Supporting Information for:

Fine-tuning Strain and Electronic Activation of Strain-promoted 1,3-Dipolar Cycloadditions with Endocyclic Sulfamates in SNO-OCTs

Eileen G. Burke, ${ }^{1}$ Brian Gold, ${ }^{1}$ Trish T. Hoang, ${ }^{2}$ Ronald T. Raines, ${ }^{1,2}$ Jennifer M. Schomaker*, ${ }^{1}$
Departments of Chemistry ${ }^{1}$ and Biochemistry ${ }^{2}$, University of Wisconsin, Madison, Wisconsin 537061396, United States

Table of Contents S1
I. General Information S2
II. Preparation of homoallenic alcohols S2
III. Preparation of homoallenic sulfamates S3
IV. Preparation of homoallenic sulfamide S4
V. Preparation of cycloalkynes S5
VI. Comparison of calculated $\log P$ values for known $v s$. new SNO-OCT alkynes. S8
VII. Reaction with benzylazide S9
VIII. Reactions of cycloalkynes with azidoacetamide 16 S11
IX. Reactions of cycloalkynes with diazoacetamide 17 S13
X. Kinetic data for the reactions of $\mathbf{5 - 8}$ with benzyl azide S14
XI. Kinetic data for the reaction of 5 and 6 with azidoacetamide S17
XII. Kinetic data for the reaction of 5 and 6 with diazoacetamide S18
XIII. Kinetic data for the reaction of 19 with benzyl azide. S19
XIV. Reaction of 5 with glutathione S19
XV. Bioconjugation studies S20
XVI. Computational details S24
XVII. References S32
XVIII. NMR spectra S34

I. General Information.

Unless otherwise specified, reagents were used as obtained from the vendor without further purification. Tetrahydrofuran and diethyl ether were freshly distilled from purple Na /benzophenone ketyl. Dichloromethane, acetonitrile and toluene were dried over CaH 2 and freshly distilled prior to use. All other solvents were purified in accordance with "Purification of Laboratory Chemicals". ${ }^{1}$ Air- and moisture sensitive reactions were performed using standard Schlenk techniques under an atmosphere of nitrogen. Analytical thin layer chromatography (TLC) was performed utilizing pre-coated silica gel 60 F254 plates containing a fluorescent indicator, while preparative chromatography was performed using SilicaFlash P60 silica gel (230-400 mesh) via Still's method. ${ }^{2}$ Unless otherwise stated, the mobile phases for column chromatography were mixtures of hexanes/ethyl acetate. Columns were typically run using a gradient method, beginning with 100% hexanes and gradually increasing the polarity using ethyl acetate. Various stains were used to visualize reaction products, including p-anisaldehyde, $\mathrm{KMnO4}$, ceric ammonium molybdate (CAM stain) and iodine powder.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were obtained using Bruker-300, Varian-300, Varian Inova-500, or Varian Unity- 500 spectrometers. For ${ }^{1} \mathrm{H}$ NMR, chemical shifts are reported relative to residual protiated solvent peaks ($\delta 7.26,2.49,7.15$ and 7.09 ppm for $\mathrm{CDCl}_{3},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \mathrm{C}_{6} \mathrm{D}_{6}$ and $\mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{D}_{5}$ respectively). ${ }^{13} \mathrm{C}$ NMR spectra were measured ateither 125 MHz or 75 MHz on the same instruments noted above for recording ${ }^{1} \mathrm{H}$ NMR spectra. Chemical shifts were again reported in accordance to residual protiated solvent S3 peaks ($\delta 77.2,39.5,128.0$ and 137.9 ppm for $\mathrm{CDCl}_{3},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \mathrm{C}_{6} \mathrm{D}_{6}$, and $\mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{D}_{5}$, respectively). High-pressure liquid chromatography (HPLC) analyses were performed at 215 and 235 nm using a Shimadzu HPLC, Model LC-20AB. Further details are given in Section VIII. Accurate mass measurements were acquired at the University of Wisconsin, Madison using a Micromass LCT (electrospray ionization, time-offlight analyzer or electron impact methods). When two or more significant isotopes were present in the molecule, a monoisotopic approach was used, focusing on the isotope with the lowest mass (35 Cl and 79 Br). IR spectra were obtained using a Bruker ALPHA Platinum ATR FT-IR spectrometer. The NMR and Mass Spectrometry facilities are funded by the NSF (CHE9974839, CHE-9304546, CHE-9208463, CHE-9629688) and the University of Wisconsin, as well as the NIH (RR08389-01).

II. Preparation of homoallenic alcohols.

General procedure. A three-neck round bottom flask was charged with lithium aluminum hydride (1 equiv) in dry THF (0.4 M) under a nitrogen atmosphere. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and the corresponding homoallenic ester (1 equiv), dissolved in THF, was added dropwise. The reaction mixture was stirred for 30 min , quenched at $0^{\circ} \mathrm{C}$ with 2.1 equiv of $\mathrm{H}_{2} \mathrm{O}$, followed by 2.1 equiv of 1 M aqueous NaOH and 6.3 equiv of $\mathrm{H}_{2} \mathrm{O}$. The organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the mixture filtered and the volatiles removed under reduced pressure. The residual oil was purified via column chromatography.

Homoallenic alcohol precursor to compounds 5, 6 and 7. The homoallenic alcohol was prepared from the corresponding homoallenic ester ($1.9 \mathrm{~g}, 7.2 \mathrm{mmol}$) according to the general procedure. The crude product was purified via column chromatography ($0 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to $15 \% \mathrm{EtOAc} /$ hexanes, gradient $)$ to yield the alcohol $(1.3 \mathrm{~g}, 5.9 \mathrm{mmol})$ as a clear oil in a yield of 81%. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.89(\mathrm{tt}, J=6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.22$ (tdd, $J=6.2,3.0,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.23(\mathrm{~m}, 6 \mathrm{H})$, $0.88(\mathrm{td}, J=5.6,4.5,3.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.28,93.46$, 86.55, 32.56, 31.59, 29.56, 28.60, 22.65, 14.19, -1.44. HRMS (ESI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{OSi}$ $[\mathrm{M}+\mathrm{H}]^{+} 227.1826$; found, 227.1829.

Homoallenic alcohol precursor to compound 8. The homoallenic alcohol was prepared from the corresponding homoallenic ester $(2.22 \mathrm{~g}, 6.4 \mathrm{mmol})$. The crude product was purified via column chromatography ($0 \% \mathrm{EtOAc} /$ hexanes to $10 \% \mathrm{EtOAc} / \mathrm{hexanes}$, gradient) to yield the alcohol ($1.92 \mathrm{~g}, 6.4 \mathrm{mmol}$) as a clear oil in a yield of 99%. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.04$ $(\mathrm{tt}, J=4.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=12.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=12.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~m}$, $1 \mathrm{H}), 3.71-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 1 \mathrm{H}), 2.29-2.15(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ HRMS δ 204.20, 96.48, 87.22, 61.37, 60.65, 32.44, 26.08, 25.80, 18.62, $-1.53,-5.18,-5.24$. (ESI) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$323.1833; found, 323.1830.

III. Preparation of homoallenic sulfamates.

General procedure. In a 3-neck round bottom flask, chlorosulfonyl isocyanate (2.5 equiv) was cooled to $0{ }^{\circ} \mathrm{C}$. Formic acid (2.5 equiv) was added dropwise to this mixture, resulting in vigorous gas evolution. The resulting white solid was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ to yield a 0.5 M solution. This solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min , warmed to $23^{\circ} \mathrm{C}$ and stirred for an additional $4-12 \mathrm{~h}$. The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$, at which point the homoallenic alcohol (1 equiv) was added as a solution in N, N-dimethylacetamide (0.6 M). The reaction was stirred for 1 h at $23{ }^{\circ} \mathrm{C}$ and then quenched by the addition of an equal volume of $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was extracted with three portions of EtOAc and the combined organic phases washed with five portions of $\mathrm{H}_{2} \mathrm{O}$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed under reduced pressure. The crude material was purified via column chromatography.

Precursor to compounds 5 and 6. The homoallenic sulfamate was prepared from the corresponding homoallenic alcohol ($4.8 \mathrm{~g}, 21 \mathrm{mmol}$). The crude product was purified via column chromatography ($0 \% \mathrm{EtOAc} /$ hexanes to $20 \% \mathrm{EtOAc} /$ hexanes, gradient) to yield the product (3.6 $\mathrm{g}, 11 \mathrm{mmol})$ as a waxy white solid in 55% yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.90(\mathrm{tt}, J=6.6$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{dt}, J=7.9$, $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.27(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.85(\mathrm{~m}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.86,91.54,87.28,70.90,31.60,31.08,29.45,28.38,28.36,22.64,14.19,-1.52$. HRMS (ESI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{SSi}\left[\mathrm{M}+\mathrm{H}^{+}\right]$306.1554; found, 306.1545.

Precursor to compound 8. The homoallenic sulfamate was prepared from the corresponding homoallenic alcohol ($1.1 \mathrm{~g}, 3.7 \mathrm{mmol}$). The crude product was purified via column chromatography ($0 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to $20 \% \mathrm{EtOAc} / \mathrm{hexanes}$, gradient) to yield the product $(0.65 \mathrm{~g}, 1.7 \mathrm{mmol})$ as a waxy white solid in 47% yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.38(\mathrm{~s}$, 2 H), 5.01 (ddt, $J=8.9,5.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.34 (ddd, $J=9.2,8.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.32 (ddd, $J=8.2$, $3.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=11.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=11.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (ddd, $J=$ $16.7,4.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (ddd, $J=16.8,9.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}$, $3 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 204.63,94.11,87.26,69.42,62.57,27.55$, 26.11, 18.64, -1.67, -5.10. HRMS (ESI) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SSi}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right] 380.1742$; found, 380.1739 .

IV. Preparation of homoallenic sulfamides.

Precursor to compound 7. A dry, 50 mL round bottom flask was placed under a nitrogen atmosphere and charged with the desired alcohol ($500 \mathrm{mg}, 2.2 \mathrm{mmol}, 1$ equiv), triphenylphosphine ($754 \mathrm{mg}, 2.9 \mathrm{mmol}, 1.3$ equiv), and tert-butyl aminosulfonylcarbamate (563 $\mathrm{mg}, 2.9 \mathrm{mmol}, 1.3$ equiv) were combined in dry THF ($8.5 \mathrm{~mL}, 0.3 \mathrm{M}$) and cooled to $0{ }^{\circ} \mathrm{C}$. Diisopropyldicarboxylate ($0.57 \mathrm{~mL}, 2.9 \mathrm{mmol}$. 1.3 equiv) was added in a dropwise fashion to the resulting solution. The reaction mixture was warmed to room temperature and stirred for 4 h
before the solvent was removed under reduced pressure. The resulting oil was diluted with hexanes and the solvent again removed under reduced pressure. The crude product was purified via column chromatography ($0 \% \mathrm{EtOAc} /$ hexanes to $25 \% \mathrm{EtOAc} /$ hexanes, gradient) to yield pure homoallenic sulfamide ($677 \mathrm{mg}, 1.7 \mathrm{mmol}$) as a white solid in a yield of 76%. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.25(\mathrm{~s}, 2 \mathrm{H}), 4.85(\mathrm{tt}, J=6.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{ddd}, J=8.7,7.3,1.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.34-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.43-1.28(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.86(\mathrm{~m}, 3 \mathrm{H})$, 0.09 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.13,152.45,93.14,86.58,84.35,47.60,31.62$, $29.51,29.10,28.45,28.27,22.66,14.20,-1.42$. HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{SSi}$ $\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right] 427.2057$; found, 427.2055.

V. Preparation of cycloalkynes.

General procedure. The following procedure was adapted from our previously reported syntheses of endocyclic bicyclic methyleneaziridines. ${ }^{3}$ The homoallenic sulfamate (1 equiv) and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (0.05 equiv) were placed in a dry round bottom flask. The solids were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to prepare a 0.2 M solution and stirred for 5 min at rt . PhIO (1.2 equiv) was added in a single portion and the reaction mixture was stirred for 30 min while monitoring by TLC. When TLC indicated complete consumption of the starting material, 1 M TBAF in THF (2 equiv) was added. After 5 min at rt , the reaction was checked for completion by TLC. The reaction was then quenched by the addition of an equal volume of water and extracted with 3 portions of EtOAc. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure and the crude product purified by column chromatography.

Compound 5. The cyclic alkyne was prepared from the corresponding homoallenic sulfamate $(1.3 \mathrm{~g}, 4.3 \mathrm{mmol})$. Purification by column chromatography ($0 \% \mathrm{EtOAc} /$ hexanes to 15% EtOAc/hexanes, gradient) furnished pure $5(0.90 \mathrm{~g}, 3.9 \mathrm{mmol})$ as a white solid in a yield of 89%. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{ddd}, J=10.6,10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.66 (ddd, $J=11.0,5.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (dtd, $J=8.8,6.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 (dddd, $J=17.7$, $10.1,5.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (ddt, $J=17.0,4.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.26(\mathrm{~m}$, $6 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 97.38,96.84,76.47,49.62,32.80$, 31.23, 25.63, 22.55, 21.87, 14.06. HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]$ 249.1267; found, 249.1265.

Compound 6. Compound $5(0.25 \mathrm{~g}, 1.1 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$. To this solution was added di-tert-butyl dicarbonate $(0.35 \mathrm{~g}, 1.6 \mathrm{mmol})$ and triethylamine $(0.23 \mathrm{~mL}, 1.6$ mmol), followed by 4-dimethylaminopyridine ($13 \mathrm{mg}, 0.11 \mathrm{mmol}$). The reaction was stirred at ambient temperature under a N_{2} atmosphere until TLC indicated complete consumption of 5 . The reaction mixture was quenched by the addition of an equal volume of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted with $3 \times 10 \mathrm{~mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic phases dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was filtered and the volatiles removed under reduced pressure. The crude product was purified via column chromatography (0% $\mathrm{EtOAc} / \mathrm{hexanes}$ to $25 \% \mathrm{EtOAc} / \mathrm{hexanes}$, gradient) to yield pure cyclic alkyne $\mathbf{6}(0.28 \mathrm{~g}, 0.84$ mmol) as a white solid in 76% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.06(\mathrm{ddd}, J=12.4,11.1$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{td}, J=8.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=11.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dddd}, J=17.1$, $12.4,6.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=17.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.40-$ $1.28(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{td}, J=6.8,5.7,3.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.01,96.15$, 94.46, 85.29, 75.03, 55.61, 33.48, 31.15, 28.51, 26.00, 22.61, 21.72, 14.09. HRMS (ESI) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right]$332.1526; found, 332.1515.

Compound 7. The cyclic alkyne 7 was prepared from the corresponding homoallenic sulfamide $(1.7 \mathrm{~g}, 4.1 \mathrm{mmol})$. The general procedure was employed, with the exception that $\mathrm{Rh}_{2}(\mathrm{TPA})_{4}$ was substituted for $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ to improve the selectivity between endocyclic and exocyclic methyleneaziridines. The crude product was purified via column chromatography (0% $\mathrm{EtOAc} / \mathrm{hexanes}$ to $20 \% \mathrm{EtOAc} /$ hexanes, gradient) to yield pure $7(0.90 \mathrm{~g}, 3.9 \mathrm{mmol})$ as a white solid in 65% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.90(\mathrm{~s}, 1 \mathrm{H}), \delta 4.37(\mathrm{dtt}, J=11.7,8.6,5.7 \mathrm{~Hz}$, 2 H), 4.03 (ddd, $J=14.1,6.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74 (dddd, $J=17.1,11.5,6.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.30-$ $2.18(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}), 1.54-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{td}, J=7.0,4.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.29,96.98,92.81,84.45,51.59,49.31,35.95,32.40,31.31,28.25,25.86$, 25.23, 22.58, 14.04.HRMS (ESI) m / z calculated for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]$348.1952; found, 348.1947.

Compound 8. The cyclic alkyne $\mathbf{8}$ was prepared from the corresponding homoallenic sulfamate ($28 \mathrm{mg}, 0.074 \mathrm{mmol}$). The crude product was purified via column chromatography (0% EtOAc/hexanes to $50 \% \mathrm{EtOAc} /$ hexanes, gradient) to yield pure $\mathbf{8}(9 \mathrm{mg}, 0.047 \mathrm{mmol})$ as a white
solid in 66% yield. The general procedure was adapted to use 5 equiv of 1 M TBAF in THF to allow for complete deprotection of the tethered alcohol in addition to the desilylation and ring expansion process. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{ddd}, J=11.0$, $9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{ddd}, J=11.1,5.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{qd}, J=7.2,6.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (dt, $J=11.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (ddd, $J=11.4,7.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.77 (dddd, $J=16.9,9.1,5.1,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.50(\mathrm{dtd}, J=17.0,4.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 101.10,93.13,76.33,62.03,50.89,21.76$. HRMS (ESI) m / z calculated for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{NO}_{4} \mathrm{~S}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$192.0325; found, 192.0324.
VI. Comparison of calculated $\log \boldsymbol{P}$ values for known \boldsymbol{v}. new SNO-OCT alkynes. The $\log P$ values were calculated for known cycloalkynes and our new SNO-OCTs. In addition, calculations were carried out on SNO-OCT analogs that could be easily accessed from our new cycloalkynes using http://www.molinspiration.com/cgi-bin/properties (Scheme S1).

Scheme S1. Calculated $\log P$ values for known cycloalkynes and new SNO-OCTs.

OCT
3.33

VII. Reactions with benzylazide.

General Procedure. The cyclic alkyne (1 equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ (0.1 M). Benzyl azide (1.1 equiv) was added to the resulting solution and the reaction mixture stirred for 1 h to ensure full conversion. The solvent was then removed under reduced pressure and the resulting oil dissolved in a minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was again removed under reduced pressure and the triazole products characterized without further purification.

Triazoles 5a and 5b from 5. The triazole was prepared from alkyne 5 ($15 \mathrm{mg}, 0.065 \mathrm{mmol}$). The resulting triazoles 5a and $\mathbf{5 b}$ were obtained as a clear oil ($24 \mathrm{mg}, 0.065 \mathrm{mmol}$) in quantitative yield as a mixture of regioisomers ($\mathbf{5 a}: \mathbf{5 b} 2.2: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.39-7.30(\mathrm{~m}, 4.45 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 2.8 \mathrm{H}), 5.65-5.42(\mathrm{~m}, 4.35 \mathrm{H}), 4.59$ (major, dd, $J=9.1$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.56 (minor, m, 0.45 H), 4.15 (minor, td, $J=11.8,5.5 \mathrm{~Hz}, 0.45 \mathrm{H}$), 3.88 (major, ddd, $J=11.7,6.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.80 (major, ddd, $J=11.9,7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.74-3.63$ (minor, m, 0.45 H), $3.34-3.15$ (m, 1.9H), 3.01 (major, ddd, $J=16.1,6.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.35-2.22$ (major, $\mathrm{m}, 1 \mathrm{H}), 1.96$ (major, ddd, $J=14.2,9.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 0.45 \mathrm{H}), 1.59-1.43(\mathrm{~m}$, 2.2 H), $1.43-1.19(\mathrm{~m}, 6.9 \mathrm{H}), 0.89$ (major, td, $J=6.9,4.8 \mathrm{~Hz}, 3 \mathrm{H}$), 0.80 (minor, t, $J=7.2 \mathrm{~Hz}$, 1.4H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.79,134.36,129.41,128.86,127.07,126.87,69.25$ (minor), 67.46 (major), 52.70, 52.50, 51.14 (major), 50.22(minor), 34.11, 33.39 (major), 31.40, 31.05, 26.41, 25.58, 24.86, 24.79, 22.59, 22.36, 14.12 (major), 13.99 (minor). HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right] 365.1642$; found, 365.1638 .

Triazoles 6a and 6b from 6. The triazoles were prepared from alkyne $\mathbf{6}(10 \mathrm{mg}, 0.031 \mathrm{mmol})$. The product was obtained ($14 \mathrm{mg}, 0.030 \mathrm{mmol}$) as a clear oil as a mixture of regioisomers (6a:6b 2.0:1) in a quantitative yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.26-$ $7.21(\mathrm{~m}, 0.5 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.80$ (minor, d, J = $15.6 \mathrm{~Hz}, 0.5 \mathrm{H}$), $5.69-5.59(\mathrm{~m}, 2 \mathrm{H})$, 5.51 (major, dd, J = 10.4, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.43 (major, d, $\mathrm{J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.76 (minor, td, J = 10.6, $3.0 \mathrm{~Hz}, 0.5 \mathrm{H}$), 4.68 (minor, dt, $\mathrm{J}=11.0,3.8 \mathrm{~Hz}, 0.5 \mathrm{H}$), 4.18 (major, ddd, $\mathrm{J}=12.2,6.2,3.2 \mathrm{~Hz}$, 1 H), 3.90 (major, ddd, $\mathrm{J}=11.2,6.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.30 (minor, tdt, $\mathrm{J}=17.1,9.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 - 2.90 (major, m, 2H), 2.61-2.49 (major, m, 1H), 2.43-2.29 (major, m, 1H), 2.19 (minor, dddd, $\mathrm{J}=13.5,10.5,8.4,4.8 \mathrm{~Hz}, 0.5 \mathrm{H}$), 1.68 (minor, dddd, $\mathrm{J}=13.7,10.3,7.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.54 (minor, $\mathrm{s}, 6 \mathrm{H}$), 1.45 (major, $\mathrm{s}, 9 \mathrm{H}$), $1.38(\mathrm{tt}, \mathrm{J}=9.8,6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.10-$ $0.94(\mathrm{~m}, 2 \mathrm{H}), 0.90$ (major, dt, $\mathrm{J}=14.4,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.74$ (minor, $\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1.5 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 152.04, 150.76, 135.14, 134.81, 129.44, 128.90, 127.47, 127.03, 86.20, 85.37, 74.78 (minor), 69.47 (major), 57.35 (major), 52.78 (minor), 52.66 (minor), 52.50 (major), 32.15 (major), 31.78, 31.50 (major), 31.09, 27.99 (minor), 27.93, 27.18, 25.83, 25.60, 23.31 (major), 22.62, 22.33, 14.15 (major), 13.96 (minor). HRMS (ESI) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right]$465.2166; found, 465.2163.

Triazoles 7a and 7b from 7. The triazoles were prepared from alkyne 7 ($17 \mathrm{mg}, 0.052 \mathrm{mmol}$) and obtained as a clear oil ($22 \mathrm{mg}, 0.048 \mathrm{mmol}$) as a mixture of regioisomers (7a:7b 3.2:1) in a quantitative yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.29(\mathrm{~m}, 3.5 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 3 \mathrm{H})$, 5.81 (major, d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.71 (minor, d, $J=16.1 \mathrm{~Hz}, 0.31 \mathrm{H}$), 5.54 (minor, d, $J=15.9$ $\mathrm{Hz}, 0.32 \mathrm{H}$), 5.23 (major, d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.09 (major, s, 1 H), 4.36 (p, $J=6.7,5.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.16 (major, s, 1 H), $4.11-3.88(\mathrm{~m}, 0.6 \mathrm{H}$), 3.79 (major, dd, $J=14.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.34-3.20$ $(\mathrm{m}, 1 \mathrm{H}), 3.15$ (minor, dt, $J=14.6,5.8 \mathrm{~Hz}, 0.3 \mathrm{H}$), 2.67 (major, dd, $J=15.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.31-$ $2.10(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{p}, J=8.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{ddq}, J=9.4,5.9,2.8,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.28$ (ddd, $J=35.1,17.1,9.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.17-1.08(\mathrm{~m}, 0.3 \mathrm{H})$, 1.03 (dp, $J=7.2,4.6,2.7 \mathrm{~Hz}, 0.3 \mathrm{H}$), $0.93-0.85$ (major, m, 3 H), 0.79 (minor, t, $J=7.2 \mathrm{~Hz}$, $0.9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.82,151.09,145.88,134.95,134.68,132.31,129.33$, 129.24, 128.94, 128.78, 128.70, 128.32, 127.29, 127.02, 85.28 (major), 84.49 (minor), 52.37, 52.37, 50.09, 48.95, 47.30 (minor), 44.49 (major), 31.66, 31.43 (major), 31.04, 28.01, 27.87, 26.21 (minor), 22.59, 21.33 (major), 14.12 (major), 13.99 (minor). HRMS (ESI) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right] 464.2333$; found, 464.2323.

Triazoles $8 \mathbf{a}$ and $\mathbf{8 b}$ from 8. The triazoles $\mathbf{8 a}$ and $\mathbf{8 b}$ were prepared from alkyne $\mathbf{8}(12 \mathrm{mg}$, $0.063 \mathrm{mmol})$. The resulting compounds were obtained as a clear oil ($20 \mathrm{mg}, 0.061 \mathrm{mmol}$) as a mixture of regioisomers ($\mathbf{8 a : 8 b} 3.3: 1$) in quantitative yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.45$ - 7.29 (m, 4.5H), $7.23-7.16$ (m, 2H), 6.36 (minor, d, J = $6.6 \mathrm{~Hz}, 0.30 \mathrm{H}$), 6.27 (major, d, J = 9.1 $\mathrm{Hz}, 1 \mathrm{H}), 5.64-5.47(\mathrm{~m}, 2.6 \mathrm{H}), 4.62$ (ddd, J = 9.5, 5.8, 4.1 Hz, 1.3H), 4.53 (minor, ddd, J = 11.9, $7.2,1.5 \mathrm{~Hz}, 0.3 \mathrm{H}$), 4.22 (major, dt, $\mathrm{J}=12.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.13-4.01$ (m, 1.3H), 3.97 (major, dd, $J=11.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.92 (major, ddd, $J=12.1,9.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.75-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.40$ (major, ddd, J = 16.5, 9.5, 5.3 Hz, 1H), $3.16-3.06(\mathrm{~m}, 1 \mathrm{H}$), 3.03 (major, dt, J = 16.5, 4.8 Hz , 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 145.29,136.64,136.36131 .62,129.95,129.85,129.72$, 129.36, 129.24, 129.13, 128.13, 128.04, 69.53 (minor), 68.33 (major), 64.27 (major), 63.41, $55.28,53.79,52.79,52.41,24.94$ (minor), 23.05 (major). HRMS (ESI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right]$325.0965; found, 325.0959.

VIII. Reactions of cycloalkynes with azidoacetamide 16.

General Procedure. The cyclic alkyne (1 equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ (0.1 M) and azidoacetamide ${ }^{4} \mathbf{1 6}$ (1.1 equiv) was added to the resulting solution. The reaction was stirred for 1 h to ensure full conversion by TLC, then the volatiles were removed under reduced pressure. The resulting oil was dissolved in a minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the solvent was again removed under reduced pressure and the triazole products were characterized without further purification.

Triazoles 16a and 16b from reaction of 16 with 5 . The triazoles $16 a$ and $16 b$ were prepared from cycloalkyne $5(10 \mathrm{mg}, 0.044 \mathrm{mmol})$. A mixture was obtained $(20.0 \mathrm{mg}, 0.061 \mathrm{mmol})$ as a clear oil as a mixture of regioisomers (16a:16b 2.2:1) in quantitative yield. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.29-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{dt}, J=7.5,2.0 \mathrm{~Hz}, 4.25 \mathrm{H}), 5.02-4.89(\mathrm{~m}, 2.9 \mathrm{H}), 4.53$ (minor, dd, $J=10.1,3.3 \mathrm{~Hz}, 0.45 \mathrm{H}$), 4.44 (major, dd, $J=9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.41-4.36$ (minor, $\mathrm{m}, 0.45 \mathrm{H}), 4.32-4.24(\mathrm{~m}, 3.4 \mathrm{H}), 4.19$ (major, ddd, $J=11.9,9.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ (minor, td, J $=11.7,5.8 \mathrm{~Hz}, 0.45 \mathrm{H}$), 3.77 (minor, $\mathrm{s}, 0.9 \mathrm{H}$), 3.52 (minor, ddd, $J=15.3,11.5,6.8 \mathrm{~Hz}, 0.45 \mathrm{H}$), 3.31 (major, ddd, $J=16.5,9.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (minor, ddd, $J=15.3,5.8,2.2 \mathrm{~Hz}, 0.45 \mathrm{H}$), 2.94 (major, dt, $J=16.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.00(\mathrm{~m}, 1.45 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.54$ (minor, dtd, J $=14.8,9.8,5.3 \mathrm{~Hz}, 0.45 \mathrm{H}), 1.48-1.04(\mathrm{~m}, 5 \mathrm{H}), 0.79$ (ddd, $J=14.6,8.9,6.8 \mathrm{~Hz}, 4.4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 166.48$ (major), 166.41 (minor), 147.11, 140.20, 139.50, 139.46, 137.70, 131.88, 129.46, 129.40, 128.44, 128.39, 128.17, 128.16, 70.15 (minor), 68.91 (minor), 52.63 (minor), 52.03, 52.00 , 51.25 (major), 50.75 (minor), 43.86 (major), 34.42 (major), 34.14 (minor), 31.99, 31.72, 26.10, 25.82 (major), 24.98, 23.20, 23.18 (major), 23.11, 14.28, 14.25. HRMS (ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}-\mathrm{H}^{-}\right] 420.1711$; found, 420.1712.

Triazoles 16c and 16d from reaction of 16 with 6 . The triazoles $16 c$ and $16 d$ were prepared from alkyne 6 ($16 \mathrm{mg}, 0.048 \mathrm{mmol}$). The resulting mixture was obtained as a clear oil (25 mg , 0.048 mmol) as a mixture of regioisomers (16c:16d 2.2:1) in quantitative yield. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.39-7.23(\mathrm{~m}, 4.25 \mathrm{H}), 7.20(\mathrm{ddd}, J=14.4,7.9,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.80$ (major, t, $J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.33 (minor, $\mathrm{t}, J=5.9 \mathrm{~Hz}, 0.45 \mathrm{H}$), 5.65 (minor, dd, $J=9.6,6.0 \mathrm{~Hz}, 0.45 \mathrm{H}$), 5.50 (major, dd, $J=10.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.26 (minor, d, $J=16.6 \mathrm{~Hz}, 0.45 \mathrm{H}$), 5.15 (minor, d, $J=16.6$ $\mathrm{Hz}, 0.45 \mathrm{H}$), 4.99 (major, d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.92 (major, d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.72 (minor, ddd, $J=11.1,9.1,3.4 \mathrm{~Hz}, 0.45 \mathrm{H}$), 4.62 (minor, dt, $J=11.1,4.2 \mathrm{~Hz}, 0.45 \mathrm{H}), 4.55-4.43(\mathrm{~m}, 2 \mathrm{H}), 4.43$ $-4.30(\mathrm{~m}, 2.9 \mathrm{H}$), $3.37-3.22$ (minor, m, 1H), $3.20-3.05$ (major, m, 2H), 2.46 (ddq, $J=14.6$, $9.6,4.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.31 (dtd, $J=15.0,10.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.53 (minor, s, 6 H), 1.49 (major, s, $9 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.18(\mathrm{~m}, 3 \mathrm{H}), 0.96-0.80(\mathrm{~m}, 4.35 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 166.62,164.99,151.85,150.84,146.48,142.14,137.50,137.26,134.67,130.40$, $128.93,128.91,128.86,127.94,127.93,127.89,86.43$ (minor), 85.54 (major), 74.46 (minor), 70.45 (major), 57.12 (major), 53.27 (minor), 52.77, 51.29, 43.92, 43.58, 32.18, 31.68, 31.44, $31.14,27.94,26.83,26.09,25.54,23.13,22.60,22.50,14.12,14.05$. HRMS (ESI) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right] 522.2381$; found, 522.2375.

IX. Reactions of cycloalkynes with diazoacetamide 17.

General Procedure. The cyclic alkyne (1 equiv) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{M})$. To the resulting solution was added N -benzyl-2-diazoacetamide 17 (1.1 equiv). The reaction was stirred for 1 h to ensure full conversion, then the volatiles removed under reduced pressure. The resulting oil was dissolved in a minimum volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then solvent was again removed under reduced pressure and the diazole products characterized without further purification.

Diazole 17a from reaction of $\mathbf{1 7}$ with 5. The diazole $\mathbf{1 7 a}$ was prepared from cycloalkyne 5 (10 $\mathrm{mg}, 0.044 \mathrm{mmol})$. The product was obtained ($14 \mathrm{mg}, 0.033 \mathrm{mmol}$) as a clear oil as a single regioisomer in 73% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.21(\mathrm{~m}, 5 \mathrm{H})$, $5.38(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.43-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.82$ (ddtt, J = 23.3, 14.1, 9.4, $5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.17(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.79(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 162.77, 138.11, 137.86, 128.85, 127.79, 127.68, 127.03, 115.62, 72.34, 49.53, $43.15,33.06,31.28,25.45,22.55,21.33,14.08$. HRMS (ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right] 407.1748$; found, 407.1739.

Diazole 17c from reaction of 17 with 6 . The diazole $17 c$ was prepared from the cycloalkyne 6 $(16 \mathrm{mg}, 0.048 \mathrm{mmol})$. The product was obtained ($24 \mathrm{mg}, 0.047 \mathrm{mmol}$) as a clear oil as a single regioisomer in quantitative yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.12(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.21(\mathrm{~m}$, $5 \mathrm{H}), 5.38(\mathrm{dd}, \mathrm{J}=10.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{ddd}, \mathrm{J}=11.5,6.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}$, 2H), 4.49 (ddd, J = 11.5, 9.3, 1.9 Hz, 1H), 3.90 (ddd, J = 16.8, 6.4, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (ddd, J = $16.8,9.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dtd}, \mathrm{J}=13.3,10.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$, $1.39-1.22(\mathrm{~m}, 6 \mathrm{H}), 0.91-0.86(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 162.98, 150.97, 138.24, $128.78,128.73,127.95,127.71,127.55,116.27,85.58,75.35,54.76,42.99,31.40,30.93,27.99$,
27.92, 25.58, 22.61, 22.50, 14.05. HRMS (ESI) m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 507.2272; found, 507.2264.

X. Kinetic data for the reactions of 5-8 with benzyl azide.

General Procedure. A stock solution of cycloalkyne $(0.02 \mathrm{M})$ and a stock solution of benzyl azide and mesitylene (0.02 M with respect to both solutes) were combined in equal volumes in a small cuvette, then rapidly mixed. The resulting solution was transferred to an NMR tube and the reaction progress was monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ at $25^{\circ} \mathrm{C}$, with spectra taken once every 15 min over the course of several hours. The k_{2} values were determined by measuring the decrease in cycloalkyne signal integrations which were standardized relative to the mesitylene standard. Inverse concentration of cycloalkyne was plotted against time, and the points were fitted by linear regression. The slope of the resulting line corresponded to the k_{2} value. Each experiment was run in triplicate and the k_{2} values for each trial were averaged.

Reaction of 5 and Benzyl Azide

$k_{2}=0.026 \pm 0.001 \mathrm{M}^{-1} \mathrm{~s}^{-1}$

$k_{2}=0.023 \pm 0.0009 \mathrm{M}^{-1} \mathrm{~s}^{-1}$

$k_{2}=0.0014 \pm 0.00005 \mathrm{M}^{-1} \mathrm{~s}^{-1}$

$k_{2}=0.087 \pm 0.001 \mathrm{M}^{-1} \mathrm{~s}^{-1}$

XI. Kinetic data for the reaction of 5 and 6 with azidoacetamide.

$k_{2}=0.025 \pm 0.0008 \mathrm{M}^{-1} \mathrm{~s}^{-1}$

[^0]
XII. Kinetic data for the reaction of 5 and 6 with diazoacetamide.

$k_{2}=0.27 \pm 0.008 \mathrm{M}^{-1} \mathrm{~s}^{-1}$

$k_{2}=0.15 \pm 0.01 \mathrm{M}^{-1} \mathrm{~s}^{-1}$

XIII. Kinetic data for the reaction of 19 with benzyl azide.

$$
k_{2}=0.026 \pm 0.0007 \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

XIV. Reaction of glutathione with 5. An issue with DIFO and related strained cycloalkynes is competing reaction with thiol nucleophiles in biological systems. To test whether our new SNOOCT 5 are stable to sulfur nucleophiles, 5 was incubated with a 0.15 M solution of glutathione in pH 7 phosphate-buffered saline and the reaction monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy over 24 h . No reaction was noted.

7.27 .06 .86 .66 .46 .26 .05 .85 .65 .45 .25 .04 .84 .64 .44 .24 .03 .83 .63 .43 .23 .02 .82 .62 .42 .22 .01 .81 .61 .4 f1 (ppm)

Figure S1. NMR spectra of glutathione, $\mathbf{5}$ and a mixture of glutathione and $\mathbf{5}$ at rt for $\mathbf{2 4} \mathrm{h}$.

XV. Bioconjugation Studies.

Compound 18. Cyclic alkyne 18 was prepared from the corresponding homoallenic sulfamate ($300 \mathrm{mg}, 0.79 \mathrm{mmol}$) following the general procedure from Section V. The general procedure was adapted to use 1 equiv of 1 M TBAF in THF to minimize deprotection of the tethered alcohol in addition to the desilylation and ring expansion process. The crude product was purified via column chromatography ($0 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to $20 \% \mathrm{EtOAc} / \mathrm{hexanes}$, gradient) to yield pure alkyne ($69 \mathrm{mg}, 0.29 \mathrm{mmol}$) as a white solid in 29% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.61(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{td}, J=10.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{ddd}, J=11.0,5.5,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.29(\mathrm{dtt}, J=6.7,4.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.81$ (dddd, $J=16.9,10.7,5.4$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{ddt}, J=16.9,4.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 8 \mathrm{H}), 0.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 99.96, 94.24, 76.24, 62.56, 50.81, 25.95, 21.90, 18.49, -5.18. HRMS (ESI) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{SSi}\left[\mathrm{M}-\mathrm{H}^{+}\right]$304.1044; found, 304.1044.

Compound 19. Compound 18 ($20 \mathrm{mg}, 0.066 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{M})$. To this solution was added sodium hydroxide $(4.2 \mathrm{mg}, 0.10 \mathrm{mmol})$, and benzyltriethylammonium chloride ($1.5 \mathrm{mg}, 0.007 \mathrm{mmol}$). The suspension was stirred cooled to $0{ }^{\circ} \mathrm{C}$ under a N_{2} atmosphere at which point 3-maleimidopropropionyl chloride ($14 \mathrm{mg}, 0.075 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.6 M) was added dropwise. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ until TLC indicated complete consumption of starting materials. The solution was diluted with an equal volume of hexanes, then filtered through a small celite pad. Filtrate was concentrated via rotary evaporation. The crude product was purified via column chromatography ($0 \% \mathrm{EtOAc} / \mathrm{hexanes}$ to 25% EtOAc/hexanes, gradient) to yield pure alkyne $18(17 \mathrm{mg}, 0.036 \mathrm{mmol})$ as a white solid in 55% yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.71(\mathrm{~s}, 2 \mathrm{H}), 5.62(\mathrm{td}, J=7.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{ddd}, J=$ $12.4,11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.67 (dd, $J=11.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.88$ (m, 3H), 3.83 (ddd, $J=$ $14.3,8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.29 (ddd, $J=17.6,8.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (ddd, $J=17.6,8.9,5.6 \mathrm{~Hz}$, 1 H), 2.95 (dddd, $J=17.2,12.4,6.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.34 (dd, $J=17.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.88$ (s, 9H), $0.07(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13}{ }^{1} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.92,170.50,134.40,94.59$, 94.41, $75.85,63.14,52.59,36.13,33.94,25.91,21.85,18.34,1.17,0.15,-5.19$. HRMS (ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{SSi}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$479.1279; found 479.1276.

Triazole 18a from 18. The triazole 18a was prepared from alkyne 18 ($13 \mathrm{mg}, 0.027 \mathrm{mmol}$) following the general procedure from Section VII. The resulting compounds were obtained as a white solid ($18 \mathrm{mg}, 0.027 \mathrm{mmol}$) as a single regioisomer in quantitative yield. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.06-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 2 \mathrm{H}), 5.76(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=$
$15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.97(\mathrm{dt}, J=12.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{ddt}, J=12.9,8.4,4.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.21-2.98(\mathrm{~m}, 2 \mathrm{H})$, $2.88(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.83-0.76(\mathrm{~m}, 9 \mathrm{H}),-0.01(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.76,170.47,143.73,134.79,134.38,129.52,128.98,128.80,127.04,70.05,61.36$, $56.91,52.53,35.51,33.65,25.88,23.04,18.19,0.15,-5.33,-5.44$. HRMS (ESI) m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{SSi}\left[\mathrm{M}+\mathrm{H}^{+}\right] 590.2099$; found, 590.2101.

Semisynthesis of RNase 1 conjugates. DNA fragment encoding human P19C RNase 1 was inserted into the pET22b expression vector from Addgene (Cambridge, MA) for tagless expression in Escherichia coli strain BL21(DE3). The production and purification of P19C RNase 1 was performed as described previously. ${ }^{5}$ A SNO-OCT-RNase 1 conjugate was prepared by reaction of P19C RNase 1 with 15 -fold molar excess of SNO-OCT 19 in 0.10 M Tris- HCl buffer, pH 8.0 , containing DMSO ($5 \% \mathrm{v} / \mathrm{v}$) for 3 h at ambient temperature. Purification using a HiTrap SP HP cation-exchange column (GE Healthcare, Chicago, IL) afforded the desired conjugate. Next, a biotin-RNase 1 conjugate was prepared by reaction of SNO-OCTRNase 1 with a 5-fold molar excess of azide-PEG3-biotin (Sigma-Aldrich, St. Louis, MO) in phosphate-buffered saline containing DMSO ($5 \% \mathrm{v} / \mathrm{v}$) for 2 h at ambient temperature. Purification using monomeric avidin agarose (Pierce, Waltham, MA) afforded the desired conjugate. The molecular mass of each protein conjugate was confirmed by MALDI-TOF mass spectrometry using a Voyager instrument (Applied Biosystems).

Figure S2. MALDI-TOF spectra of P19C RNase 1 (top), the SNO-OCT-RNase 1 conjugate (middle), and the biotin-RNase 1 conjugate (bottom).

XVI. Computational details.

Optimizations were performed with Gaussian 09 software ${ }^{6}$ at the M06-2X level of theory ${ }^{7}$ and the $6-311+G(d, p)$ basis set. M06-2X has been shown to describe trends in reactivity accurately for cycloadditions. ${ }^{8}$ Optimizations were performed utilizing IEFPCM dielectric continuum solvent model for water with UFF radii. ${ }^{9}$ Frequency calculations were performed to confirm stationary points as minima or first-order saddle points. All ΔE and ΔE^{\ddagger} values include zeropoint corrections.

Table S1. Energies and free energies of activation ($\mathrm{kcal} / \mathrm{mol}$) for cycloadditions of methyl azide with alkynes of various substitution patterns. Geometries optimized at the M06-2X/6$311+G(d, p)$ level of theory using an IEFPCM solvent model for water (radii $=\mathrm{UFF}$). $\mathrm{CT}=\mathrm{NBO}$ charge on the dipole (initial charge- 0 or $+1-$ minus CT resides on alkyne).

	Regioisomer 1				Regioisomer 2			Regioselectivity $($ Regio. 2-1)	
X	Y	ΔE^{\ddagger}	ΔG^{\ddagger}	CT	ΔE^{\ddagger}	ΔG^{\ddagger}	CT	$\Delta \Delta E^{\ddagger}$	$\Delta \Delta G^{\ddagger}$
CH_{2}	CH_{2}	14.5	26.3	0.020	13.7	26.4	0.015	-0.8	0.1
NH	CH_{2}	13.1	25.0	0.033	13.1	25.1	0.027	0.0	0.1
NH_{2}^{+}	CH_{2}	11.3	23.7	0.091	12.2	24.5	0.079	0.9	0.8
O	CH_{2}	11.8	23.9	0.053	12.5	24.5	0.045	0.7	0.6
CH_{2}	O	12.8	24.8	0.035	12.3	24.5	0.028	-0.5	-0.3
CH_{2}	NH	13.4	25.2	0.027	12.8	24.9	0.021	-0.6	-0.3
CH_{2}	NH_{2}^{+}	13.3	25.5	0.061	12.4	24.6	0.059	-0.9	-0.9

Table S2. Free energies of activation ($\mathrm{kcal} / \mathrm{mol}$) of the lowest energy TSs for each regioisomeric cycloaddition of methyl azide with alkynes of various substitution patterns. Geometries optimized at the M06-2X/6-311+G(d,p) level of theory using an IEFPCM solvent model for water (radii $=\mathrm{UFF}$). $\mathrm{CT}=$ NBO charge on the dipole (initial charge $-0,+1$, or $+2-$ minus CT resides on alkyne). Bold signifies compounds synthesized and tested experimentally (with benzyl azide).

		Regioisomer 1			Regioisomer 2			Regioselectivity (Regio. 2-1)	
X	Y	ΔE^{\ddagger}	ΔG^{\ddagger}	CT	ΔE^{\ddagger}	ΔG^{\ddagger}	CT	$\Delta \Delta E^{\text {f }}$	$\Delta \Delta G^{\ddagger}$
CH_{2}	CH_{2}	15.5	27.0	0.042	15.3	27.9	0.034	-0.2	0.9
NH	CH_{2}	13.6	25.4	0.059	14.1	26.7	0.047	0.5	1.3

NH_{2}^{+}	CH_{2}	12.8	25.1	0.102	14.4	26.7	0.084	1.6	1.6
O	CH_{2}	11.7	23.7	0.080	13.5	26.1	0.066	1.8	2.4
CH_{2}	O	13.0	24.9	0.059	13.1	25.7	0.050	0.1	0.8
CH_{2}	NH	14.0	25.6	0.049	14.2	26.8	0.040	0.2	1.2
CH_{2}	NH_{2}^{+}	14.5	26.5	0.077	14.1	26.6	0.072	-0.4	0.1
NH	NH	12.4	24.4	0.064	13.2	25.8	0.052	0.8	1.4
$\mathbf{N H}$	\mathbf{O}	$\mathbf{1 1 . 2}$	$\mathbf{2 3 . 0}$	$\mathbf{0 . 0 7 6}$	$\mathbf{1 2 . 1}$	$\mathbf{2 4 . 7}$	$\mathbf{0 . 0 6 4}$	$\mathbf{0 . 9}$	$\mathbf{1 . 7}$
NH	NH_{2}^{+}	11.8	23.8	0.097	12.1	24.7	0.088	0.3	0.9
O	NH	10.9	23.1	0.086	12.7	25.4	0.069	1.8	2.3
O	O	9.4	21.4	0.101	11.2	23.7	0.083	1.8	2.3
O	NH_{2}^{+}	9.2	21.5	0.135	11.1	23.8	0.111	1.9	2.3
NH_{2}^{+}	NH^{+}	11.1	23.1	0.108	13.1	25.6	0.089	2.0	2.5
NH_{2}^{+}	O	9.5	21.5	0.126	11.7	24.2	0.107	2.2	3.7
NH_{2}^{+}	NH_{2}^{+}	10.4	22.5	0.155	12.5	25.3	0.128	2.1	2.8
$\mathbf{N B o c}_{\mathbf{N o}}^{\mathbf{O}}$	$\mathbf{1 0 . 7}$	$\mathbf{2 4 . 9}$	$\mathbf{0 . 0 8 0}$	$\mathbf{1 1 . 0}$	$\mathbf{2 3 . 8}$	$\mathbf{0 . 0 7 5}$	$\mathbf{0 . 3}$	$\mathbf{- 1 . 1}$	

Table S3. Free energies of activation ($\mathrm{kcal} / \mathrm{mol}$) of the lowest energy TSs for each regioisomeric cycloaddition of diazoacetamide ($\mathrm{R}=\mathrm{CHCONHMe}$) and azidoacetamide ($\mathrm{R}=\mathrm{NCH}_{2} \mathrm{CONHMe}$) with alkynes of various substitution patterns. Geometries optimized at the M06-2X/6$311+G(d, p)$ level of theory using an IEFPCM solvent model for water (radii $=\mathrm{UFF}$). $\mathrm{CT}=\mathrm{NBO}$ charge on the dipole (initial charge- $0,+1$, or +2 -minus CT resides on alkyne). Bold signifies compounds synthesized and tested experimentally.

		Diazo			Azide			Diazo			Azide			Regioselect. $-\Delta \Delta G^{\ddagger}$		Chemoselect.	
X	Y	ΔE^{\ddagger}	ΔG^{\ddagger}	CT	Diazo	Azide	$\Delta \Delta E^{\ddagger}$	$\Delta \Delta G^{\ddagger}$									
CH_{2}	CH_{2}	15.4	26.9	0.108	15.3	27.2	0.031	15.6	27.9	0.100	15.1	28.0	0.026	1.0	0.8	-0.3	0.3
NH	CH_{2}	13.5	25.8	0.125	13.5	25.6	0.050	14.2	26.8	0.112	13.9	27.0	0.038	1.0	1.4	0.0	-0.2
$\mathrm{NH}_{2}{ }^{+}$	CH_{2}	11.8	23.2	0.185	12.5	24.0	0.094	13.9	26.4	0.162	14.5	27.6	0.072	3.2	3.6	0.7	0.8
0	CH_{2}	11.3	21.3	0.152	11.6	24.1	0.074	13.2	25.9	0.131	13.4	26.4	0.056	2.6	2.3	0.3	0.7
CH_{2}	O	12.8	24.7	0.122	13.0	25.6	0.052	12.9	25.0	0.113	12.9	26.0	0.043	0.3	0.4	0.1	0.9
CH_{2}	NH	13.8	25.0	0.111	14.1	26.6	0.041	14.2	26.3	0.103	13.9	26.7	0.031	1.3	0.1	0.1	1.6
CH_{2}	NH_{2}^{+}	14.3	27.3	0.151	14.5	26.9	0.067	14.2	26.5	0.149	13.7	25.5	0.064	-0.8	-1.4	0.3	-1.0
NH	NH	12.3	24.4	0.134	12.5	25.3	0.059	13.0	25.7	0.116	13.0	26.1	0.04	1.3	0.8	0.2	0.9
NH	0	10.7	21.9	0.143	11.5	23.8	0.063	11.6	24.0	0.127	11.9	25.2	0.056	2.1	1.5	0.8	1.9
NH	NH_{2}^{+}	11.3	23.2	0.174	12.0	24.8	0.087	11.9	24.6	0.161	11.9	24.8	0.079	1.4	0.0	0.6	1.6
0	NH	10.1	21.8	0.156	10.8	23.5	0.080	12.0	24.7	0.134	12.5	25.5	0.059	2.9	2.0	0.7	1.7
0	O	8.4	20.2	0.174	9.4	21.9	0.096	10.3	22.8	0.149	11.1	23.9	0.073	2.6	2.0	1.0	1.7
0	$\mathrm{NH}_{2}{ }^{+}$	7.9	19.9	0.227	9.3	21.8	0.127	10.3	23.2	0.180	11.0	24.1	0.102	3.3	2.3	1.4	1.9
NH_{2}^{+}	NH	10.6	22.5	0.188	11.3	23.9	0.101	12.5	24.7	0.163	13.0	26.0	0.163	2.2	2.1	0.7	1.4
$\mathrm{NH}_{2}{ }^{+}$	0	8.6	20.4	0.208	9.6	23.4	0.119	10.7	23.4	0.180	11.7	25.0	0.094	3.0	1.6	1.0	3.0
NH_{2}^{+}	$\mathrm{NH}_{2}{ }^{+}$	8.9	21.1	0.265	10.3	23.8	0.142	11.4	24.4	0.218	12.1	25.3	0.218	3.3	1.5	1.4	2.7
NBoc	0	10.1	23.1	0.144	10.6	24.1	0.074	10.4	24.0	0.140	10.4	25.0	0.068	0.9	0.9	0.3	1.0

Table S4. Energies and free energies of activation ($\mathrm{kcal} / \mathrm{mol}$) for cycloadditions of of diazoacetamide ($\mathrm{R}=\mathrm{CHCONHMe}$) and azidoacetamide ($\mathrm{R}=\mathrm{NCH}_{2} \mathrm{CONHMe}$) with alkynes of various substitution patterns. Geometries optimized at the M06-2X/6-311+G(d,p) level of theory
using an IEFPCM solvent model for water (radii $=\mathrm{UFF}$). $\mathrm{CT}=$ NBO charge on the dipole (initial charge- 0 or +1 -minus CT resides on alkyne).

A (16) or

D (17)

		Diazoacetamide						Azide					
		Regio. 1			Regio. 2			Regio. 1			Regio. 2		
X	Y	ΔE^{\ddagger}	ΔG^{\ddagger}	CT									
CH_{2}	CH_{2}	14.5	26.5	0.076	14.1	26.1	0.071	14.4	26.8	0.016	13.4	25.9	0.007
NH	CH_{2}	12.9	24.7	0.091	13.0	25.0	0.083	13.2	25.9	0.023	12.7	25.3	0.019
$\mathrm{NH}_{2}{ }^{+}$	CH_{2}	10.9	23.3	0.163	11.9	24.7	0.147	11.3	23.9	0.081	12.5	25.5	0.067
\bigcirc	CH_{2}	11.4	23.6	0.113	12.3	24.6	0.103	11.8	24.4	0.049	12.6	24.8	0.037
CH_{2}	0	12.7	24.8	0.090	12.6	24.9	0.085	12.9	25.3	0.029	12.1	24.8	0.023
CH_{2}	NH	13.4	25.5	0.083	13.1	25.2	0.079	13.5	25.9	0.022	12.5	25.0	0.015
CH_{2}	$\mathrm{NH}_{2}{ }^{+}$	13.0	24.8	0.128	12.7	24.8	0.125	13.5	25.9	0.052	12.1	24.9	0.052

Figure S3. Energies and free energies of activation ($\mathrm{kcal} / \mathrm{mol}, 298 \mathrm{~K}$) for the lowest energy TSs for cycloadditions methyl azide to alkynes 13b and 13j. Favorable electronics as a result of the Boc group are outweighed by increased rigidity and a higher ΔS^{\ddagger}. Geometries optimized at the M06-2X/6-311+G(d,p) level of theory using an IEFPCM solvent model for water (radii = UFF).

Figure S4. Free energies of activation ($\mathrm{kcal} / \mathrm{mol}, 298 \mathrm{~K}$) for the lowest energy TSs for each regioisomeric cycloaddition of diazo- and azidoacetamide to alkyne 13b. Geometries optimized at the M06-2X/6-311+G(d,p) level of theory using an IEFPCM solvent model for water (radii = $\mathrm{UFF}) . \varphi$ is the dihedral angle around the acetylenic $\mathrm{C}-\mathrm{C}$ bonds ($\mathrm{CC}-\mathrm{C} \equiv \mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}-\mathrm{CN}$).

Table S5. Second order perturbation energies ($\mathrm{kcal} / \mathrm{mol}$) provided by NBO analysis ${ }^{10}$ in the starting geometry, the alkyne distorted to the TS geometry in the absence of the dipole, and in the full TS. All values are for the anti-TS. Geometries optimized at the M06-2X/6-311+G(d,p) level of theory using an IEFPCM solvent model for water (radii = UFF).

		Int. Orb.	SM	Diazo			Azide			$\Delta\left(\right.$ TS-SM) ${ }^{\text {c }}$	
X	Y			TS Geom.	Full TS	$\begin{gathered} \Delta \text { (TS- } \\ \text { SM) } \\ \hline \end{gathered}$	TS Geom.	Full TS	$\begin{gathered} \Delta \text { (TS- } \\ \text { SM) } \\ \hline \end{gathered}$	Diazo	Azide
CH_{2}	CH_{2}	Endocyclic $\Pi_{c c} \rightarrow \sigma^{*} \mathrm{cx} / \sigma^{*} \mathrm{cc}$	$\begin{gathered} \hline 2.27(0.84)^{a} \\ / 2.47 \\ \hline \end{gathered}$	$\begin{gathered} 3.44 \\ / 0.84(2.25)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 2.42 \\ / 1.83(0.60)^{a} \\ \hline \end{gathered}$	-0.73	$\begin{gathered} 3.11(0.54)^{a} \\ / 0.66(2.48)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 3.11 \\ / 1.80(0.77)^{a} \\ \hline \end{gathered}$	0.1	$\pi / \pi^{*} \rightarrow$	$\pi / \pi^{*} \rightarrow$
		$\Pi^{*}{ }_{c c} \rightarrow \sigma^{*}{ }_{c x} / \sigma^{*}{ }^{\text {c }}$	<0.5	<0.5	1.23/0.78	2.01	<0.5	2.30/1.61	3.91	3.6	6.3
		$\begin{gathered} \text { Exocyclic }^{b} \\ \Pi_{\mathrm{CC}} \rightarrow \sigma^{*}{ }_{\mathrm{CH}} / \sigma^{*} \mathrm{CC} \end{gathered}$	$\begin{gathered} 1.23(3.00)^{a} \\ / 3.38(0.68)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 4.47 / \\ <0.5(3.74)^{a} \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.03(1.03)^{a} \\ / 1.68(1.93)^{a} \\ \hline \end{gathered}$	-0.62	$\begin{gathered} 4.28 / \\ <0.5(4.00)^{a} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2.72(1.07)^{a} \\ & / 1.88(2.07)^{a} \\ & \hline \end{aligned}$	-0.55		
		$\Pi^{*}{ }_{\mathrm{CC}} \rightarrow \sigma^{*}{ }_{\mathrm{CH}} / \sigma^{*} \mathrm{CC}$	<0.5	<0.5	1.45/0.59	2.04	<0.5	1.39/0.57	1.96		
		$\sigma_{\mathrm{CC}} \rightarrow \sigma^{*} \mathrm{xs}$	3.46	3.97	3.89	0.43	3.92	3.94	0.48		

		$\sigma_{\mathrm{CH}} \rightarrow \sigma^{*}{ }_{\text {CY }}$	3.52	4.10	3.99	0.47	3.99	3.89	0.37		
		$\sigma_{\mathrm{CH}(\mathrm{Y})} \rightarrow \sigma^{*} \mathrm{CC}$	1.33	2.97	2.47	1.14	2.95	2.62	1.29	$\rightarrow \pi^{*}$	$\rightarrow \pi^{*}$
		$\sigma_{\mathrm{cc}} \rightarrow \mathrm{m}^{*} \mathrm{cc}$	7.99	$2.73(4.10)^{2}$	$6.88(1.19)^{2}$	0.08	2.03(4.89) ${ }^{\text {a }}$	7.07(1.30) ${ }^{\text {a }}$	0.38	1.2	1.7
		Total	30.17	32.61	34.99	4.82	32.85	38.11	7.94		
NH	CH_{2}	Endocyclic $\Pi_{c c} \rightarrow \sigma^{*}{ }_{c x} / \sigma^{*}{ }_{c c}$	$\begin{gathered} 5.33 \\ / 1.72(1.12)^{a} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.87 / \\ 1.63(1.38)^{a} \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.78 \\ / 1.96(0.51)^{a} \\ \hline \end{gathered}$	-1.92	$\begin{gathered} \hline 6.87 / \\ 1.71(1.29)^{a} \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.72(0.52)^{a} \\ \hline 1.91 \\ \hline \end{gathered}$	-0.02	$\pi / \pi^{*} \rightarrow$	$\pi / \pi^{*} \rightarrow$
		$\Pi^{*}{ }_{c c} \rightarrow \sigma^{*}{ }_{c x} / \sigma^{*}{ }_{\text {c }}$	<0.5	<0.5	1.64/1.82	3.46	<0.5	3.85/1.83	5.68	4.1	9.2
		$\begin{gathered} \text { Exocyclic }^{b} \\ \pi_{\mathrm{CC}} \rightarrow \sigma^{*}{ }_{\mathrm{CH}} / \sigma^{*} \mathrm{CC} \end{gathered}$	$\begin{gathered} 3.59 \\ / 0.75(2.55)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 3.98 / \\ 0.94(3.09)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 2.60(1.42)^{a} \\ / 1.51(1.75)^{a} \\ \hline \end{gathered}$	0.39	$\begin{gathered} 3.71 / \\ 1.14(2.98)^{a} \end{gathered}$	$\begin{gathered} 2.17(1.61)^{a} \\ / 2.25(1.66)^{a} \\ \hline \end{gathered}$	0.8		
		$\Pi^{*}{ }_{\mathrm{CC}} \rightarrow \sigma^{*}{ }_{\mathrm{CH}} / \sigma^{*} \mathrm{CC}$	<0.5	<0.5	1.23/<0.5	1.23	<0.5	1.13/0.71	1.84		
		$\sigma_{\mathrm{cc}} \rightarrow \sigma^{*} \mathrm{xs}$	3.81	4.30	4.33	0.52	4.27	4.38	0.57		
		$\sigma_{\mathrm{CH}} \rightarrow \sigma^{*} \mathrm{CY}$	3.47	4.06	3.93	0.46	3.95	3.79	0.32		
		$\mathrm{n}_{\mathrm{x}} \rightarrow \mathrm{m}^{*} \mathrm{cc}$	1.55	1.07	0.84	-0.71	1.07	0.83	-0.72	$\rightarrow \pi^{*}$	$\rightarrow \Pi^{*}$
		$\sigma_{\mathrm{CH}(\mathrm{Y})} \rightarrow \sigma^{*}{ }_{\mathrm{CC}}$	3.88	2.75	2.79	-1.09	2.77	2.54	-1.34	-0.9	-0.4
		$\sigma_{\mathrm{cc}} \rightarrow \mathrm{m}^{*} \mathrm{cc}$	$4.51(3.18)^{\text {a }}$	$4.66(2.45)^{2}$	$7.73(0.85)^{2}$	0.89	$4.67(2.55)^{a}$	8.53(0.83) ${ }^{\text {a }}$	1.67		
		Total	35.46	37.18	38.69	3.23	36.98	44.26	8.80		
$\mathrm{NH}_{2}{ }^{+}$	CH_{2}	Endocyclic $\pi_{c c} \rightarrow \sigma^{*} c x / \sigma^{*} c c$	$\begin{gathered} \hline 7.75 \\ \left(1.46(1.24)^{a}\right. \\ \hline \end{gathered}$	$\begin{gathered} 9.48 / \\ 1.35(1.57)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 9.13 \\ 1.62(0.82)^{a} \\ \hline \end{gathered}$	1.12	$\begin{gathered} 9.07 / \\ 1.39(1.58)^{a} \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.06 \\ / 1.58(0.86)^{a} \\ \hline \end{gathered}$	0.05	$\pi / \pi^{*} \rightarrow$	$\pi / \pi^{*} \rightarrow$
		$\Pi^{*}{ }_{c c} \rightarrow \sigma^{*}{ }_{c x} / \sigma^{*} \mathrm{cc}$	<0.5	<0.5	10.82/1.74	12.56	<0.5	8.12/1.66	9.78	16.9	12.3
		$\begin{gathered} \text { Exocyclic }^{0} \\ \Pi_{\mathrm{CC} \rightarrow} \rightarrow \sigma^{*}{ }_{\mathrm{CH}} / \sigma^{*}{ }_{\mathrm{CC}} \end{gathered}$	$\begin{gathered} 3.42 \\ / 0.73(3.37)^{a} \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.90 / \\ 0.93(3.36)^{2} \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.87(0.90)^{a} \\ / 1.60(2.32)^{a} \\ \hline \end{gathered}$	0.17	3.69	$\begin{gathered} 2.64(0.92)^{a} \\ 1.77(2.32)^{a} \\ \hline \end{gathered}$	0.13		
		$\Pi^{*}{ }_{\text {CC }} \rightarrow \sigma^{*}{ }_{\text {CH }} / \sigma^{*} \mathrm{CC}$	<0.5	<0.5	1.61/0.60	2.21	<0.5	1.50/<0.5	1.50		
		$\sigma_{\mathrm{cc}} \rightarrow \sigma^{*} \mathrm{xs}$	2.86	3.06	3.11	0.25	3.05	3.16	0.30		
		$\sigma_{\mathrm{CH}} \rightarrow \sigma^{*}{ }_{\mathrm{CY}}$	3.69	4.38	4.27	0.58	4.34	4.22	0.53		
		$\sigma_{\mathrm{CH}(\mathrm{Y})} \rightarrow \mathrm{\sigma}^{*} \mathrm{CC}$	2.72	2.79	2.74	0.02	2.91	2.86	0.14	$\rightarrow \pi^{*}$	$\rightarrow \pi^{*}$
		$\sigma_{\mathrm{cc}} \rightarrow \mathrm{m}^{*} \mathrm{cc}$	4.78(3.41) ${ }^{\text {a }}$	4.63(2.53) ${ }^{\text {a }}$	7.01(1.29) ${ }^{\text {a }}$	0.11	4.46(2.69) ${ }^{\text {a }}$	7.16(1.44) ${ }^{\text {a }}$	0.41	0.1	0.5
		Total	35.43	37.98	52.45	17.02	37.46	48.27	12.84		
0	CH_{2}	Endocyclic $\Pi_{c c} \rightarrow \sigma^{*} \mathrm{cx} / \sigma^{*} \mathrm{cc}$	$\begin{gathered} 9.14 \\ / 1.91(0.76)^{a} \\ \hline \end{gathered}$	$\begin{gathered} \hline 10.27 / \\ 1.78(1.14)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 9.73 \\ / 1.84(0.58)^{a} \\ \hline \end{gathered}$	0.34	$\begin{gathered} \hline 10.23 / \\ 1.82(1.08)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 9.48 \\ / 1.79(0.53)^{a} \\ \hline \end{gathered}$	-0.01	$\pi / \pi^{*} \rightarrow$	$\pi / \pi^{*} \rightarrow$
		$\Pi^{*}{ }_{c c} \rightarrow \sigma^{*}{ }_{c x} / \sigma^{*} \mathrm{cc}$	<0.5	<0.5	10.15/1.84	11.99	<0.5	8.10/1.78	9.88	13.6	11.0
		$\begin{gathered} \text { Exocyclic }^{b} \\ \pi_{\mathrm{CC} \rightarrow \sigma^{*} \mathrm{CH} / \sigma^{*} \mathrm{CC}} \end{gathered}$	$\begin{gathered} \hline 3.11(0.94)^{a} \\ / 0.87(2.96)^{a} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3.68(0.59)^{a} \\ & 10.91(3.05)^{a} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.62(1.30)^{a} \\ & / 1.35(2.22)^{a} \\ & \hline \end{aligned}$	-0.39	$\begin{gathered} 3.42(0.68)^{a} \\ 10.97(3.00)^{a} \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.29(1.45)^{a} \\ 1.46(2.10)^{a} \\ \hline \end{gathered}$	-0.58		
		$\Pi^{*}{ }_{\text {c }} \rightarrow \sigma^{*}{ }_{\text {CH }} / \sigma^{*} \mathrm{CC}$	<0.5	<0.5	1.32/<0.5	1.32	<0.5	1.20/<0.5	1.20		
		$\sigma_{\mathrm{cc}} \rightarrow \sigma^{*} \mathrm{xs}$	2.98	3.01	2.89	-0.09	3.02	3.08	0.10		
		$\sigma_{\mathrm{CH}} \rightarrow \sigma^{*} \mathrm{CY}$	3.52	4.09	3.97	0.45	3.98	3.89	0.37		
		$\mathrm{n}_{\mathrm{x}} \rightarrow \mathrm{m}^{*} \mathrm{cc}$	1.07	0.80	0.70	-0.37	0.79	0.67	-0.40	$\rightarrow \pi^{*}$	$\rightarrow \pi^{*}$
		$\sigma_{\mathrm{CH}(\mathrm{Y})} \rightarrow \sigma^{*} \mathrm{CC}$	2.77	2.79	2.75	-0.02	2.79	2.75	-0.02	0.1	0.6
		$\sigma_{\mathrm{cc}} \rightarrow \mathrm{m}^{*} \mathrm{cc}$	6.20(2.07) ${ }^{\text {a }}$	5.50(1.86) ${ }^{\text {a }}$	7.79(0.93) ${ }^{\text {a }}$	0.45	5.49(1.99) ${ }^{\text {a }}$	8.33(0.99) ${ }^{\text {a }}$	1.05		
		Total	38.30	39.47	51.98	13.68	39.26	49.89	11.59		
CH_{2}	0	Endocyclic $\Pi_{c c} \rightarrow \sigma^{*}{ }_{c x} / \sigma^{*}{ }_{c c}$	$\begin{gathered} 1.29 \\ / 2.54(0.53)^{a} \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.78 / \\ 1.70(1.58)^{a} \\ \hline \end{gathered}$	$\begin{array}{r} \hline 2.51 \\ / 1.88 \\ \hline \end{array}$	0.03	$\begin{gathered} 3.70 / \\ 2.19(1.07)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 3.27 \\ 1.98(0.68)^{a} \\ \hline \end{gathered}$	1.57	$\pi / \pi^{*} \rightarrow$	$\pi / \pi * \rightarrow$
		$\Pi^{*}{ }_{C C} \rightarrow \sigma^{*}{ }_{c x} / \sigma^{*}{ }_{C c}$	<0.5	<0.5	1.66/0.80	2.46	<0.5	2.43/1.68	4.11	4.9	8.2
		$\begin{gathered} \text { Exocyclic }^{b} \\ \pi_{\mathrm{CC}} \rightarrow \sigma^{*}{ }_{\mathrm{CH}} / \sigma^{*} \mathrm{CC} \end{gathered}$	$\begin{gathered} 2.02(1.14)^{a} \\ / 2.02(1.87)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 4.29 / \\ 1.14(3.07)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 2.64(1.24)^{a} \\ / 2.03(1.29)^{a} \\ \hline \end{gathered}$	0.15	$\begin{gathered} 3.67(0.75)^{a} \\ / 1.77(2.46)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 2.65(1.25)^{a} \\ / 2.24(1.81)^{a} \\ \hline \end{gathered}$	0.90		
		$\Pi^{*}{ }_{\mathrm{CCC}} \rightarrow \sigma^{*}{ }_{\mathrm{CH}} / \sigma^{*} \mathrm{CC}$	<0.5	<0.5	0.83/0.56	1.39	<0.5	1.26/0.67	1.93		
		$\sigma_{\mathrm{cc}} \rightarrow \sigma^{*} \mathrm{xs}$	3.49	3.89	3.92	0.43	3.83	3.15	-0.34		
		$\sigma_{\mathrm{CH}} \rightarrow \sigma^{*} \mathrm{CY}$	5.04	5.66	5.44	0.40	5.44	5.03	-0.01		
		$\mathrm{n}_{\mathrm{Y}} \rightarrow \mathrm{\sigma}^{*} \mathrm{cc}$	5.93	5.42	3.77	-2.16	5.49	5.35	-0.58	$\rightarrow \pi^{*}$	$\rightarrow \pi^{*}$
		$\sigma_{\mathrm{cc}} \rightarrow \mathrm{T}^{*} \mathrm{cc}$	6.98(1.32) ${ }^{\text {a }}$	$4.34(2.66)^{\text {a }}$	$7.58(0.89)^{a}$	0.17	$5.46(1.84)^{a}$	7.90(1.18) ${ }^{\text {a }}$	0.78	-2.0	0.2
		Total	34.17	37.53	37.04	2.87	37.67	42.53	8.36		
CH_{2}	NH	Endocyclic $\pi_{c c} \rightarrow \sigma^{*} \mathrm{cx} / \sigma^{*} \mathrm{cc}$	$\begin{gathered} 3.05 \\ / 2.53(0.51)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 3.63 / \\ 1.17(2.05)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 3.53 \\ / 1.86(0.88)^{a} \\ \hline \end{gathered}$	0.18	$\begin{gathered} 3.54 / \\ 2.21(1.00)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 3.30 \\ 1.88(0.74)^{a} \\ \hline \end{gathered}$	-0.17	$\pi / \pi^{*} \rightarrow$	$\pi / \pi^{*} \rightarrow$
		$\pi^{*}{ }_{c c} \rightarrow \sigma^{*}{ }_{c x} / \sigma^{*}{ }_{c c}$	<0.5	<0.5	2.87/1.64	4.51	<0.5	2.32/1.72	4.04	6.9	5.8
		$\begin{gathered} \text { Exocyclic }^{b} \\ \pi_{\mathrm{CC}} \rightarrow \sigma^{*}{ }_{\mathrm{CH}} / \sigma^{*} \mathrm{CC} \end{gathered}$	$\begin{gathered} \hline 2.96(1.41)^{a} \\ / 2.19(1.95)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 4.57 / \\ 0.75(3.42)^{a} \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.19(0.90)^{a} \\ / 1.69(1.92)^{a} \\ \hline \end{gathered}$	-0.81	$\begin{gathered} 3.57(0.84)^{a} \\ / 2.09(2.17)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 2.68(1.16)^{a} \\ / 2.33(1.74)^{a} \\ \hline \end{gathered}$	-0.60		
		$\Pi^{*}{ }_{\mathrm{CC}} \rightarrow \sigma^{*}{ }_{\mathrm{CH}} / \sigma^{*}{ }_{\mathrm{CC}}$	<0.5	<0.5	1.49/0.67	2.16	<0.5	1.36/0.71	2.07		
		$\sigma_{\mathrm{cc}} \rightarrow \sigma^{*} \mathrm{xs}$	3.51	3.93	3.93	0.42	3.85	3.68	0.17		
		$\sigma_{\mathrm{CH}} \rightarrow \sigma^{*} \mathrm{CY}$	4.49	5.09	4.94	0.45	4.97	4.82	0.33		
		$\mathrm{n}_{\mathrm{Y}} \rightarrow \mathrm{\sigma}^{*} \mathrm{cc}$	9.96	8.39	8.59	-1.37	8.42	8.40	-1.56	$\rightarrow \pi^{*}$	$\rightarrow \pi^{*}$
		$\sigma_{\mathrm{cc}} \rightarrow \pi^{*} \mathrm{cc}$	6.99(1.40) ${ }^{\text {a }}$	$3.46(3.74)^{2}$	7.03(1.52) ${ }^{\text {a }}$	0.16	$5.67(1.78)^{a}$	7.81(1.36) ${ }^{\text {a }}$	0.78	-1.2	-0.78
		Total	40.95	40.20	46.65	5.70	40.11	46.01	5.06		
CH_{2}	$\mathrm{NH}_{2}{ }^{+}$	Endocyclic $\Pi_{c \mathrm{C}} \rightarrow \sigma^{*}{ }_{\mathrm{Cx}} / \sigma^{*}{ }_{\mathrm{cc}}$	$\begin{gathered} 1.74(1.56)^{a} \\ 3.00 \\ \hline \end{gathered}$	$\begin{gathered} 3.78 / \\ 1.46(2.02)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 3.85 \\ 12.22(0.69)^{a} \\ \hline \end{gathered}$	0.46	$\begin{gathered} 3.64 / \\ 1.47(2.06)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 3.51 \\ / 2.14(0.73)^{a} \\ \hline \end{gathered}$	0.08	$\pi / \pi^{*} \rightarrow$	$\pi / \pi^{*} \rightarrow$
		$\Pi^{*}{ }_{c c} \rightarrow \sigma^{*}{ }_{c x} / \sigma^{*} \mathrm{cc}$	<0.5	<0.5	3.27/1.96	5.23	<0.5	2.78/1.85	4.63	8.9	7.8
		Exocyclic ${ }^{0}$ $\Pi_{\mathrm{CC}} \rightarrow \sigma^{*} \mathrm{CH} / \sigma^{*} \mathrm{CC}$	$\begin{gathered} <0.5(3.93)^{a} \\ 13.52 \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.48 / \\ 0.53(3.52)^{a} \\ \hline \end{gathered}$	$\begin{aligned} & 2.86(1.26)^{a} \\ & 1.57(1.99)^{a} \\ & \hline \end{aligned}$	0.23	$\begin{gathered} 4.28 / \\ <0.5(3.62)^{a} \end{gathered}$	$\begin{aligned} & 2.59(1.25)^{a} \\ & / 1.56(2.28)^{a} \\ & \hline \end{aligned}$	0.23		
		$\Pi^{*}{ }_{\mathrm{CC}} \rightarrow \sigma^{*}{ }_{\mathrm{CH}} / \sigma^{*}{ }_{\mathrm{CC}}$	<0.5	<0.5	1.45/0.53	1.98	<0.5	1.39/0.52	1.91		

		$\sigma_{\mathrm{cc}} \rightarrow \sigma^{*} \mathrm{xs}$	4.34	4.65	4.58	0.24	4.63	4.70	0.36		
		$\sigma_{\mathrm{CH}} \rightarrow \sigma^{*} \mathrm{CY}$	5.11	6.09	5.87	0.76	5.87	5.67	0.56		
		$\sigma_{\mathrm{NH}(\mathrm{Y})} \rightarrow \sigma^{*}{ }_{\mathrm{CC}}$	1.24	1.32	1.74	0.50	1.32	1.67	0.43	$\rightarrow \pi^{*}$	$\rightarrow \pi^{*}$
		$\sigma_{C C} \rightarrow \pi^{*} \mathrm{CC}$	7.19	3.46(2.81) ${ }^{\text {a }}$	$6.51(0.85)^{2}$	0.17	$3.32(3.13)^{2}$	6.80(1.02) ${ }^{\text {a }}$	0.63	0.7	1.1
		Total	31.63	34.12	41.20	9.57	33.34	40.46	8.83		
NH	O	Endocyclic $\pi_{c \mathrm{c}} \rightarrow \sigma^{*} \mathrm{cx} / \sigma^{*} \mathrm{cc}$	$\begin{gathered} 6.53 \\ / 1.95(0.99)^{a} \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.17 / \\ 1.93(1.27)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 6.34(0.67)^{a} \\ / 2.19 \\ \hline \end{gathered}$	-0.27	$\begin{gathered} \hline 7.12 / \\ 1.99(1.18)^{a} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.10(0.72)^{a} \\ / 2.12 \\ \hline \end{gathered}$	-0.53	$\pi / \pi^{*} \rightarrow$	$\pi / \pi * \rightarrow$
		$\pi^{*}{ }_{C C} \rightarrow \sigma^{*}{ }_{c x} / \sigma^{*}{ }_{C c}$	<0.5	<0.5	4.62/2.00	6.62	<0.5	3.71/1.94	5.65	8.3	6.7
		$\begin{gathered} \text { Exocyclic }^{b} \\ \Pi_{\mathrm{CC}} \rightarrow \sigma^{*}{ }_{\mathrm{CH}} / \sigma^{*}{ }_{\mathrm{CC}} \end{gathered}$	$\begin{gathered} 3.59(0.72)^{a} \\ / 1.04(2.99)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 3.92(0.52)^{a} \\ / 1.32(2.82)^{a} \\ \hline \end{gathered}$	$\begin{gathered} 2.29(1.73)^{a} \\ / 2.26(1.46)^{a} \\ \hline \end{gathered}$	-0.60	$\begin{gathered} 3.77(1.18)^{a} \\ / 1.39(2.77)^{a} \\ \hline \end{gathered}$	$\begin{aligned} & 2.00(1.93)^{a} \\ & / 2.36(1.38)^{a} \\ & \hline \end{aligned}$	-0.67		
		$\Pi^{*}{ }^{\text {c }} \rightarrow \sigma^{*}{ }_{\mathrm{CH}} / \sigma^{*} \mathrm{CC}$	<0.5	<0.5	1.06/0.78	1.84	<0.5	0.96/0.63	1.59		
		$\sigma_{\mathrm{cc}} \rightarrow \sigma^{*} \mathrm{xs}$	3.80	4.09	4.09	0.29	4.09	4.12	0.32		
		$\sigma_{\mathrm{CH}} \rightarrow \sigma^{*}{ }_{\mathrm{CY}}$	4.95	5.59	5.41	0.46	5.48	5.25	0.30		
		$\mathrm{n}_{\mathrm{X}} \rightarrow \mathrm{m}^{*}{ }_{\mathrm{cc}}$	1.33	1.06	0.65	-0.68	1.05	0.78	-0.55	$\rightarrow \pi^{*}$	$\rightarrow \pi^{*}$
		$\mathrm{n}_{\mathrm{Y}} \rightarrow \mathrm{\sigma}^{*} \mathrm{cc}$	5.71	5.38	5.24	-0.47	5.46	5.36	-0.35	-0.93	0.2
		$\sigma_{\mathrm{cc}} \rightarrow \mathrm{m}^{*}{ }_{\mathrm{cc}}$	5.98(2.67) ${ }^{\text {a }}$	4.99(2.22) ${ }^{\text {a }}$	$8.27(0.60)^{2}$	0.22	$5.34(2.25)^{2}$	9.22(0.57) ${ }^{\text {a }}$	1.14		
		Total	42.25	42.28	49.66	7.41		49.15	6.9		

${ }^{a}$ Donation from/to both in plane and (out of plane) π-bonds. ${ }^{b}$ Double hyperconjugation/induction: Values given for exocyclic $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ bonds that are antiperiplanar to $\mathrm{X}-\mathrm{S}$ and $\mathrm{C}-\mathrm{Y}$ bonds. ${ }^{c} \Delta(\mathrm{TS}-\mathrm{SM})$ provided as both a sum of interactions that increase the electrophilicity of the alkyne $\left(\pi / \pi^{*} \rightarrow\right)$ and a sum of interactions that increase the nucleophilicity of the alkyne $\left(\rightarrow \pi^{*}\right)$.

Figure S5. Plots of activation energies versus distortion energies split by the diazoacetamide (circles) and azidoacetamide (squares) for all cycloadditions from Table S3 (left) and removing charged alkynes (right).

Figure S6. Plots of activation energies versus distortion energies for each of the dipoles from Figure S2 (right). Each dipole is further split into each regioisomeric transition state for the diazoacetamide (left) and azidoacetamide (right).

Table S6. Distortion/interaction analysis for cycloadditions of methyl azide with alkynes of various substitution patterns (from Table S2). Calculated at the M06-2X/6-311+G(d,p) level of theory using an IEFPCM solvent model for water (radii = UFF). Energies in $\mathrm{kcal} / \mathrm{mol}$.

		Regio. 1					Regio. 2				
X	Y	$\begin{aligned} & \Delta E^{\ddagger} \text { dist. } \\ & \text { (dipole) } \end{aligned}$	$\begin{gathered} \Delta E_{\text {dist }}^{\ddagger} \\ \text { (alkyne) } \end{gathered}$	$\begin{aligned} & \Delta E_{\text {dist }}^{\dagger} \\ & \text { total } \end{aligned}$	$\Delta E_{\text {int. }}^{\ddagger}$	ΔE^{\ddagger}	$\begin{aligned} & \Delta E_{\text {dist. }}^{f} \\ & \text { (dipole) } \end{aligned}$	$\begin{gathered} \Delta E_{\text {dist }}^{\ddagger} \\ \text { (alkyne) } \end{gathered}$	$\begin{aligned} & \Delta E_{\text {fist }} \\ & \text { total } \end{aligned}$	$\Delta E_{\text {int. }}^{\ddagger}$	ΔE^{\ddagger}
CH_{2}	CH_{2}	19.2	4.4	23.6	-8.1	15.5	19.2	4.5	23.7	-8.4	15.3
NH	CH_{2}	17.9	3.9	21.8	-8.2	13.6	17.9	3.9	21.8	-7.7	14.1
$\mathrm{NH}_{2}{ }^{+}$	CH_{2}	18.1	5.0	23.1	-10.3	12.8	19.6	5.0	24.6	-10.1	14.4
0	CH_{2}	17.1	3.7	20.9	-9.2	11.7	18.3	4.3	22.6	-9.1	13.5
CH_{2}	NH	18.2	4.0	22.2	-8.2	14.0	18.1	4.1	22.2	-8.0	14.2
CH_{2}	O	17.8	3.4	21.2	-8.2	13.0	17.7	3.5	21.2	-8.1	13.1
CH_{2}	$\mathrm{NH}_{2}{ }^{+}$	19.5	4.8	24.3	-9.8	14.5	19.4	4.5	23.9	-9.9	14.1
NH	NH	17.1	3.4	20.5	-8.0	12.4	17.5	3.7	21.2	-7.9	13.2
NH	0	16.6	2.9	19.5	-8.3	11.2	17.1	3.0	20.1	-8.0	12.1
NH	$\mathrm{NH}_{2}{ }^{+}$	18.0	4.3	22.4	-10.6	11.8	18.4	3.5	22.0	-9.9	12.1
0	NH	16.2	3.1	19.3	-8.4	10.9	17.2	4.1	21.3	-8.6	12.7
0	0	15.5	2.7	18.3	-8.9	9.4	16.8	3.5	20.2	-9.1	11.2
0	$\mathrm{NH}_{2}{ }^{+}$	16.4	3.9	20.2	-11.0	9.2	18.0	4.1	22.1	-11.0	11.1
$\mathrm{NH}_{2}{ }^{+}$	NH	17.0	4.2	21.2	-10.0	11.1	18.2	4.5	22.8	-9.7	13.1
$\mathrm{NH}_{2}{ }^{+}$	0	16.1	3.8	19.9	-10.4	9.5	17.5	4.3	21.8	-10.1	11.7
$\mathrm{NH}_{2}{ }^{+}$	$\mathrm{NH}_{2}{ }^{+}$	17.5	4.5	22.0	-11.6	10.4	19.7	4.2	23.9	-11.4	12.5

Table S7. Distortion/interaction analysis for cycloadditions of diazoacetamide with alkynes of various substitution patterns (from Table S3). Calculated at the M06-2X/6-311+G(d,p) level of theory using an IEFPCM solvent model for water (radii = UFF). Energies in $\mathrm{kcal} / \mathrm{mol}$.

		Regio. 1					Regio. 2				
X	Y	$\Delta E^{\ddagger}{ }_{\text {dist }}$. (dipole)	$\Delta E_{\text {dist }}^{\ddagger}$ (alkyne)	$\begin{aligned} & \Delta E_{\text {dist }}^{\ddagger} \\ & \text { total } \end{aligned}$	$\Delta E_{\text {int }}^{\ddagger}$.	ΔE^{\ddagger}	$\Delta E_{\text {dist. }}^{\ddagger}$ (dipole)	$\begin{gathered} \Delta E_{\text {dist }}^{\ddagger} \\ \text { (alkyne) } \end{gathered}$	$\begin{aligned} & \Delta E_{\text {dist }}^{\ddagger} \\ & \text { total } \end{aligned}$	$\Delta E_{\text {int }}^{\text {f }}$.	ΔE^{\ddagger}
CH_{2}	CH_{2}	20.9	5.8	26.7	-11.3	15.4	22.1	6.3	28.4	-12.7	15.6
NH	CH_{2}	19.7	4.9	24.6	-11.1	13.5	21.1	5.4	26.5	-12.3	14.2
$\mathrm{NH}_{2}{ }^{+}$	CH_{2}	19.4	6.2	25.6	-13.8	11.8	21.7	6.7	28.4	-14.6	13.9
0	CH_{2}	18.5	5.0	23.5	-12.2	11.3	20.7	5.6	26.3	-13.1	13.2
CH_{2}	NH	19.9	5.2	25.1	-11.3	13.8	20.8	5.8	26.5	-12.4	14.2
CH_{2}	0	19.4	4.5	23.9	-11.0	12.8	20.4	5.0	25.4	-12.4	12.9
CH_{2}	$\mathrm{NH}_{2}{ }^{+}$	21.2	6.2	27.4	-13.1	14.3	22.0	6.6	28.6	-14.4	14.2
NH	NH	18.5	5.0	23.5	-11.2	12.3	19.9	5.2	25.1	-12.1	13.0
NH	0	18.0	4.1	22.2	-11.5	10.7	19.4	4.5	23.9	-12.3	11.6
NH	$\mathrm{NH}_{2}{ }^{+}$	19.6	5.6	25.1	-13.8	11.3	20.8	5.1	26.0	-14.1	11.9
0	NH	17.4	4.2	21.6	-11.5	10.1	19.6	5.3	24.9	-12.9	12.0
0	0	16.6	3.8	20.4	-12.0	8.4	18.8	4.6	23.4	-13.1	10.3
0	$\mathrm{NH}_{2}{ }^{+}$	17.2	5.3	22.5	-14.6	7.9	20.0	5.4	25.4	-15.2	10.3
$\mathrm{NH}_{2}{ }^{+}$	NH	18.2	5.7	23.9	-13.2	10.6	20.4	6.2	26.7	-14.2	12.5
$\mathrm{NH}_{2}{ }^{+}$	0	17.1	5.2	22.3	-13.8	8.6	19.5	5.8	25.3	-14.6	10.7
$\mathrm{NH}_{2}{ }^{+}$	$\mathrm{NH}_{2}{ }^{+}$	18.0	7.1	25.1	-16.2	8.9	21.2	6.9	28.2	-16.8	11.4

Table S8. Distortion/interaction analysis for cycloadditions of azidoacetamide with alkynes of various substitution patterns (from Table S3). Calculated at the M06-2X/6-311+G(d,p) level of theory using an IEFPCM solvent model for water (radii = UFF). Energies in $\mathrm{kcal} / \mathrm{mol}$.

		Regio. 1					Regio. 2				
X	Y	$\begin{aligned} & \Delta E_{\text {dist. }}^{\ddagger} \\ & \text { (dipole) } \end{aligned}$	$\begin{gathered} \Delta E_{\text {dist }}^{\ddagger} \\ \text { (alkyne) } \end{gathered}$	$\begin{aligned} & \Delta E_{\text {dist }}^{\dagger} \\ & \text { total } \end{aligned}$	$\Delta E_{\text {int }}^{\ddagger}$	ΔE^{\ddagger}	$\begin{aligned} & \Delta E_{\text {dist. }}^{\ddagger} \\ & \text { (dipole) } \end{aligned}$	$\begin{gathered} \Delta E_{\text {dist }}^{\ddagger} \\ \text { (alkyne) } \end{gathered}$	$\begin{aligned} & \Delta E_{\text {dist }}^{\dagger} \\ & \text { total } \end{aligned}$	$\Delta E^{\ddagger}{ }_{\text {int }}$	ΔE^{\ddagger}
CH_{2}	CH_{2}	19.3	4.2	23.5	-8.2	15.3	19.5	4.2	23.7	-8.6	15.1
NH	CH_{2}	17.8	3.7	21.5	-8.1	13.5	18.7	3.7	22.4	-8.5	13.9
$\mathrm{NH}_{2}{ }^{+}$	CH_{2}	17.9	4.9	22.8	-10.3	12.5	19.5	4.8	24.3	-9.9	14.5
O	CH_{2}	17.2	3.6	20.8	-9.2	11.6	18.5	4.1	22.6	-9.2	13.4
CH_{2}	NH	18.2	3.9	22.1	-7.9	14.1	18.3	3.9	22.2	-8.3	13.9
CH_{2}	0	17.8	3.3	21.1	-8.1	13.0	17.8	3.4	21.2	-8.3	12.9
CH_{2}	$\mathrm{NH}_{2}{ }^{+}$	19.5	4.6	24.1	-9.6	14.5	19.5	4.3	23.8	-10.0	13.7
NH	NH	16.9	3.5	20.4	-8.0	12.5	17.6	3.5	21.1	-8.1	13.0
NH	0	16.5	2.8	19.3	-7.9	11.5	17.1	3.0	20.1	-8.2	11.9
NH	$\mathrm{NH}_{2}{ }^{+}$	17.9	4.1	22.0	-10.0	12.0	18.6	3.4	22.0	-10.2	11.9
0	NH	16.2	3.0	19.2	-8.4	10.8	17.4	3.9	21.3	-8.8	12.5
0	0	15.6	2.6	18.2	-8.8	9.4	16.9	3.4	20.3	-9.1	11.1
0	$\mathrm{NH}_{2}{ }^{+}$	16.3	3.7	20.0	-10.7	9.3	18.1	3.9	22.0	-11.0	11.0
$\mathrm{NH}_{2}{ }^{+}$	NH	17.0	4.1	21.2	-9.9	11.3	18.3	4.4	22.7	-9.7	13.0
$\mathrm{NH}_{2}{ }^{+}$	0	16.2	3.6	19.8	-10.2	9.6	17.5	4.2	21.7	-9.9	11.7
$\mathrm{NH}_{2}{ }^{+}$	$\mathrm{NH}_{2}{ }^{+}$	17.5	4.6	22.1	-11.8	10.3	19.6	4.1	23.6	-11.5	12.1

Table S9. Energies and free energies of activation ($\mathrm{kcal} / \mathrm{mol}$) for cycloadditions of diazoacetamide to alkynes of various substitution patterns. Geometries optimized at the M06$2 \mathrm{X} / 6-311+\mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory using an IEFPCM solvent model for water (radii = UFF).

	Regio. 1		Regio. 2	
Y	ΔE^{\ddagger}	ΔG^{\ddagger}	ΔE^{\ddagger}	ΔG^{\ddagger}
1	10.7	21.9	11.5	23.8
2	10.1	22.0	10.8	23.6
3	10.8	23.7	11.0	23.6
4	11.8	24.5	11.6	24.7

XVII. References.

1. Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals 6th ed., Elsevier: Burlington, MA, 2009.
2. Still, W.C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
3. Burke, E. G.; Schomaker, J. M. Angew. Chem. Int. Ed. 2015, 127, 12265-1226.
4. Myers, E. L.; Raines, R. T. Angew. Chem. Int. Ed. 2009, 121, 2395-2399.
5. (a) Abel, R. L.; Haigis, M. C.; Park, C.; Raines, R. T. Anal. Biochem. 2002, 306, 100-107. (b) Johnson, R. J.; Chao, T.-Y.; Lavis, L. D.; Raines, R. T. Biochemistry 2007, 46, 1030810316.
6. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ó:; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09; Gaussian, Inc.: Wallingford, CT, 2009.
7. Zhao, Y.; Truhlar, D. Theor. Chem. Acc. 2008, 120, 215-241.
8. Lan, Y.; Zou, L.; Cao, Y.; Houk, K. N. J. Phys. Chem. A 2011, 115, 13906-13920.
9. (a) Miertuš, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117-129; (b) Tomasi, J.; Mennucci, B.; Cancès, E. J. Mol. Struct.: THEOCHEM 1999, 464, 211-226; (c) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999-3094.
10. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F. NBO 6.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 2013.

XVIII. NMR Spectra.

${ }^{1}$ H NMR of the homoallenic alcohol precursor to compounds 5, 6 and 7.

${ }^{13} \mathrm{C}$ NMR of the homoallenic alcohol precursor to compounds 5, 6 and 7.
-205.28

Nin

250	230	210	190	170	150	130	$\begin{gathered} 110 \\ \text { f1 (ppm) } \end{gathered}$	90	70	50	30	10	-10	-3

${ }^{1}$ H NMR of the homoallenic alcohol precursor to compound 8.

${ }^{13} \mathrm{C}$ NMR of the homoallenic alcohol precursor to compound 8.

${ }^{1} H$ NMR of the precursor to compounds 5 and 6.

${ }^{13} \mathrm{C}$ NMR of the precursor to compounds 5 and 6.

${ }^{1} H$ NMR of the precursor to compound 8.

${ }^{13} \mathrm{C}$ NMR of the precursor to compound 8.

${ }^{1} \mathrm{H}$ NMR of the precursor to compound 7.

${ }^{13} \mathrm{C}$ NMR of the precursor to compound 7.

®
$\underset{\sim}{i}$
$\underset{1}{1}$

${ }^{1} \mathrm{H}$ NMR of compound 5.

${ }^{13} \mathrm{C}$ NMR of compound 5 .

${ }^{1} \mathrm{H}$ NMR of compound 6.

${ }^{13} \mathrm{C}$ NMR of compound 6.

90	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR of compound 7.

${ }^{13}$ C NMR of compound 7.

${ }^{1} \mathrm{H}$ NMR of compound 8.

${ }^{13} \mathrm{C}$ NMR of compound 8.

${ }^{1} \mathrm{H}$ NMR of compounds 5 b and 5 a .

${ }^{13} \mathrm{C}$ NMR of compounds 5 b and 5 a .

${ }^{1} \mathrm{H}$ NMR of compounds 6 b and 6a.

${ }^{13} \mathrm{C}$ NMR of compounds $\mathbf{6 b}$ and 6a.

${ }^{1} \mathrm{H}$ NMR of compounds 7b and 7a.

${ }^{13} \mathrm{C}$ NMR of compounds 7 b and 7a.

+	1	1						1	1					
250	230	210	190	170	150	130	110	90	70	50	30	10	-10	-3
							f1 (ppm)							

${ }^{1} \mathrm{H}$ NMR of compounds 8 b and 8 a .

${ }^{13} \mathrm{C}$ NMR of compounds 8 b and $\mathbf{8 a}$.

${ }^{1} H$ NMR of compounds 16 b and 16 a .

${ }^{13} \mathrm{C}$ NMR of compounds 16 b and 16 a .

${ }^{1} \mathrm{H}$ NMR of compound 17 a .

${ }^{13}$ C NMR of compound 17 a.

250	230	210	190	170	150	130		90	70	50	30	10	-10	-3
							f1 (ppm)							

${ }^{1} \mathrm{H}$ NMR of compound 17 c .

${ }^{13}$ C NMR of compound 17 c.

														T
250	230	210	190	170	150	130	$\begin{gathered} 110 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	70	50	30	10	-10	-3

${ }^{1} \mathrm{H}$ NMR of the precursor to compound 18.

${ }^{13} \mathrm{C}$ NMR of the precursor to compound 18.

${ }^{1}$ H NMR of compound 18.

${ }^{13} \mathrm{C}$ NMR of the precursor to compound 18.

${ }^{1} \mathrm{H}$ NMR of compound 18a.

${ }^{13} \mathrm{C}$ NMR of compound 18a.

[^0]: $k_{2}=0.046 \pm 0.003 \mathrm{M}^{-1} \mathrm{~s}^{-1}$

