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ABSTRACT: The kinetic and thermodynamic features of reactions catalyzed by present-day enzymes appear 
to be the consequence of the evolution of these proteins toward maximal catalytic effectiveness. These features 
a re  identified and analyzed (in detail for one substrate-one product enzymes) by using ideas that link the 
energetics of the reaction catalyzed by an enzyme to the maximization of its catalytic efficiency. A 
catalytically optimized enzyme will have a value for the “internal” equilibrium constant (Kin,, the equilibrium 
constant between the substrates and the products of the enzyme when all are bound productively) that depends 
on how close to equilibrium the enzyme maintains its reaction in vivo. Two classes are apparent. For an  
enzyme that operates near equilibrium, the catalytic efficiency is sensitive to the value of Kht, and the optimum 
value of Kin, is near unity. For an  enzyme that operates far from equilibrium, the catalytic efficiency is 
less sensitive to the value of Kint, and Kin, assumes a value that ensures that the rate of the chemical 
transformation is equal to the rate of product release. In each of these cases, the internal thermodynamics 
is “dynamically matched”, where the concentrations of substrate- and product-containing complexes are 
equal at the steady state in vivo. 

E n z y m e s  have been subjected to natural selection as a result 
of the evolutionary pressures on the organisms that contain 
them. Thus, to the extent that the survival of the host depends 
upon a particular chemical transformation, improvements in 
the efficiency of the enzyme catalyzing that transformation 
will be selected for. We can, therefore, speak of the evolution 
of an enzyme analogously to the evolution of a trait of an 
organism. The primary role of an enzyme is as a catalyst to 
accelerate the transformation of substrate to product. More 
efficient enzymes can mediate a higher flux of substrate to 
product than less efficient enzymes, or can mediate the same 
flux using fewer enzyme molecules. The catalytic effectiveness 
of today’s enzymes is remarkable, and rate enhancements of 
lolo or more (over the acid- or base-catalyzed reaction, for 
example) are not uncommon. Here, we codify and rationalize 
such rate enhancements in terms of the binding interactions 
between an enzyme and its substrates and discuss the changes 
in these interactions as catalytic effectiveness develops as a 
consequence of natural selection. 

This paper expands upon earlier theoretical work (Albery 
& Knowles, 1976, 1977; Knowles & Albery, 1977) and ela- 
borates upon those aspects of the theory that can be tested 
experimentally. The approach of the earlier work is retained, 
and we examine the kinetic characteristics of an enzyme 
that-over evolutionary time- has become optimally efficient 
as a catalyst. The earlier analysis led to several proposals, one 
of which was that enzymes that maintain their substrates at 
equilibrium in vivo would exhibit “balanced internal 
thermodynamics”; that is, the two intermediate states flanking 
the kinetically significant transition state would have ap- 
proximately the same free energy. In this case, the “internal” 
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equilibrium constant between these enzyme-bound forms would 
be close to unity. 

In the past decade, this proposal has received experimental 
support from studies on several enzymes, and these data are 
summarized in the following paper. The scope of the earlier 
treatment was limited, however, since only those enzymes that 
maintain their substrates at equilibrium in the cell were de- 
scribed properly. [In practice this limitation was not exces- 
sively severe, because most intracellular enzymes do operate 
close to equilibrium (Rolleston, 1972; Crabtree & Newsholme, 
1985; Burbaum & Knowles, 1989).] The problem has been 
recognized, notably by Chin (1983), who has presented 
equations for an enzyme that catalyzes a reaction where the 
concentration of free product is negligible. The question has 
also been probed and the incompleteness of the earlier work 
discussed further by Ellington and Benner (1987). 

Here, we predict the kinetic behavior of an enzyme that has 
become optimized for catalysis under any given steady-state 
concentrations of substrate and product. The resulting solution 
incorporates both the original treatment (Albery & Knowles, 
1976, 1977; Knowles & Albery, 1977) and its later amendment 
(Chin, 1983) and allows us to predict the behavior of enzymes 
that have become kinetically optimized under any physiological 
boundary conditions. 

EVOLUTIONARY SELECTION OF ENZYMES 

To address the natural selection of enzyme catalysts, we first 
consider how the survival of the host can depend upon the 
catalytic effectiveness of a particular enzyme. In an organism, 
enzymes have unequal stature. Enzymes within a given or- 
ganism have evolved in response to different pressures because 
the evolutionary advantage conferred by an increase in cata- 
lytic effectiveness differs from enzyme to enzyme. Further, 
within a particular metabolic pathway, enzymes play different 
roles. There are enzymes that control the flux through the 
pathway (by altering their kinetic characteristics in response 
to metabolic changes in the host), and there are enzymes that 
simply sustain the flux between the control points. While the 
fitness or efficiency of control enzymes is difficult to define, 
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*2 Scheme I:  Simplest Kinetic Pathway for the Enzyme-Catalyzed 
Interconversion of a Single Substrate, S, and a Single Product, Po 

'In this scheme, there are three steps, the binding of substrate (step 
l ) ,  the conversion of substrate to product (step 2), and the release of 
product (step 3 ) .  

since we normally lack an adequate knowledge of the con- 
trolling variables and of the enzyme's sensitivity to them, the 
effectiveness of enzymes that have no control function can be 
judged more easily. More efficient enzymes carry a greater 
flux,' and an increase in the catalytic efficiency of an enzyme 
may improve the competitive edge of the host organism. We 
first direct our discussion toward those enzymes (the clear 
majority) that mediate the metabolic flux between control 
points and later consider the catalytic effectiveness of the 
enzymes at these control points. 

The simplest kinetic mechanism for the enzyme-catalyzed 
interconversion of a single substrate, S, and a single product, 
P, is shown in Scheme I, where the Michaelis complex with 
substrate, E&, is converted into the Michaelis complex with 
product, E.P, in a single chemical step.* In the original 
formulation (Albery & Knowles, 1976, 1977; Knowles & 
Albery, 1977), improvements in the catalytic efficiency of an 
enzyme were treated in terms of changes in the binding of the 
various intermediates and transition states along the reaction 
pathway. Mutations in the enzyme leading to changes in 
binding were grouped into three classes according to the level 
of discrimination (between different reaction intermediates 
or between an intermediate and a transition state) effected 
by the change. It was postulated that the first and least 
discriminating class of catalytic mutations would affect the 
binding of all bound species equally. As illustrated in Figure 
I A,3 such mutations would therefore change the free energies 

' There are, of course, more features to the suitability of an enzyme 
for a particular metabolic purpose than mere flux, all of which may be 
refined by natural selection. According to Darwin ( l872) ,  "...natural 
selection is continually trying to economise every part of the org- 
anisation." Thus, if an organism were able to produce a smaller protein 
having the same catalytic properties, or an enzyme of longer in vivo 
half-life, the organism would presumably profit somewhat from this 
economy. Likewise, if an organism produced an enzyme that channeled 
an unstable metabolic intermediate directly to the downstream enzyme, 
the organism would enjoy an advantage over one with a less refined 
enzyme that liberated its product into solution. This point has been 
expressed as a concern with our original treatment (Srivastava & Bern- 
hard, 1987), but the present development remains unchanged in this 
respect. Since the intracellular concentrations of enzymes are high, one 
might expect that many intermediary metabolites are complexed to their 
enzymes rather than free and that direct substrate transfer between 
enzymes may be a common occurrence. Yet this possibility does not 
contradict any of the qualitative arguments presented; there is no as- 
sumption in any derivation that [E] < [SI or [PI. 

* There may be some concern that these simplifications reduce the 
generality of what follows, in that most enzyme-catalyzed reactions in- 
volve more than one substrate and/or product and more than three 
elementary steps. Yet we may conflate elementary steps, algebraically 
by the use of net rate constants and illustratively by the omission of 
kinetically insignificant intermediates and transition states, so that 
Scheme I approximates the more complex reality of actual systems. 
Indeed, to treat more complex situations in the first instance would be 
to complicate the discussion gratuitously. 

A 

E 

P 
+ E E 4  

free free - - bound - - 6 
states states states - - 

B 

C 

Uniform 
Binding 

Differential 
Binding 

Catalysis 
of an 

Elementary 
Step 

FIGURE 1: Kinetic barrier diagram3 illustrating the three types of 
binding interaction between an enzyme and its substrates: (A) uniform 
binding, in which all bound states are bound more tightly or less tightly 
with respect to the free states; (B) differential binding, in which the 
substrate, S, and the product, P, are  bound by the enzyme with 
different avidities; (C) catalysis of a n  elementary step, in which the 
transition state for the interconversion of enzyme-bound S and P is 
bound more strongly than S or P itself. 

of the "bound states" (E& E.P, and transition state 2) with 
respect to the "free states" (E + S ,  transition state 1, transition 
state 3, and E + P). Since these changes affect the binding 
of all bound states identically, this theme was called uniform 
binding (Albery & Knowles, 1976, 1977; Knowles & Albery, 
1977). In the case of triosephosphate isomerase, for example, 
the substrate dihydroxyacetone phosphate, the product gly- 

Kinetic discussions such as that developed in this paper can be 
conducted in several ways. We have chosen to navigate between the 
Scylla of pure algebra and the Charybdis of qualitative illustrations. In 
the illustration of the kinetics of enzyme-catalyzed reactions, there are 
several problems: for example, how do we represent first-order rate 
processes and second-order rate processes on the same diagram?; how can 
we illustrate the kinetic barriers that the enzyme experiences as it turns 
over again and again?; and how should we show that the ambient levels 
of the enzyme's substrates and products can be far from their equilibrium 
values, being defined by the relative activities of the enzymes upstream 
and downstream in the metabolic sequence? These problems have led 
us to use kinetic barrier diagrams rather than classical free energy 
profiles in this paper. In  these diagrams, we write all second-order rate 
constants as pseudo-first-order rate constants by including the actual 
ambient substrate concentrations. All these rate constants (each having 
the units of s-I) are now collected in a plot the ordinate axis of which is 
log I l k  (where k is a first-order or a pseudo-first-order rate constant) 
that quantitates the kinetic barrier to a particular transformation. The 
construction, utility, and meaning of kinetic barrier diagrams are further 
described in Appendix I. 
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ceraldehyde phosphate, and the intermediate enediol, as well 
as the two catalytic transition states, are all phosphate mo- 
noesters. A simple change in the enzyme’s affinity for 
phosphate monoesters would affect the free energy of all the 
bound states relative to all the free states, and such a change 
was classified as a uniform-binding change. 

The second class of mutations that was proposed is more 
subtle and would allow the enzyme to distinguish between two 
bound states. For example, in the triosephosphate isomerase 
reaction, dihydroxyacetone phosphate contains a carbonyl 
group at C-2 that is transformed into a hydroxyl group in the 
product glyceraldehyde phosphate. A mutation that places 
a hydrogen-bond acceptor near C-2 will stabilize the product 
but not the substrate, thereby changing the binding of the 
substrates differentially. Such mutations alter the free energy 
of E.P with respect to E 4  as shown in Figure 1B.4 Since these 
changes affect the affinity of the enzyme for substrate and for 
product differently, this theme was called differential binding 
(Albery & Knowles, 1976, 1977; Knowles & Albery, 1977). 

The third class of change that was suggested would be the 
most sophisticated, in that the enzyme would differentiate 
among species that are very similar in structure, namely, a 
transition state and the two intermediates that flank it. 
Mutations in this class would alter the free energy of transition 
state 2 with respect to those of E.P and EeS, as shown in Figure 
1C. This type of interaction is equivalent to the view originally 
put forward by Haldane (1930) [and later developed by 
Pauling (1946, 1948), Jencks (1980), and others] in allowing 
the enzyme to bind the transition state more tightly than either 
of the flanking ground states. This theme was called catalysis 
of an elementary step (Albery & Knowles, 1976, 1977; 
Knowles & Albery, 1977). 

The binding interactions outlined above are classified by an 
increasing level of structural discernment, and we suggested 
that the probability that a random amino acid change in an 
enzyme would effect a particular change was lower the greater 
the subtlety of the change. Indiscriminate effects on the 
relative free energy of all bound species seem to be the most 
probable, a priori, and these will lead to the optimization of 
uniform binding. A less probable mutational event will be one 
that allows the protein to distinguish between substrate and 
product, and we therefore expect the differential binding will 
become optimized more slowly. Finally, the most discrimi- 
nating change will be one that allows the enzyme to recognize 
the fine structural and electronic differences between a tran- 
sition state and the ground states that flank it. We presumed 
that such a change would be the least probable and suggested 
that catalysis of an elementary step would be the last event 
in the time scale of the evolution of a catalyst. Although these 
three types of binding interaction are easily distinguished, we 
do not expect that this classification restricts the evolution of 
an enzyme in  any way. The evolution of each enzyme will 
surely be idiosyncratic and involve a blend of the three pro- 
cesses described. 

THE METABOLIC NICHE 
In any living cell, the concentrations of most metabolites 

are maintained within rather narrow limits, and metabolic 
control is exercised by changes in the flux through metabolic 
pathways rather than by changes in the concentrations of the 

The only effect on transition-state binding would be as a consequence 
of a free energy relationship of the Hammett or Brernsted type. Changes 
in the relative free energies of E 8  and ESP would be partially reflected 
in changes in the relative free energy of the transition state (see Figure 
1B). 
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metabolites themsel~es.~ As organisms evolved, it is obvious 
that changes occurred both in the levels of metabolites and 
in the ability of the enzymes to handle those levels, and that 
such incremental improvements brought us to the state that 
we can now observe. If we want to define the fitness or the 
effectiveness of an enzyme, however, we must first define the 
milieu in which the enzyme operates, and this requires that 
we specify not only the relatively trivial parameters of pH, 
temperature, ionic strength, viscosity, etc. but also the critical 
parameters of substrate and product concentration. 
Throughout this work, we take the existing concentrations of 
substrate and product as fixed parameters that define the 
metabolic niche in which the enzyme operates and ask how 
effectively it performs in that particular environment. 

There are two aspects of the substrate and product con- 
centrations that must concern us. First, the absolute con- 
centrations must be known, to establish how far the enzyme 
is from saturation. Second, the relative concentrations of S 
and P must be known, so that the actual value of [S]/[P] can 
be compared with the equilibrium ratio, [S],/[P], (where 
[SI and [PI are the actual in vivo concentrations of substrate 
and product, respectively, and [SI, and [PI, are the equi- 
librium concentrations of substrate and product, respectively). 
This comparison shows whether the enzyme of interest man- 
ages to maintain its substrates and products at equilibrium. 

At the steady state, the enzyme catalyzing each step in a 
metabolic pathway mediates the same net flux of metabolites6 
An enzyme is said to operate “at equilibrium” if, in vivo, it 
catalyzes the interconversion of S and P much faster than P 
reacts to form downstream products. On the other hand, an 
enzyme is said to operate “off-equilibrium” if it cannot 
maintain S and P at their equilibrium values. Thus, the 
consumption of P by the downstream enzymes may be so rapid 
that the target enzyme cannot maintain S and P at equilibrium, 
and the steady-state concentration of P will then be lower than 
that predicted from [SI and the value of the equilibrium 
constant, K,. Alternatively, the production of S by the up- 
stream enzymes may be so rapid that the target enzyme cannot 
achieve equilibrium of S and P, and the steady-state concen- 
tration of S will then be higher than that predicted from [PI 
and K,. As a measure of the enzyme’s ability to equilibrate 
S and P, we define the parameter 8 as 

where 
8 = ([PI / [SI /Keq) (1) 

(2) 
When 8 equals 1, S and P are at  equilibrium and there is no 
net flux from S to P. On the other hand, when 8 is near 0, 
either the upstream reactions in the pathway produce S so 
rapidly that its steady-state concentration is large and [P]/[S] 

Kq = [PI eq/ [SI eq 

Indeed, the viability of the cell in a changing environment is main- 
tained primarily by altering the fluxes through its various metabolic 
pathways. In general, the concentration levels of metabolites remain 
steady while the fluxes adjust to handle a changed substrate supply or 
an altered metabolic state (Newsholme & Start, 1972; Albery & 
Knowles, 1976). 

Strictly speaking, this statement is true only of unbranched path- 
ways, that is, in regions of metabolism where the substrate is supplied 
by one enzyme and the product is consumed by one enzyme. For this 
reason, a careful definition of flux is needed. For example, in glycolysis, 
in which a six-carbon hexose bisphosphate is cleaved into two three- 
carbon triose phosphates that are interconverted, the enzyme that in- 
terconverts the two three-carbon units (triosephosphate isomerase) must 
maintain a flux of three-carbon molecules equal to the flux of six-carbon 
molecules through the preceding enzyme (aldolase) even though the 
subsequent enzymes (glyceraldehyde phosphate dehydrogenase et seq.) 
must maintain twice the flux of three-carbon molecules. 
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< Kq, or the downstream reactions remove P so quickly that 
its concentration is small and, again, [P]/[S] < Kq. In reality, 
of course, the enzymes in the metabolic pathways of living cells 
neither completely succeed nor totally fail to equilibrate their 
substrates and products. Rather, the value of 8 for each re- 
action in a pathway is always greater than 0 (because the 
concentration of S is never infinite, nor is the concentration 
of P ever zero) and less than 1 (because there will always be 
some net flux of metabolites through each reaction in the 
pathway).’ For most metabolic sequences, neither the sub- 
strate concentration nor the product concentration changes 
significantly, even though the flux through the pathway may 
change dramatically. The value of 8 is therefore roughly 
constant and characterizes the metabolic niche occupied by 
the enzyme. 

We may classify an enzyme on the basis of the value of 6’ 
for its metabolic niche. In glycolysis, for example, 7 of the 
10 enzymes are essentially at equilibrium, and each has a value 
of 6’ close to 1 (Williamson, 1965). The remaining three 
enzymes (hexokinase, phosphofructokinase, and pyruvate 
kinase) are off-equilibrium systems, and each of these has a 
value of 8 of less than 10”. These three enzymes lie at control 
points of the glycolytic pathway. Indeed, an enzyme at a 
control point must operate under off-equilibrium conditions, 
otherwise no control of metabolic flux could be exercised (Hess, 
1963, 1973; Biicher & Russman, 1964). In gluconeogenesis, 
the carbon flux is in the direction opposite that of glycolysis. 
Those enzymes that operate close to equilibrium in glycolysis 
perform the same functions in gluconeogenesis, and only slight 
kinetic differences between the isozymes used in glycolysis and 
in gluconeogenesis can be discerned. In contrast, the enzymes 
that operate far from equilibrium in glycolysis (and which 
control the flux through this pathway) are replaced in glu- 
coneogenesis by enzymes that perform different chemistry. 
Thus, phosphofructokinase of the glycolytic pathway is re- 
placed in gluconeogenesis by fructose 1,6-bisphosphatase, and 
pyruvate kinase in glycolysis is replaced in gluconeogenesis 
by the pair of enzymes pyruvate carboxylase and phosphoe- 
nolpyruvate carboxykinase. These changes in chemistry at the 
control points allow glycolysis to proceed in one tissue and 
gluconeogenesis to dominate in another, without drastic 
changes in the in vivo concentrations of the intermediary 
metabolites. The control enzymes in both pathways (because 
of the change in chemistry) have values of 6’ of less than 1. 

Implicit in the construction of kinetic barrier diagrams (see 
footnote 3 and Appendix I) is the repesentation of how close 
the enzyme is to equilibrium, as expressed by 6’. For a system 
at equilibrium (6’ = l) ,  the levels of E + S and E + P are the 
same, as shown in Figure 2A.* In this figure we have drawn 
a second turnover using dashed lines, which allows us to vis- 
ualize all three of the catalytic cycles of the enzyme: E + Sa 
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to E + Sb, E*Sa to E&, and ESP, to NOW, if the 
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’ Not all enzymes lie along well-defined metabolic pathways. For 
example, digestive or detoxifying enzymes have such a broad substrate 
specificity that pinpointing the “natural” reaction is hopeless. Further, 
some enzymes (such as creatine kinase) catalyze reactions whose sub- 
strates are not used elsewhere in metabolism. It must also be noted that 
in a dynamic system such as a living cell oscillations about an equilibrium 
value are possible (Stengers & Prigogine, 1984). Since such oscillations, 
if present, occur on a much shorter time scale than evolutionary selection, 
the effective value of 6’ is unity, as in the equilibrium model. 

* This fact is evident from the equivalence of the rates of the forward 
and back reactions at equilibrium. The overall second-order reaction rate 
of E + S - E + P is [S],(k,,+/K,,,+) and the overall second-order 
reaction rate of E + P - E + S is 

Where necessary, we distinguish between successive enzyme turn- 
overs by subscript letters. 

A 
At 

Equilibrium (0 = 1m 

. . . . . . . . . . .  , . ,  

E E-Sa E*Pa E + + 
Sa 

B 

( o < e <  1) 

Off - 
Equilibrium 

C 
Effectively 
Irreversible n 

FIGURE 2: Kinetic barrier diagrams illustrating the consequences of 
the target enzyme being unable to maintain S and P at equilibrium, 
as expressed by the parameter 8: (A) equilibrium case, where [P]/[S] 
= [PI /[SI ; (B) slightly off-equilibrium case, where [P]/[S] < 
[PI,/%],; T C )  effectively irreversible case, where [P]/[S] << 

metabolic niche in which the enzyme finds itself is one where 
[p] / [ s ]  < [p],9/[s]q (that is, a niche for which 8 < 1: eq 
1 and 2), the situation becomes that shown in Figure 2B. 
Effectively, the level of the second turnover is lower than the 
first, the drop corresponding to l/8, as illustrated by the 
vertical arrow. This figure shows a particularly useful feature 
of kinetic barrier diagrams, that the kinetic partitioning of the 
free enzyme E (reacting forward with Sb or reacting back with 
Pa, Figure 2A,B) is explicit in the diagram.1° When 8 is less 
than 1, the actual value of [P]/[S] experienced by the enzyme 
is less than the equilibrium ratio [P]q/[S], and the free 
enzyme partitions more strongly forward (in Figure 2B) than 
would be the case at equilibrium (in Figure 2A). Finally, as 
6’ approaches 0, the second catalytic cycle becomes completely 
unimportant (since product is released at very low concen- 
tration), as shown in Figure 2C. 

THE RATE EXPRESSION AND THE CORRESPONDING 
KINETIC BARRIER DIAGRAMS 

To discuss the catalytic effectiveness of an enzyme, we must 
describe the kinetic barriers to the enzyme-catalyzed trans- 
formation, for which we define the function y (Albery & 
Knowles, 1976, 1977) 

(3) 

[PI,/[Sl,. 

Y = ((1 -  el,,,,,)/^ 

l o  The first kinetic barrier in the back reaction of E + P, is represented 
by k_,[P], and the first kinetic barrier in the forward reaction of E + Sb 
is represented by k ,  [SI. 
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from eq 7) 

C 
(terms in B/kCat ,  
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FIGURE 3: Kinetic barrier diagrams illustrating the barriers corre- 
sponding to the kinetic terms in eq 6-8. 

where v is the net flux of substrate S to product P in the 
presence of a concentration of enzyme [Eltotal. It is clear that 
in the limit when 6 is 0 the net flux becomes the unidirectional 
flux from S to P, and it will become evident below that in the 
general case y simply describes the kinetic barriers to catalytic 
turnover in the clockwise direction of Scheme I. 

Now, the net flux u of substrate to product is given by 
(Haldane, 1930) 

where the "+" superscripts denote reaction from S to P, and 
the "-" superscripts denote reaction from P to S .  Combining 
eq 1 and 4, we can write 

6 + -  1 K m +  y = - + -  
kcat+ kcat+[SI  kcat- 

where, in terms of the pathway of Scheme I 

(5) 

and 

(E.Sa,*lb) (E.Pa,*lb) (E*Pa,SZb) 

Writing eq 6-8 in reciprocal form allows each term to be 
directly related to a kinetic barrier (equivalent to a free energy 
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FIGURE 4: Kinetic barrier diagram for an enzyme whose flux can be 
increased no further, and only diffusive steps are kinetically significant. 

of activation"), and each of the terms in eq 6-8 has been 
labeled (beneath it) with the ground state and transition state 
(that is, the particular barrier) to which they refer. For ex- 
ample, each of the three terms of eq 6 corresponds to one of 
the barriers represented by the arrows in Figure 3A: the 
leftmost arrow corresponds to l/k2, the central arrow corre- 
sponds to k-2/(k2k3), and the rightmost arrow corresponds to 

When an enzyme reaction proceeds irreversibly (that is, 
when 6 is close to 0), eq 5 reduces to the Michaelis equation. 
Under these conditions, the function y is given by the sum of 
the six terms of eq 6 and 7 [as in Chin (1983)l. The barriers 
that correspond to each of these six terms are illustrated in 
Figure 3A,B. To treat systems near equilibrium, we must 
include the 6 term on the right-hand side of eq 5. While in 
our earlier description of this term (Albery & Knowles, 1976) 
we stressed the contribution of the back reaction (i.e., of kat-) 
to any system at equilibrium, this term (as expanded in eq 8) 
can more helpfully be illustrated as in Figure 3C. Depending 
on the energetics and the metabolic niche of the enzyme under 
scrutiny, any of the nine barriers illustrated by the arrows in 
Figure 3 could limit the overall turnover. 

The consequences of choosing the function y to describe the 
kinetic barriers to turnover can now be recognized. The three 
terms of eq 5 represent three types of kinetic barrier to enzyme 
turnover. First, the barriers of l/k,,+ (eq 6 and Figure 3A) 
represent the barriers that the liganded enzyme ( E 4  and ESP) 
must cross to turn over in the absence of product. Next, the 
barriers of K,+/k,?[S] (eq 7 and Figure 3B) represent the 
barriers that unliganded enzyme (E) must cross to turn over 
in the absence of product. Finally, the barriers of 6/k,; (eq 
8 and Figure 3C) represent the additional barriers that may 
become kinetically significant in the presence of free product. 
The function y simply describes the barriers to enzyme turn- 
over in the clockwise direction of Scheme I .  In the equation 
for y (eq 5-8) there are nine terms, each of which corresponds 
to one of the nine barriers illustrated in Figure 3. Each term 
(and its corresponding barrier) connects one of the ground 
states (E, E-S, or E.P) with one of the transition states ( *  1, 
$2, or *3), and all nine of these combinations are represented. 

ENZYME EFFICIENCY 
To discuss the kinetic optimization of an enzyme, we need 

a measure of efficiency, and we define the catalytic efficiency12 
of an enzyme (at a given [SI and 0) by F 

+ + 

I '  In transition-state theory, the activation free energy [AG' = -RT 
In (kh/(k,T))] of an elementary step is proportional to the logarithm of 
the reciprocal of the rate constant k for that step. For more complex 
processes with more than one step, the addition of free energies corre- 
sponds to the multiplication of reciprocal rate constants, and the sub- 
traction of free energies corresponds to the division of reciprocal rate 
constants. 

l 2  This is equivalent to the function El in Albery and Knowles (1976). 



9298 Biochemistry, Vol. 28, No. 24, 1989 Burbaum et al. 

where for an enzyme that follows Scheme I, ymin is the value 
for y of an enzyme whose flux can be increased no further. 
Such an enzyme would have a kinetic barrier diagram like that 
of Figure 4, where the chemical interconversion of E-S and 
ESP is extremely rapid and the highest barrier between E + 
S and E + P is either that of substrate binding (transition state 
1) or that of product release (transition state 3). For such an 
enzyme, all the internal states (E-S, ESP, and transition state 
2) are kinetically insignificant. Only the two terms involving 
the free enzyme E and either transition state 1 or transition 
state 3 are important, and ymin becomes (from eq 5-8) 

(EA 1) (E.S3) 

where vlimit represents the highest velocity that the enzyme 
could have in its metabolic niche (Le., at the ambient levels 
of [SI and [PI). The two terms of eq 10 are illustrated by 
the two vertical arrows in Figure 4. To discuss catalytic 
efficiency in terms of F (eq 9) is more intuitive than using y 
(eq 3), since both 1 - 0 and [Eltotal cancel in eq 9, leaving a 
more satisfying ratio of velocities: u/vlimit. Thus, the enzyme 
efficiency, F, describes how close the velocity of the catalyzed 
reaction is to the highest possible velocity (if catalysis were 
limited by diffusional processes only, as illustrated in Figure 
4). Quantitatively, F is determined by the value of y (by eq 
9), which, in turn, is determined by the kinetic constant(s) that 
correspond(s) to the largest of the nine barriers defined by the 
vertical arrows of Figure 3. Improvements in catalytic effi- 
ciency will obviously be most effective when they change the 
height of this largest barrier. 

Up to this point, two aspects of enzyme catalysis have been 
discussed. On the one hand, we have proposed that im- 
provements in the catalytic power of an enzyme can be de- 
scribed by three types of binding interaction between the en- 
zyme and its substrates, products, and transition states. On 
the other hand, we have asked how the individual rate con- 
stants of an enzyme-catalyzed reaction (the rate constants in 
Scheme I) affect the net flux of material through the metabolic 
pathway. To connect these two aspects, we first describe the 
three types of binding in terms of the kinetic constants of 
Scheme I and then optimize these binding interactions so as 
to maximize the catalytic efficiency. 

To define the kinetic behavior of an enzyme that follows 
Scheme I, we require six rate constants, k , ,  k-,, k2,  k-,, k3,  
and k-3. Among these six rate constants, there are only five 
independent variables subject to evolutionary change, because 
Keq ( = k l  k2k3/k- ,  k-,k-,) is fixed, being characteristic of the 
reaction and not of the catalyst. We assume, as earlier (Albery 
& Knowles, 1976), that the two second-order rate constants 
k ,  and k..3 have a value equal to the rate constant for the 
diffusion of S or P to the active site,I3 so that k ,  i= k-3 i= kD.I4 

By assuming that the rates of ligand binding are encounter 
limited, two of the five independent variables are eliminated, 
leaving three for further discussion. We now choose three 
variables that express the three classes of binding interaction 
discussed above (that is, uniform binding, differential binding, 
and catalysis of an elementary step). Uniform binding changes 
the free energies of all the bound states with respect to all the 
free states (Figure 1A). That is, k-, and k3 are changed (to 
the same extent) by uniform binding, but k2 and k-2 remain 
constant. We choose k-l to describe uniform binding and allow 
k,  to be determined by Kq. 

The two variables that remain, k2 and k-2, do not relate 
directly to differential binding and to catalysis of an elementary 
step. Nevertheless, since k2 and k-, are connected by a com- 
mon transition state (transition state 2), we can transform them 
into two more descriptive variables. To achieve this trans- 
formation, we apply a rate-equilibrium relationship (Bell, 1936; 
Evans & Polanyi, 1938; Hammond, 1955; Leffler & Grun- 
wald, 1963; Jencks, 1985). In the present case, changes in the 
internal equilibrium constant between E-S and EaP, Kintr where 

can be related to changes in the kinetic barrier that joins them 
via transition state 2 by using a Brernsted-type relationship. 
To illustrate the relevance of this relationship, consider a 
mutation that affects differential binding (that is, one that 
changes the relative free energies of E-S and E-P). If, for 
example, the altered enzyme binds S relatively more strongly, 
rate-equilibrium relationships predict that the free energy of 
transition state 2 will also change somewhat. As Kht changes, 
the corresponding free energy change will be partially reflected 
in changes in both rate constants k ,  and k-, (see Figure 1B). 
The fraction of the variation in the free energy of a ground 
state that is expressed in the free energy of the transition state 
following it is given by the exponent p (Bransted, 1928; 
Marcus, 1956, 1968; Murdoch, 1972; Albery, 1980) in 

k2 = kZ0Kin? (12) 

where k20 is the “intrinsic” rate constant associated with the 
reaction, which is equal to k2 for the symmetrical process 
having Ki, = 1. In free energy terms, p represents the constant 
of proportionality between thermodynamic changes and kinetic 
changes. 

The choice of the Brernsted-type relationship requires that 
the value of p be a known quantity. Since depends on the 
chemistry of the reaction, a single value for p cannot cover 
all processes. We can assume, however, that p has a value 
not far from 0.5. In the classical interpretation of the 
Brernsted-type relationship, choice of this value means that the 
transition state is about equally sensitive to changes in substrate 
structure as it is toward changes in product structure. A more 
detailed justification of this choice and its effect on what 

l 3  This rate constant, ko, will normally be close to that predicted by 
the Stokes-Einstein equation. There may, however, be perturbations to 
the predicted value, which may increase or decrease the rate constant. 
For example, the existence of strong electrostatic field gradients near the 
active site has been calculated to cause an increase of 30-fold in the rate 
of association of superoxide dismutase with its anionic substrate (Sharp 
et al., 1987). Conversely, the necessary loss of solvent water from the 
active site of thermolysin has been postulated to reduce the association 
rate of this enzyme with its inhibitors by several orders of magnitude 
(Bartlett & Marlowe, 1987). Nevertheless, the kinetic process of en- 
zyme-substrate association is encounter controlled, since it is phenome- 
nologically susceptible to variation by the viscosity of the medium [see, 
for example, Brouwer and Kirsch (1982) and Blacklow et al. (1988)l. 

~~~~ ~ 

l 4  We must reemphasize here that the figures in this paper are kinetic 
barrier diagrams and not classical free energy profiles. The binding of 
S to E and that of P to E are repesented by barriers equivalent to log 
l /k , [S]  and by l/k-,[P], respectively (see footnote 3 and Appendix I). 

I s  The reader familiar with these relationships will be aware of other 
more commonly employed relationships (such as the Hammett equation) 
that allow conclusions about the structure of the transition state. The 
relationship we have chosen compares the rate constant of a reaction to 
the equilibrium constant of the same reaction. The original relationships 
of Bransted and of Hammett use the equilibrium constant of a related 
process (most commonly the acid dissociation constant of one of the 
participants in the reaction) as a basis for comparison, and the values 
from these correlations should not be confused with those discussed here. 
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follows is included in Appendix 11. 
We can now assign kinetic variables to the two remaining 

binding interactions: differential binding and catalysis of an 
elementary step. Differential binding is related directly to Kht 
since the relative free energy of E-S and ESP determines Kint, 
and catalysis of an elementary step is described by effects on 
the intrinsic rate constant k20. So, maximizing catalytic ef- 
ficiency with respect to uniform binding (that is, optimizing 
k - l )  will optimize the internal states relative to the external 
states. Maximizing catalytic efficiency with respect to dif- 
ferential binding (that is, optimizing KinJ will optimize the 
internal states relative to one another. Finally, an improvement 
in catalysis of an elementary step is related to a decrease in 
the intrinsic barrier to reaction, that is, to an increase in k20. 

MAXIMIZATION OF CATALYTIC EFFICIENCY 
To find the maximum efficiency with respect to any variable, 

x ,  we calculate the partial derivative of F with respect to that 
variable ( d F / d x )  and set it equal to 0. Since the function F 
contains terms that derive from constraints imposed either by 
the system (e.g., the overall equilibrium constant of the re- 
action, Kq) or by the environment (e.g., the ambient substrate 
and product levels, as specified by e), which cannot be affected 
by evolutionary change in the target enzyme, we begin by 
collecting these constant terms. Thus, eq 9 can be rewritten 
as 

(1 3) F[S],O = Ymin/(A + Ymin) 

where A can be cast in terms of inverse rate constants (from 
eq 4-8 and 13): 
A =  _ _  

[ & + t(,+ &)( 2 + I ) ]  + (; + &) 
(14) 

The function A contains each of the three independent vari- 
ables, k - l ,  k2,  and k-2, that could in principle change if the 
structure of the enzyme were altered. Furthermore, the 
function A has the same maximum and minimum points as 
F. The three rate constants k-l ,  k2, and k-2 can be transformed 
into the three kinetic variables k-,, Kint, and k20 (discussed 
in the previous section) by using eq 11 and 12 to give 

A = [  k ~ [ S ] k 2 ~ K i , ?  k-I + -!-( k-1 6 + &)(Kint + l ) ]  + 
1 \ ('+ k20 Kin? kz0 

In eq 15, the terms that contain k-l are collected together in 
the left-hand brackets, and those that do not are collected in 
the right-hand parentheses. To investigate the consequences 
of optimizing the three binding interactions in our hierarchy 
(uniform binding, differential binding, and catalysis of an 
elementary step), we evaluate seriatim the effects of mini- 
mizing A (eq 15) with respect to k- l ,  Kint, and k,O. 

Uniform Binding. As shown in Figure lA, uniform binding 
affects both k-I and k3 equally. To derive the equation for 
optimized uniform binding, we take aA/dk-l  and set it equal 
to 0, giving 
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FIGURE 5 :  Kinetic barrier diagram illustrating the consequences of 
optimizing uniform binding:I6 (A) equilibrium case, nonoptimized; 
(B) equilibrium case, optimized (the dotted profile shows the kinetic 
barrier diagram for case A); (C) off-equilibrium case, where [PI < 
[PI,; (D) off-equilibrium case, where [SI > [SI,. 
As written, eq 16 is difficult to illustrate, but this equation 
can be recast by using the rate constants of Scheme I to give 

(E#) ( E * S , S 3 )  ( E * P , S 3 )  (E*Sa,S 1 b) (E*Pa,S lb) 

Equation 17 is ideal for representation in a kinetic barrier 
diagram, since it contains the same products and ratios of 
reciprocal rate constants that are found in the equations for 
y (eq 6-8) so that each term in eq 17 can be represented by 
a particular kinetic barrier. 

Let us first examine the equilibrium case (when 6 is near 
1). The kinetic barriers that correspond to the terms of eq 
17 are illustrated in Figure SA. The solid arrow that connects 
E + Sa and transition state 2, represents the left-hand side of 
eq 17. The four open arrows represent the four terms on the 
right-hand side of eq 17. Uniform binding is optimized when 
the two sides of eq 17 are equal, that is, when the length of 
the solid arrow is equal to the length of the longest of the open 
arrows. This optimum is achieved by moving the bound states 
(in Figure SA, the three states enclosed in the dotted egg) 
together en bloc with respect to the external states (on both 
the first and subsequent turnovers). It is obvious by inspection 
of Figure 5A that any adjustment in uniform binding of this 
inefficient enzyme will directly affect the largest barrier to 
enzyme turnover (that is, any movement of the internal states 
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will change the length of the solid arrow). The uniform- 
binding condition (eq 17) is satisfied if all bound species bind 
more tightly to the enzyme. The kinetic barrier diagram that 
results when all the bound states bind optimally is shown in 
Figure 5B.I6 Yet in this situation, the largest barrier to 
turnover is that represented by the dashed arrow, and the 
catalytic efficiency of the enzyme is relatively insensitive to 
changes in uniform binding. While very inefficient catalysts 
have much to gain by the improvement of uniform binding, 
the optimum can be a rather flat one. In general, enzyme 
efficiency is determined by the heights of the nine barriers 
(represented by the arrows of Figure 3) that determine the 
value of F.  If the largest of these nine barriers is also one of 
the the five barriers that determine the uniform-binding op- 
timum (shown in Figure 5A), then catalytic efficiency will be 
sharply influenced by changes in uniform binding. On the 
other hand, if the largest of the nine barriers (Figure 3) is not 
one of the five uniform-binding barriers (Figure 5A), then the 
uniform-binding optimum will be rather flat and F will be less 
sensitive to changes of this type. In other words, the catalytic 
efficiency of an enzyme will be relatively insensitive to changes 
in uniform binding near the optimum if the catalytic step is 
either extremely slow or extremely fast. 

Off-Equilibrium Systems. Optimization of uniform binding 
adjusts the proportion of the enzyme that exists in bound 
complexes, and the optimum state therefore depends on the 
concentrations of substrate and product. Thus, an enzyme that 
has been optimized for higher ambient substrate and product 
concentrations will bind its substrate and product less tightly 
than an enzyme that has been optimized to operate lower 
substrate and product levels. But what would the optimum 
of uniform binding be if the substrate and product concen- 
trations were not their equilibrium levels? That is, what would 
happen to the enzyme illustrated in Figure 5B if it found itself 
in a metabolic niche where 8 is less than l ?  Since uniform 
binding concerns the ratio of free enzyme to bound enzyme, 
the absolute concentrations of S and P (as well as 8, which 
contains the ratio of [P]/[S]) are relevant here. 

Consider first the case where [PI is lowered because the 
downstream enzymes remove P faster than the target enzyme 
can supply it (thus making [P]/[S] < [PIq/[S], and 8 C 1). 
The situation illustrated in Figure 5B would become that in 
Figure 5C (in which, compared with Figure 5B, only the 
barrier for 1/k3[P]  has been changed). It is evident that the 
barriers that determine the uniform-binding optimum do not 
change. This is exactly what we expect: [PI is smaller than 
[SI for the reaction illustrated in Figure 5 anyway, and making 
it even smaller because of the activity of the downstream 
enzymes does not significantly affect the proportion of the 
target enzyme that is liganded. 

In contrast, what happens if the upstream enzymes supply 
substrate S more rapidly than the target enzyme can equili- 
brate it? Once again [P]/[S] C [Plq/[S], and 8 < 1, yet 
the kinetic situation is rather different here and is represented 
by Figure 5D (in which, compared with Figure 5B, only the 
barrier for 1 / k ,  [SI has been changed). In this case, uniform 
binding is no longer optimal (the solid arrow and the open 
arrow have different lengths), and the enzyme could become 
more efficient if it were to bind its substrates and products 
more loosely until the two kinetic barriers (represented by the 
two arrows) became equal. Once again, this is what we expect: 
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I6 In this figure and those that follow, we illustrate matched barriers 
as in geometry, with tick marks indicating vertical arrows of equal length. 
When two barriers are equal, the two associated rate constants (or net 
rate constants) are by definition equal. 
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FIGURE 6: Kinetic barrier dia ram illustrating the consequences of 
optimizing differential bindin& (A) equilibrium case, nonoptimized; 
(B) equilibrium case, optimized; (C) effectively irreversible case. 
Kinetic barriers marked U relate to the uniform binding condition, 
and kinetic barriers marked D relate to the differential binding 
condition. 

the uniform-binding optimum, which is concerned with the 
ratio of free and bound enzyme forms, is more sensitive to 
changes in the level of the more abundant ligand (in this case, 
S).  Here, then, the uniform-binding optimum for a niche 
where O = 1 is different from the uniform-binding optimum 
for a niche where O < 1. 

Differential Binding. Differential binding, like uniform 
binding, affects only one kinetic variable, in this case the 
internal equilibrium constant, Kin,. To evaluate the optimum 
Kin, (under conditions where the uniform-binding condition 
is, and remains, satisfied), we take the partial derivative 
dA/dKin, ,  set this derivative to 0, substitute for k-, using eq 
16, and solve for Kin, to obtain 

1 + OK, + ( k 3 / k 2 )  
Kin, = ( L) 1 - /3 1 + 8K,, + O(k3/k-,)  

(18) 

As before, this equation can be recast by using the rate con- 
stants of Scheme I to give 

( E W 2 )  (E*S,S3) (E*Sa.*lb) (E.P,S3) (E*Pa,Slb) (E0Pa,$2b) 

(19) 

when /3 = 0.5 (see Appendix 11). 
The 

left-hand side of the equation describes the turnover of E& 
and the solid arrows in the figure point to the kinetic barriers 
for this cycle. Analogously, the right-hand side of eq 19 
describes the turnover of ESP, and the open arrows in Figure 
6A point to the kinetic barriers for this cycle. The longest solid 
arrow (representing the kinetically dominant term in E 6  
turnover) and the longest open arrow (representing the ki- 
netically dominant term in ESP turnover) point to the same 

The terms of eq 19 are illustrated in Figure 6A. 
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transition state (transition state 2), though in different cycles. 
To optimize differential binding, the longest solid arrow is 
matched with the longest open arrow. This is achieved by 
raising ESP and lowering E.S, which optimizes differential 
binding while simultaneously maintaining the uniform-binding 
optimum. For the system illustrated in Figure 6A, optimi- 
zation of differential binding results in the matching of the 
levels of E-S and E-P, as shown in Figure 6B. The matched 
barriers labeled U denote the equality required for optimal 
uniform binding, and the barriers labeled D denote the equality 
required for optimal differential binding. Because the level 
of E-S is matched to the level of the ESP that follows it, the 
value of Kinl for the optimum enzyme of Figure 6B is unity. 

Differential binding affects the relative levels both of the 
kinetically significant intermediates and of the kinetically 
significant transition state between them (according to eq 12). 
So differential binding will always be important in determining 
the catalytic efficiency, unless all these states are kinetically 
insignificant. This only occurs (provided the uniform-binding 
condition has been met) for enzymes such as are illustrated 
in Figure 4. Differential binding is therefore important for 
all enzymes that have an efficiency that is less than the 
maximum. In summary, an enzyme that operates close to 
equilibrium (Le., for which 0 is close to 1) and that has evolved 
to operate with maximal efficiency will have Kht = 1 regardless 
of the overall equilibrium constant for  the reaction, Kq, and 
regardless of the intrinsic rate constant of the reaction, k2’. 
This prediction is clearly evident from eq 18, since for 0 = 1 
this equation reduces to Kin, = p / (  1 - p), the equation that 
we derived earlier (Albery & Knowles, 1976). The likelihood 
that /3 = 0.5, which makes Kin, = 1, is discussed in Appendix 
11. The experimental facts gratifyingly support this conclusion, 
and more than a dozen enzymes for which 0 is close to 1 have 
now been shown to bind their substrates such that Kin, = 1. 
These data are summarized and discussed in the following 
paper (Burbaum & Knowles, 1989). 

Off-Equilibrium Systems. We can now consider the effects 
on the differential binding optimum (that is, Kinl) for an en- 
zyme that cannot maintain its substrates and products at  
equilibrium. For such systems, where 0 is much less than 1, 
the three rightmost arrows of Figure 6A become irrelevant, 
and the single open arrow (that describing E.P turnover, which 
is the product release step, k3)  is matched to the longer of the 
two remaining solid arrows (those describing E-S turnover) 
in Figure 6A. This equivalence is illustrated in Figure 6C. 
It is evident from this discussion that product release is ki- 
netically significant for an enzyme that has been catalytically 
optimized under essentially irreversible conditions. The op- 
timum of uniform binding is simplified somewhat because of 
this, as shown in Figure 6C. 

We can now ask how the optimized kinetic barrier diagram 
differs for different values of 0. If an enzyme operates under 
conditions where 0 is slightly smaller than 1, we could start 
with the diagram shown in Figure 6B (for which 0 = 1) and 
pull down the profile for the second turnover by 1 / O  (as was 
illustrated in Figure 3A,B). Differential binding would then 
not be optimized, because the two arrows that describe dif- 
ferential binding would be unequal (the open “D” arrow in 
Figure 6B would be shorter than the corresponding solid “D” 
arrow). To optimize the energetics for such an enzyme, we 
need to match the levels of ESP, and E& and thereby equalize 
the lengths of the two differential binding arrows.’’ Since 

I t  is evident that this matching results in the optimum when the 
solid arrow describing differential binding is redrawn on the second 
profile, thus connecting ESP, and E& to the same transition state, *2,,. 

Biochemistry, Vol. 28, No. 24, 1989 9301 

the offset between EeS, and E-Sb is equal to l/O, the Kin, of 
the now optimized enzyme is also equal to 1/19. In the extreme 
case, when the value of 0 is near 0, we have the diagram of 
Figure 6C, and the energetics of the second turnover are ir- 
relevant. The continuum of optimized states between parts 
B and C of Figure 6 is therefore clear. When 0 = 1, Kin, = 
1. As 0 decreased from unity, the value of Kin, rises from 1 
to l/0, until the transition states of the second profile have 
become kinetically insignificant. At this point, the optimum 
energetics of the enzyme are independent of 0, and the barrier 
of E.S turnover (k2)  is matched to the barrier to E.P turnover 
( k 3 ) ,  as illustrated in Figure 6C. 

In summary, we can predict Kin, for any enzyme that is 
catalytically optimal in its metabolic niche (that is, for par- 
ticular substrate and product concentrations that are deter- 
mined by the fluxes of metabolite through the upstream and 
the downstream enzymes). Enzymes that operate near 
equilibrium will have values of Kin, near 1, whatever the overall 
equilibrium constant. Enzymes that cannot maintain their 
substrates at equilibrium because of very unequal fluxes of 
material upstream and downstream in the metabolic sequence 
will have values of Kin, between 1 and l/O. In the extreme 
situation where the enzyme is constrained to be effectively 
irreversible (and 0 is close to 0), the differential-binding 
condition results in the matching of two of the forward rate 
constants, of E 4  turnover ( k 2 ) ,  and of product release ( k 3 ) .  
These different regimes are dicussed at the end of this paper 
(under The General Case). 

Catalysis of an Elementary Step. Having discussed the 
uniform binding and the differential binding of substrate and 
product, we can finally turn our attention to the remaining 
variable, k2’, and consider catalysis of an elementary step. As 
with differential binding, improvements in catalysis of an 
elementary step will be effective for all enzymes that are not 
yet perfect, because increases in k2” lower the same central 
barrier as the changes in Kin, that we described above. 
“Optimization” of k2’ is not instructive, however, since a profile 
like that shown in Figure 4 will ultimately result, where none 
of the enzyme-bound species is kinetically significant, and the 
catalytic efficiency is unity. Although we may presume that 
there is some upper limit both to the amount of binding energy 
that can be directed by a protein at the transition state (Jencks, 
1981) and to the level of structural discrimination that can 
reasonably be expected from an enzyme, such limits must 
depend on the particular chemical transformation being cat- 
alyzed. We have at present no basis for estimating these 
constraints. 

Changes in catalysis of an elementary step will affect the 
optima of uniform and differential binding as illustrated in 
Figure 7. In Figure 7A, the optimum kinetic barrier diagram 
for an enzyme with a relatively small k2” is illustrated. Be- 
cause the chemical step of the enzymatic reaction is slow, 
differential binding (which affects the rate of this chemical 
step) is important, while uniform binding is less so. As il- 
lustrated, the enzyme operates off-equilibrium (the level of 
E + P, lies below the level of E + Sa), and the optimum of 
differential binding reflects this (that is, Kin, = 1/19, and the 
two short dashed arrows in the figure have equal length). In 
Figure 7B, the optimum diagram for an enzyme with a larger 
k2’ is illustrated. For this enzyme, the chemical step is faster, 
and the barriers involved in uniform binding are kinetically 
important. The optimum of differential binding now reflects 
only some of the l/O drop, and the optimization of uniform 
binding makes the free energies of E + Sa and E-Sa equal (that 
is, Ks = [SI, where Ks is the dissociation constant for the 
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FIGURE 7: Kinetic barrier diagram illustrating the consequences of 
improving catalysis of the elementary step involving the interconversion 
of E-S and E-PI6 (A) when k20 is small; (B) when k2' is larger; (C) 
when k20 is very large. 

substrate, S). In Figure 7C, an enzyme with a very large k2' 
is illustrated. Because the diffusive barrier illustrated by the 
dashed arrow is largest, this enzyme is perfect (that is, F 
approaches unity). Changing the position of the internal states 
has little effect (within limits) for an enzyme of this caliber. 

THE GENERAL CASE 
While the equations that have been presented in this paper 

are entirely general, we have had to choose particular reaction 
energetics in the kinetic barrier diagram illustrations. Thus, 
Figures 1-3 and 5 represent a thermodynamically uphill re- 
actionI8 for which the chemical step is relatively slow compared 
to the binding steps, whereas Figure 4 shows an uphill reaction 
having an extremely fast chemical step. In this section, we 
generalize the ideas presented and show how all kinetically 
optimized enzymes fall into one of only four classes. 

To characterize a kinetically optimal system, we must define 
two things: the metabolic niche in which the catalyst operates 
and the intrinsic difficulty of the chemical transformation with 
respect to the rates of the physical steps of substrate and 
product binding. The niche is described by 6, which is a 
measure of how close the in vivo substrate and product con- 
centrations are to their equilibrium values. The intrinsic 
difficulty of the transformation is described by K ,  which com- 
pares the intrinsic rate constant for the chemical step, k20, with 
the pseudo-first-order rate constants for the binding of sub- 
strate and product, k D [ S ]  and k D [ P ] ,  as in 

K = k2'( k D I S l  + I) k D I P l  

' *  Since all the diagrams in this paper' are drawn on the basis that 
ligand -on" rates are diffusion limited (that is, that k ,  = k3 = k D ) ,  the 
value of the overall equilibrium constant K, is related to the difference 
between transition state 3 and transition state I .  

To embrace reactions from the very slow to the very fast 
and metabolic niches in which the enzyme operates close to, 
or far from, chemical equilibrium, we consider two coordinates, 
log K and log 8, which are the horizontal axes of Figure 8. For 
any enzyme in any niche, we can now use eq 18 to find Kin,, 
which is plotted on the vertical axis of Figure 8. It is in terms 
of Kin, that all kinetically refined enzymes can be classified, 
and it is the experimental value of Kin, for enzymes of known 
K and known 0 that allows us to see whether real systems have 
reached catalytic optimality as defined and developed in this 
paper. 

The first region of Figure 8 that we discuss is the heavy 
dashed line E (for equilibrium). This line describes the most 
common metabolic niche that is occupied by systems which 
operate close to equilibrium. For all such systems, whether 
they be slow or fast in their chemical steps, and whatever the 
value of the overall equilibrium constant, the predicted value 
of K,, is unity. This is apparent from eq 18: for /3 = 0.5, when 

The second region of Figure 8 is the plane on the right, F 
(for fast). Here, the chemical steps are very rapid ( K  is large), 
and the energetics of these systems resemble that illustrated 
in Figure 4. The optimal value of Kin, in this region is still 
near unity.19 In terms of eq 18, because the chemical steps 
are fast, k-, is large, and for /3 = 0.5, Kin, = 1. In practice, 
we do not expect that the F plane will be highly populated. 
That is, Figure 4 will not describe many real systems, since, 
at least as drawn, Figure 4 represents a kinetic barrier diagram 
for an enzyme whose chemical catalytic steps have been un- 
necessarily acceleratede20 

The third region of Figure 8 is the slope on the left, S (for 
slow). Here, the central chemical steps are relatively slow, 
and the value of K,, is l/%. The energetics of a system of this 
type are illustrated in Figure 6A. In eq 18, when the chemical 
steps are slow, k-, is small, and for /3 = 0.5, Kin, = l /e.  In 
this region, the catalytic optimum is achieved when the entire 
free energy change deriving from the fact that the reaction 
is off-equilibrium (as defined by l/e) is expressed in a cor- 
responding imbalance in Kint. 

Finally, the fourth region of Figure 8 is the nonplanar area 
between S and F. In this region, the value of K,, lies between 
l/t9 (its value on the S slope) and 1 (its value on the F plane). 
This is a region of transition. In eq 18, 6k3 /k -2  must be less 
than or equal to k3 /k -2  (because 0 I l),  so that the numerator 
is dominated by k3 /k -2 ,  while the denominator is dominated 
by 1 + OKq. Equation 18 then reduces to 

(21) 
and we can find two extreme situations in this transition region. 
If [ P ] / [ S ]  is larger than 1, k ,  = ( [ S ] / [ P ] ) k 3 .  However, if 0 
is sufficiently small and [ P ] / [ S ]  is smaller than 1, eq 21 
predicts that k2 = k3.  That is, when an enzyme is constrained 
to operate under effectively irreversible conditions as its 
product is swept away, the matching of E-S turnover and ESP 
turnover leads to equal values of k ,  and k 3 .  For example, the 

e = 1, K~,, = 1. 

k3 = [1 + ( [ P I / [ S l ) l k ,  

l9 It is true, however, that the optimum for Kin, in this region is 
shallow, since the chemical steps are not kinetically significant. 

*O The adverb "unnecessarily" is not improperly anthropomorphic for 
the following reason. All genes are subjected to random mutation, and 
only those changes that have functional consequences for the host's 
survival are selected for (or against). Any change that slowed the 
chemical step of Figure 4 (say, by raising the free energy of 9 2 )  would 
be acceptable and could become established in the host population pro- 
uided that transition state 2 remained kinetically insignificant. The 
results of genetic drift will ensure that kinetically insignificant states will 
always be on the edge of kinetic significance. This certainly appears to 
be true for very many enzyme systems (Albery I% Knowles, 1977). 
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FIGURE 8: Interdependence of the internal equilibrium constant, Kint, the degree to which the reaction is at equilibrium (expressed by e), and 
the speed of the catalytic reaction (expressed by K )  for a catalytically optimized enzyme. 

enzyme illustrated in Figure 7C lies in this region. Under these 
circumstances, the rate constant for the chemical conversion 
of S to P is matched to the rate constant for product release 
from the enzyme. 

In contrast to the treatment developed above, Benner and 
his group (Stackhouse et al., 1985) have put forward the 
“descending staircase” model. These workers have suggested 
that the internal equilibrium constant (Kint) reflects some 
portion of the external equilibrium constant (Kq). In the 
example presented, the estimated internal equilibrium constant 
of pyruvate kinase (of 10-1 5) was compared to the external 
equilibrium constant (of roughly 3000), and it was noted that 
the free energy change for an equilibrium constant of 10-15 
represents approximately one-third of the free energy change 
for an equilibrium constant of 3000 (Le., 153 = 3000). It was 
suggested that each of the three catalytic steps (substrate 
binding, conversion to product, and product loss) would cor- 
respond to one-third of the overall free energy change for the 
reaction. Recent modifications of this proposal have changed 
the constraint of “one-third” to a less specific “portion of the 
external drop in chemical potential” that is “in the same di- 
rection as the external free energy drop” (Ellington & Benner, 
1987). While we agree with the general approach taken by 
Ellington and Benner (1 987), which parallels that taken here 
and elsewhere (Raines, 1986), the concept of a descending 
staircase (at least one with equally spaced risers) is misleading, 
for in no case is a profile with three equal steps (that is, E + 
S to E-S, E*S to E-P, and E=P to E + P) optimized with respect 
to the binding of its substrates. Indeed, optimized profiles 
cannot all be described either as descending or as staircases. 
A catalytically optimized enzyme is more accurately described 
as one having internal states that are “dynamically matched”, 
where the overall barrier to the turnover of substrate complexes 
is matched to the overall barrier to the turnover of product 
complexes and where the concentrations of substrate complexes 
and product complexes are matched in the steady state in vivo. 

Finally, we should emphasize an important point. Catalysis 
of an elementary step should be viewed neither as 
“transition-state stabilization” (Pauling, 1946, 1948; Wol- 
fenden, 1972) nor as “ground-state destabilization” (Vallee 
& Williams, 1968). Indeed, which of these two statements 

is the more correct has often been warmly debated. Yet it is 
obvious in the progression of parts A to B of Figure 7 that 
neither (or, if the reader prefers, both) is correct. An increase 
in k2’ is shared equally between the relevant ground states 
and the relevant transition states: the difference between the 
two positions is not conceptual, but merely semantic. 

CONCLUSION 
By treating the elementary rate constants of an enzyme- 

catalyzed reaction as variables that have changed as a result 
of the selection of their host organisms, we can predict the 
kinetic properties of enzymes that have achieved catalytic 
optimality. To what extent are these predictions fulfilled by 
real systems? 

Experimental tests to determine whether a particular en- 
zyme has become catalytically optimized must correlate data 
of two kinds: (i) the external constraints of the niche in which 
the enzyme operates (aside from the obvious variables of pH, 
ionic strength, etc., the most critical constraints are the in vivo 
concentrations of substrate and of product) and (ii) the 
thermodynamic properties of the enzymic reaction (that is, 
the dissociation constants for S and P and the internal equi- 
librium constant Kint). While rather detailed knowledge of 
the reaction kinetics is required before one can say that the 
uniform-binding condition has been met, a few enzyme systems 
have been fully defined kinetically, and for these reactions the 
uniform-binding condition appears to be satisfied [see, e.g., 
Albery and Knowles (1977) and Benkovic et al. (1988)l. In 
contrast, an enzyme that has been optimized with respect to 
differential binding can be detected by measuring the internal 
equilibrium constant, Kint. Gratifyingly, the experimental 
values of Kint for a considerable number of enzymes are in 
agreement with what is predicted by the theory presented here. 
This corroboration (Burbaum & Knowles, 1989) is particularly 
strong for enzymes that operate near equilibrium (that is, those 
systems for which 6 is near 1). Such enzymes are predicted 
to have values of Kint near unity, regardless of the value of Kes. 
Further, enzymes that have experimental values of 8 much less 
than 1 show values of Kint that differ from unity in the expected 
direction, even though no quantitative correlation can yet be 
made. Interpreting these values of Kint will need to be done 
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cautiously, because many of the enzymes that are off-equi- 
librium in vivo have demonstrated roles in metabolic control. 
That this correlation exists, however, suggests that the span 
of evolutionary time that has already passed has been enough 
for the kinetic refinement of enzymes (at least, of many of 
those of primary metabolism) to have been essentially com- 
pleted. 
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APPENDIX I. KINETIC BARRIER DIAGRAMS 
There are several problems that attend any attempt to 

represent the course of an enzyme-catalyzed reaction by a free 
energy profile, three of which have been mentioned in footnote 
3 .  The first of these problems (of how to represent first-order 
and second-order steps on the same profile) can be circum- 
vented by the choice of a standard-state concentration, which 
need not be the 1 M most often used by chemists, but can- 
more realistically for an enzyme-catalyzed reaction-be the 
actual concentration of the enzyme's substrates in vivo. Thus, 
in our earlier work on triosephosphate isomerase (Albery & 
Knowles, 1976), we specified 40 pM as the standard-state 
concentration, since that is the level of dihydroxyacetone 
phosphate in muscle. This approach is perfectly proper when 
one is illustrating the energetics of an enzyme system at 
equilibrium, but it is not appropriate when (as here) one wants 
also to illustrate the behavior of enzyme systems that cannot 
maintain their substrates and products at equilibrium. 

In this paper, therefore, we adopt a different convention for 
the illustration of the kinetic behavior of enzymes and use what 
we shall call "kinetic barrier diagrams". These diagrams are 
constructed first by writing all second-order rate constants (and 
higher order rate constants) as pseudo-first-order rate con- 
stants, simply by including the actual ambient reactant con- 
centrations. Thus, for the reaction illustrated in Scheme I, 
we write the rate constants of the two bimolecular reactions 
(the binding of S and P to the enzyme) as k , [ S ]  and k-,[P]. 
The values of [SI and [PI are the actual levels that the enzyme 
is experiencing in the steady-state conditions under consid- 
eration. All six rate constants of Scheme I (each in units of 
s-I) can now be presented together, where the ordinate is 
proportional to log l / k  ( k  is a first-order or a pseudo-first- 
order rate constant) and quantitates the kinetic barrier to a 
particular transformation. This protocol means that the 
barriers that represent the second-order binding steps of S and 
P depend upon the concentrations of S and P that the enzyme 
experiences. The relationship of this formalism to a free energy 
profile is obvious, in the sense that the value of log l / k  for 
a particular step in the reaction sequence is proportional to 
the value of AG* for that step. The constant of proportionality 
is, of course, k T / h .  Yet it must be emphasized that there are 
some features of a free energy profile (most obviously the value 
of AGO for the overall reaction) that are not explicitly repre- 
sented in a kinetic barrier diagram. In contrast to the classical 
free energy profile, the kinetic barrier diagram describes how 
each form of the enzyme (including the free enzyme, E) 
partitions kinetically, and it provides a pictorial representation 
of the barriers to enzyme turnover that exist under specified 
conditions of substrate and product concentration. This rep- 
resentation also recognizes that catalysis is a cyclic process 
and that a single enzyme turnover (of the system shown in 
Scheme I) can be viewed as E round to E (via E& and EmP), 
or, equally validly, as E 6  round to E.S, or as ESP round to 

ESP. The kinetic barrier diagram (unlike a free energy profile 
where a single standard-state concentration is chosen and given 
to S and to P) allows one to treat all starting points of the 
catalytic cycle more evenhandedly. 

The kinetic barrier diagram shows immediately whether the 
enzyme is in an equilibrium or an off-equilibrium niche. If 
the enzyme maintains the relative concentration of S and P 
at the equilibrium value (in terms of eq 1 ,  if 0 is near unity), 
then in the kinetic barrier diagram the levels of E + S and 
E + P will be the same. If, however, the supply of S by the 
upstream enzymes is too rapid for the target enzyme to handle, 
or if the downstream enzymes remove P faster than the target 
enzyme can supply it (in terms of eq 1 ,  0 is less than unity), 
then in the kinetic barrier diagram the level of E + P will lie 
below that of E + S .  Systems that are at equilibrium and 
systems that are off-equilibrium are thus immediately ap- 
parent. 

APPENDIX 11. THE CHOICE OF 0 e 0.5 
We have treated 0 as a constant that is approximately equal 

to 0.5 for several reasons. First, in many reaction series where 
rates are compared to equilibria, a Brernsted-type relationship 
(with a constant 0) satisfactorily accommodates the data, even 
when the reaction thermodynamics vary over several orders 
of magnitude (Jencks, 1985). Indeed, linear free energy re- 
lationships of this type have been described as being "more 
general than [they] ought to be" (Bolton 8t Helper, 1971). 
The evident constancy of 0 suggests that changes in transi- 
tion-state structure (which would produce a variable 0) are 
relatively small within a particular reaction series. Other 
authors [e.g., Rees (1985) and Ellington and Benner (1987)l 
have treated 0 as a variable that is subject to evolutionary 
variation. In our hierarchy, such evolutionary variation would 
require an excruciatingly subtle discrimination: for a mutation 
to effect a change in would require the enzyme to distinguish 
between two transition states (say, a more symmetrical one 
and a less symmetrical one) of the same elementary step. 

Second, the subset of chemical reactions found in physiology 
tends to be closer to thermodynamic neutrality (AGO nearer 
0) than chemical reactions as a whole. Values of 0 for 
thermodynamically neutral reactions tend toward 0.5,  so that 
the subset of 0 values for physiological reactions might rea- 
sonably be expected to cluster nearer 0.5 than the entire set 
of 0 values for all reactions. 

Third, as the equilibrium constant for a reaction becomes 
closer to 1, the transition state of the reaction tends to become 
more symmetric, which causes a 0 value that was further from 
0.5 to move toward 0.5 as the thermodynamics become bal- 
anced. This argument is not circular, as has been implied 
(Ellington & Benner, 1987; Nambiar e t  al., 1983), since a 
reaction with an equilibrium constant of unity need not be 
chemically symmetrical and therefore need not have a tran- 
sition state equally sensitive to each ground state. This ar- 
gument is independent of the first argument presented. The 
first argument states that does not vary much with ther- 
modynamic changes, while this argument states that the small 
variations in 0 move it toward 0.5, narrowing further the subset 
of 0 values for physiological reactions. 

Finally we note that when 6 is equal to 0.5, the transition 
state will be (very roughly) equidistant along the reaction 
coordinate between substrate and product, since the reaction 
is equally sensitive to changes in substrate structure as it is 
to changes in product structure (i.e., promad = 0,- only when 
0 = 0.5). At this point, discrimination of transition states from 
ground states will be easiest, since at this point the transition 
state is least like either ground state. 
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As far as the proposals in this paper are concerned, the value 
of 0 does not affect the optimization of uniform binding. The 
value of /3 does, however, affect the optimization of differential 
binding. Specifically, since differential binding is optimized 
as a direct result of the linear free energy relationship, the p 
value (for the forward direction) and the 1 - p value (for the 
reverse direction) become weighting factors in the matching 
of E.P and E 4  turnover. Suppose we found an enzyme with 
a p value of 0.7. Rather than matching E-P turnover to E 4  
turnover exactly, we should match 0.7 parts of E 4  turnover 
to 0.3 parts of E-P turnover. A value of 0.7 would thus affect 
our conclusions by a factor of approximately 2 (actually, 7/3). 
As /3 moves to either extreme, of course, either E-S turnover 
or ESP turnover may become more heavily weighted. But in 
view of the arguments presented above, such extreme values 
of p seem unlikely to be relevant to enzymatic processes. 
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