16 wounds showed complete closure. Scale bars (blue) are separated by 1.0 mm.](https://doi.org/10.1021/acschembio.1c00745)
was significantly lower than that for the delivery vehicle (Figure 4A). Treatment with TβrI also showed a slightly enhanced wound closure, though it was not significantly different than that for the delivery vehicle and comparable to that for treatment with CMP. Upon comparing the extent of re-epithelialization, we noticed improved keratinocyte proliferation in the wound beds treated with TβrI–CMP in comparison to that in the wounds treated with CMP or the delivery vehicle (Figure 4B). TGF-β has been reported to promote epithelial cell attachment and migration in vivo and to stimulate the expression of keratinocyte integrins during re-epithelialization. Keratinocyte migration takes place across a substrate, typically the dermis. The deposition of a substantial granulation tissue layer over the longer time period of the splinted-wound experiments (16 days) could have provided the requisite surface for the migration of keratinocytes and increased the length of the newly formed epithelial layer.

Dose–Response Analyses. Finally, we assessed the potency of the TGF-β receptor ligand in the ECM formation by treating the wounds with increasing doses of TβrI–CMP. Identical 6 mm o.d. wounds were created on the backs of db/db mice (5 mice/10 wounds per group) and then treated with a 25 μL solution of TβrI–CMP (0.08–50 mM) for 30 min. The mice were allowed to recover, and the wounds were analyzed after 12 days. The amount of newly formed collagen in the wound bed was identified with picrosirius red stain and expressed as a percentage of the marked area at a depth of 0.75 mm from the healed surface.

The extent to which collagen deposition was comparable in the wounds treated with 0.08, 0.4, 2.0, and 10.0 mM solutions but increased in wounds treated with 50 mM TβrI–CMP (Figure 5A). These data were mirrored in the histopathological analyses (Figure 6).

Wound re-epithelialization did not exhibit a marked dependence on the TβrI–CMP dose, though there seemed to be a tendency for a higher response upon treatment with higher doses (Figure 5B). The inflammatory response was reflected in the presence of mononuclear cells in larger amounts in wounds treated with higher doses than in wounds treated with lower doses, which retained discernible amounts of neutrophils and polymorphonuclear cells.

CONCLUSIONS

A TβrI–CMP conjugate can upregulate collagen formation in mice. This result along with in vitro data are consistent with its clustering of TGF-β receptors and thereby sensitizing cells to endogenous TGF-β. This mode of action is unique for a pendant on a CMP that is annealed to a wound bed and provides opportunities. The closure of severe wounds where viable tissue has been destroyed by trauma involves the deposition of new collagen in accordance with the severity of the damage. The amplified TGF-β activity during the initial stages of the wound healing process stimulates fibroblast proliferation and activity, as well as keratinocyte migration over the surface of the wounds. These actions accelerate the closure of wounds and the acquisition of tensile strength. Dose–response studies suggest that the amount of collagen deposition can be regulated without substantial changes in the rate of re-epithelialization. This type of healing could elicit scar formation yet could provide an effective means to treat severe damage, as incurred from third- or fourth-degree burns or traumatic mechanical damage, which might otherwise lead to lifelong impairment.
EXPERIMENTAL PROCEDURES

Materials. Commercial chemicals were of reagent grade or better and were used without further purification. Anhydrous solvents were obtained from CYCLE-TAINER solvent delivery systems from J. T. Baker. High-performance liquid chromatography (HPLC)-grade solvents were obtained in sealed bottles from Fisher Chemical. In all reactions involving anhydrous solvents, glassware was either oven- or flame-dried. Polyethylene glycol 8000 (PEG) from Fisher Chemical and bacteriostatic saline (0.9% w/v sodium chloride) from Hospira were used to prepare 5% w/v PEG in saline solution as a delivery vehicle for treatments.

Male mice (n = 92) (BKS.Cg-Dock7m +/- Lep/J) were from The Jackson Laboratory. Isoflurane was from Abbott Laboratories, buprenorphine-HCl was from Reckitt Benckiser, and chlorhexidine gluconate (4% w/v) was from Purdue Products. Silicone O-rings (15 mm o.d., 11 mm i.d., 2 mm thickness) were from McMaster Carr.

Instrumentation. Semi-preparative HPLC was performed using a Varian Dynamax C-18 reversed-phase column. Analytical HPLC was performed using a Vydac C-18 reversed-phase column. Mass spectrometry was performed using an Applied Biosystems Voyager DE-Pro matrix-assisted laser desorption/ionization mass spectrometer from Life Technologies at the Biophysics Instrumentation Facility at the University of Wisconsin—Madison.

Peptide Synthesis and Purification. Peptides were synthesized by SPPS using a 12-channel Symphony peptide synthesizer from Applied Biosystems Voyager DE-Pro matrix-assisted laser desorption/ionization mass spectrometer from Life Technologies at the Biophysics Instrumentation Facility at the University of Wisconsin—Madison.

Peptide Synthesis and Purification. Peptides were synthesized by SPPS using a 12-channel Symphony peptide synthesizer from Protein Technologies at the University of Wisconsin by SPPS using a 12-channel Symphony peptide synthesizer from Applied Biosystems Voyager DE-Pro matrix-assisted laser desorption/ionization mass spectrometer from Life Technologies at the Biophysics Instrumentation Facility at the University of Wisconsin—Madison.

**CMP and Tfh−CMP were synthesized by the sequential coupling of FmocProOH and FmocProProGlyOH. A proline residue was coupled to the FmocGly-Wang resin after a swelling cycle, and the next seven residues were installed by using excess (5 equiv) FmocProOH, FmocProProOH, which was synthesized as reported previously,[18] FmocAsn(Trt)OH, FmocArg(Pbf)OH, FmocHis(Trt)OH, FmocPheOH, FmocMetOH, FmocLys(Boc)OH, FmocGlyOH, FmocThr(But)OH, and FmocLeuOH. CMP was cleaved from the resin by using 95:2.5:2.5 trifluoroacetic acid (TFA)/trisopropylsilane/water (total volume: 2 mL); Tfh−CMP was cleaved from the resin by using 92.5:5:2.5 TFA/thioanisole/ethanedithiol (total volume: 2 mL). Both peptides were precipitated from 1-butylmethylether at 0 °C, isolated by centrifugation, and purified by semi-preparative HPLC using linear gradients: CMP, 5–85% v/v B over 45 min and Tfh−CMP, 10–90% v/v B over 50 min. Solvent A was H2O containing TFA (0.1% v/v); solvent B was CH3CN containing TFA (0.1% v/v). CMP was readily soluble in water, but Tfh−CMP required the addition of CH3CN (20% v/v) to form a clear solution for HPLC analysis. All peptides were judged to be >90% pure by HPLC and matrix-assisted laser desorption/ionization time-of-flight (MALDI–TOF) mass spectrometry: (m/z) [M + H]+ calc for CMP, 1777; found 1777; (m/z) [M + H]+ calc for Tfh−CMP, 3221; found 3221.

Mouse Models. Mice aged 8–12 weeks were housed in groups until the day of surgery and then in separate cages post-surgery. The experimental protocol followed was according to the guidelines issued by the Institutional Animal Care and Use Committee at the University of Wisconsin—Madison. Mice were provided food and water ad libitum, as well as enrichment, and housed in a temperature-controlled environment with 12 h light and dark cycles.

On the day of the surgery, mice were anaesthetized with isoflurane gas using an induction chamber. For pain management, buprenor-
keratinocytes covering the wound area and was calculated by measuring the distance between the free edge of the keratinocyte layer and the base where the cells were still associated with the native dermal tissue. Both sides of the lesion were measured, and the final result was the sum of the two measurements. For wounds that had undergone complete re-epithelialization, a single measurement was taken from base to base.

Fibrovascular dermal proliferation was measured by examining the picrosirius red-stained sections under polarized light, which highlighted the newly deposited dermal collagen. CellScience Dimension scored the newly deposited dermal collagen. CellScience Dimension used a lighted the newly deposited dermal collagen. CellScience Dimension scored the newly deposited dermal collagen. CellScience Dimension used a

Statistical Analyses. All data were analyzed using a Mann–Whitney rank sum test, and statistical significance was set as \(p < 0.05 \). Statistical analyses were executed using Prism Version 5.0 software from GraphPad Software.

Funding
This work was supported by grants RC2 AR058971, R56 AR044276, R01 AI055258, and R01 GM049975 (NIH). MALDI–TOF mass spectrometry was performed at the University of Wisconsin–Madison Biophysics Instrumentation Facility, which was established with grants BIR-9512577 (NSF) and S10 RR013790 (NIH).

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We are grateful to L. Li and N. L. Abbott for their guidance and advice. We thank P. Kierski, D. Calderon, D. Tackes, K. Johnson, and Z. Joseph for help with the wound surgery and animal care.

ABBREVIATIONS

\(\text{CMP} \), collagen-mimetic peptide \{here, (PPG)\}_{n}; \(\text{TGF-\beta} \), transforming growth factor–\(\beta \); \(\text{fTfR} \), collagen-mimetic peptide–transforming growth factor–\(\beta \) receptor ligand conjugate [here, LTKGNFMPHRN–(PPG)_{n}]; \(\text{TfR1} \), transforming growth factor–\(\beta \) type-1 receptor; \(\text{TfR2} \), transforming growth factor–\(\beta \) type-2 receptor; \(\text{fTfR} \), transforming growth factor–\(\beta \) receptor ligand [here, LTKGNFMPHRN]

REFERENCES

AUTHOR INFORMATION

Corresponding Author
Ronald T. Raines — Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States; Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States; Email: rtraines@mit.edu

Authors
Sayani Chattopadhyay — Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
Leandro B. C. Teixeira — Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States; orcid.org/0000-0001-9960-678X
Laura L. Kiessling — Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States; Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States; orcid.org/0000-0001-6829-1500
Jonathan F. McAnulty — Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
Complete contact information is available at: https://pubs.acs.org/10.1021/acscambio.1c00745
Peptides that anneal to natural collagen in vitro and ex vivo. Dermal wound healing by secondary intent.

Factor. Wounds in mice.

Controlled Release. Transforming growth factors-beta receptors.

