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ABSTRACT: The use of exogenous proteins as intracellular
probes and therapeutic agents is in its infancy. A major hurdle
has been the delivery of native proteins to an intracellular site
of action. Herein, we report on a compact delivery vehicle that
employs the intrinsic affinity of boronic acids for the
carbohydrates that coat the surface of mammalian cells. In
the vehicle, benzoxaborole is linked to protein amino groups
via a “trimethyl lock.” Immolation of this linker is triggered by
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cellular esterases, releasing native protein. Efficacy is demonstrated by enhanced delivery of green fluorescent protein and a
cytotoxic ribonuclease into mammalian cells. This versatile strategy provides new opportunities in chemical biology and

pharmacology.

he delivery of proteins and other macromolecules to an

intracellular site is made difficult by cellular membranes."
Extensive efforts have led to the development of effective
delivery systems that invoke cell-penetrating peptides,”°
antibodies,’ ligands for natural receptors,8 dendrimers,’
functionalized polymers,'”"" liposomes,"* or nanoparticles'>"*
and even enable targeting to subcellular organelles.
Nonetheless, extant strategies often inflict proteins with low
biological activity,"”'”~"? instability in a physiological con-
%21 or immunogenicity in vivo,”””” or employ vehicles that
are recalcitrant to biodegradation.”*

Boronic acids are physiologically benign Lewis acids that
react spontaneously and reversibly with 1,2- and 1,3-diols to
form five- and six-membered cyclic boronic esters, respec-
tively.”>*® The dynamic covalent bonding of boronic acids/
esters can facilitate the delivery of cargo into cells, which are
coated with a diol-rich glycocalyx. To exploit that attribute,
polymers, nanoparticles, and noncovalent assemblies have been
decorated with phenylboronic acid and other arylboronic
acids.””?*

Recently, we showed that boronic acids can be advantageous
when conjugated directly to a protein.'® The ensuing formation
of transient boronate esters with the glycocalyx enhances
cellular delivery. To date, this approach has relied on the
irreversible modification of a target protein, with ensuing
compromises. For example, our previous work installed boronic
acids by the irreversible amidation of enzymic carboxyl groups,
which led to the loss of 83% of catalytic activity.'® An ideal
delivery system based on boronic acids (or, indeed, any moiety)
conveys native cargo, and is thus “traceless.”
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We sought to use a boronic acid and an immolative linker to
promote the delivery of native proteins into a cell. As a boronic
acid, we chose 2-hydroxymethylphenylboronic acid (benzox-
aborole), which has higher affinity than does phenylboronic
acid for the glycopyranosides that are abundant in the
glycocalyx."**** As an immolative linker, we chose the o-
hydroxydihydrocinnamic acid derivative known as the trimethyl
lock (TML). After being triggered, the TML exhibits extremely
high lactonization rates to release a cargo of interest (Scheme
1).°7** The TML has been used for a wide variety of
applications in chemistry and pharmacology™ but not as an
immolative linker on a protein. We chose ester hydrolysis as the
means to trigger lactonization of the TML, as esterases are
abundant inside, but not outside, of human cells®**™>* and
underlie the action of numerous prodrugs.”” We equipped our
TML scaffold with an N-hydroxysuccinimide ester for chemo-
selective conjugation to amino groups,'” such as those at the N
terminus and on the side chain of lysine residues, which have a
~6% abundance in proteins.*” Thus, our delivery vehicle (B-
TML—NHS ester) has three modules: benzoxaborole, an
esterase-activated TML linker, and an NHS ester (Figure 1A).

We synthesized B-TML-NHS ester convergently in 10 steps
by extending a known procedure.*’ Then, we characterized its
ability to enhance the cellular internalization of green
fluorescent protein (GFP) (Scheme 2), which has distinctive
fluorescence and an inability to enter mammalian cells.*”
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Figure 1. Cellular internalization of B-TML-labeled GFP. (A)
Structures of B-TML-NHS ester and Ac-TML-NHS ester. Ellipses
denote the three distinct modules within B-TML-NHS ester. (B)
MALDI-TOF mass spectra of B-TML-GFP (green), conjugated to
~3 boronic acid moieties per molecule and the same protein after
exposure to CHO K1 cell lysate and purification (gray). Expected m/z:
GFP, 29361; each B-TML moiety, 450. (C) Flow cytometry analysis of
CHO K1 cells incubated with 10 yM unlabeled GFP, GFP labeled
with a control vehicle (Ac-TML), or GFP labeled with the boronate
vehicle (B-TML) for 4 h (p < 0.0001). (D) Confocal microscopy of
CHO K1 cells grown as in panel C. Cells were stained with WGA-594
(red) and Hoechst 33342 (blue). Scale bars: 10 gm.

Overnight incubation at ambient temperature with 100-fold
excess of B-TML-NHS ester in 3:1 PBS/acetonitrile yielded 3
+ 1 labels per protein (Figures 1B and S1). The number of
labels in the B-TML-GFP conjugate did not decrease after a
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month of storage in PBS (Figure S2), consistent with the
stability observed for other TML conjugates.”*~** Labeling was,
however, “bioreversible.” Incubation with a lysate from Chinese
hamster ovary (CHO) K1 cells removed all of the labels from
B-TML-GFP (Figure 1B).

Next, we compared the uptake of B-TML-GFP and
unlabeled GFP by CHO K1 cells. After a 4-h incubation, we
observed a dramatic increase in the cellular uptake of B-TML-
GFP (Figure 1C). The fluorescence in microscopy images was
largely punctate, suggesting that B-TML-GFP was taken up via
an endosomal pathway (Figure 1D). Co-localization of this
bright punctate staining with a stain for transferrin was
consistent with this conclusion (Figure S3). After a 24-h
incubation, the fluorescence intensity had increased signifi-
cantly beyond the level measured at 4 h, indicating that the
conjugate was stable in the presence of serum, which was a
component of the cell-culture medium (Figure S4).

To confirm that the boronic acid moiety was responsible for
the difference in cellular entry, we performed two control
experiments. First, we modified GFP with a vehicle (Ac-TML-
NHS ester) that lacks the benzoxaborole functionality (Figure
1A), yielding a level of labeling similar to that from B-TML-
NHS ester (Figure S1). When incubated with cells for 4 h, Ac-
TML-GFP was taken up comparably to unlabeled GFP rather
than to B-TML-GFP (Figure 1C and D). These data indicate
that the enhanced delivery upon treatment with B-TML-NHS
ester is not due to the mere modification of lysine residues or to
interactions with the TML portion of B-TML. Next, we
repeated the cellular uptake experiments with B-TML-GFP in
the presence of fructose, which has a K, of 336 M for
benzoxaborole.'® We observed a significant decrease in GFP
uptake in the presence of fructose, apparent with both confocal
microscopy and flow cytometry (Figure 2A and B). Again, these
data indict the boronic acid portion of B-TML-GFP as being
responsible for cellular uptake.

Finally, we sought to test the efficacy of B-TML as a delivery
vehicle to the cytosol. To do so, we employed an enzymic
cytotoxin—the G88R variant of ribonuclease A, which must
reach cytosolic RNA to manifest its toxic activity.""’ After
labeling the ribonuclease by the same procedure used to label
GFP, we observed an average of 1.6 + 0.7 labels per molecule
of protein (Figure SS). This lower labeling is consistent with
GFP (19 lysine residues) having more amino groups than does
the ribonuclease (12 lysine residues). Again, we found that the
labeling was bioreversible, as incubation with a CHO KI cell
lysate removed all of the labels (Figure S6). Finally, we assayed
the ability of B-TML-ribonuclease and unlabeled ribonuclease
to inhibit the proliferation of K-562 cells, which are derived
from a human myelogenous leukemia line. We found that the
pendant boronic acids resulted in a decrease in the ICy, value
(Figure 3), indicative of more cytotoxin reaching the cytosol.

We conclude that covalent modification of proteins with B-
TML-NHS ester can increase their ability to enter mammalian
cells. Importantly, this modification is bioreversible. The
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Figure 2. Effect of fructose on the cellular internalization of B-TML-
labeled GFP. (A) Confocal microscopy of B-TML-GFP (10 uM)
preincubated with PBS or 175 mM fructose for 30 min, then used to
treat CHO K1 cells for 4 h. Cells were stained with WGA-594 (red)
and Hoechst 33342 (blue). Scale bars: 20 um. (B) Flow cytometry
analysis of CHO K1 cells treated as in panel A (p < 0.01).
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Figure 3. Effect of B-TML-labeling on the inhibition of K-562 cell
proliferation by a ribonuclease. Unlabeled G88R ribonuclease A, ICq,
= 6.4 + 0.1 uM; B-TML-labeled G88R ribonuclease A, ICs, = 3.5 +
0.8 M. Each data point represents the mean + SE for three separate
experiments, each performed in duplicate.

irreversible modification of a protein can compromise its
utility.""'"~** In contrast, endogenous cellular enzymes revert
modification with B-TML.

The bioreversibility of our delivery vehicle provides new
opportunities. The sulfhydryl groups of cysteine residues have
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long been used for this purpose because their mixed disulfides
suffer reduction within the cytosol."**” Recently, we found that
appropriately tuned diazo compounds can esterify protein
carboxyl groups, providing a second type of bioreversible
modification.’®" In this work, we report on a bioreversible
modification of protein amino groups that is distinct from
others™>* in its being removable by an enzyme-catalyzed
reaction. With its traceless utility in promoting cellular uptake,
B-TML-NHS ester provides new opportunities in chemical
biology and pharmacology.
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