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A long-term goal of biological chemists is to create new proteins 1. N—S acyl shift
with desirable propertiesOne potentially fruitful approach is to H 2. HS ~g0,H S~
remodel the frameworks designed by nafifthe genetic code m]’“@‘( e SOgH
limits the components of natural proteins to 20 onsamino acids. SH CBD 0

Methods that overcome this limitation but still rely on the ribosome

are similarly I|m|te_d to a subsgt coi-amm_o apld_s a_mak-hydrox_y A1 15 Cysd0-Cys95
acids? Total chemical synthesis of proteins is limited to relatively — “goq1a yneminus

small polypeptided.In contrast, the new method of expressed or 1

protein ligation (EPL) enables the semisynthetic incorporation of mimie 'M y
a limitless variety of nonproteinogenic modules into proteins of / - 'ﬂ
variable size (Figure I Granted this freedom, chemists must now (:_,,.-*“hﬁ“"\“‘\s""’
identify those synthetic components that are truly useful.

Here, we report on the first incorporation of a synthetic module
composed off-amino acids into an enzyme. We demonstrate that
the resulting semisynthetic enzyme not only retains full catalytic Figure 1. Semisynthesis of ribonuclease A by expressed protein ligation.
activity, but also gains conformational stability. This effort links N—Terminal segment (black box) is produced by biosynthesis; C-terminal
two active fields, the re-engineering of natural enzymes and the Segment (white box, including Cys95) is produced by chemical synthesis
development of “foldamers®, nonnatural oligomers with well- ~ nd can contain nonnatural modules.

?heglnrﬁg;f Lﬂgf&g?f:ﬁ:&cﬂf:g I?;éfn?eegl?g Sdl\;feirqﬁgg mimics.14-1_5ln general, these mimics are designed to minimi_ze t_he
residues are preorganized propeflypeptides have greater second- conformational erlltropy of the unfo.lded state by pre-organization
ary structural stability, on a per-residue basis, than do conventional ©f the turn. In native RNase A, residues Gly112-Asn113-Pro114-
peptides. These attributes are encouraging us to explore polypeptided Y1115 form a Type VI reverse turn within a hairpid)( We
with heterogeneous backbones, that is, with backbones containingSUSPected that Asn113-Pro114 could be replaced by a reverse-turn
more than one type of building block. In particular, we are interested MiMic composed of twg-amino acid residues-nipecotic acid-

in creating analogues of natural proteins in whichdhamino acid Snipecotic acid R-Nip-SNip, 2). This di3-peptide unit has been
residues required for biological activity are retained but structural Shown to form a N-H---O=C hydrogen bond within a 12-
components are replaced with more stable nonnatural segmentsmembered ring=and to promotgs-hairpin formation when flanked
The prospective benefits of success include endowing chemotheray a-amino acid residué® or -amino acid residue’$e“-Peptides
peutic proteins with the ability to survive longer in vivo or retain Such asR-Nip-SNip are resistant to degradation by proteolytic
activity after oral administration. enzymes:/

As our target enzyme, we chose ribonuclease A (RNase A; EC~ We used EPL to replace Asnl113-Prol14 with the nonnatural
3.1.27.5), which has been the object of much seminal work in module2. Specifically, we produced RNase A fragment34 as
protein chemistry:° RNase A has eight cysteine residues that form @ fusion protein with thenxeintein and a chitin-binding domain
four disulfide bonds in the native enzyme. In EPL, a modified intein (CBD, Figure 1). Ligation to a peptide corresponding to residues
is used to create a biosynthetic protein fragment containing a 95—124 resulted in a protein that by mass spectrometry contained
C-terminal thioester. The thiolate of an N-terminal cysteine residue the expected amino acid residues.
in a synthetic peptide attacks the thioester to produce, ultimately, ~Enzymatic catalysis provides an extremely sensitive measure of
an amide bond within a semisynthetic protein. native protein structur® RNase A(}94) has no detectable

Thep-turn is an especially favorable way for a polypeptide chain ribonucleolytic activity. In contrast, the activity of the semisynthetic
to reverse its direction, as is necessary for its folding into a compact variant containing th&-Nip-S-Nip module is indistinguishable from
structurel® Reverse turns are critical to protein conformational that of the wild-type enzyme produced in three distinct wdys.
stability'* and many proteirprotein interaction#? In addition, turns Moreover, replacing Asn113-Pro114 with tReNip-S-Nip module
are often a preferred site for degradation by proteolytic enzyies. does not diminish the conformational stability of the enzyme but
Hence, biological chemists are seeking to create effective turn slightly enhances itAT, = (1.2 £ 0.3) °C, Table 1].

Thus, thiss-peptide module is not only tolerated by the protein
Heomesponding (%‘ggfrz-e‘fz‘_rgjgé_rai“es@biOChem-WiSC-EdU- Telephone: (608) structure but actually increases its conformational stability. In
T Department of Biochemistry. marked contrast, replacing Pro114 with the nataramino acids
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Table 1. Properties of Ribonuclease A Variants Supporting Information Available: Procedures and additional data
NH for all syntheses and analyses reported herein (PDF). This material is
)\2 0 available free of charge via the Internet at http://pubs.acs.org.
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